Mechanistic Model of Rothia Mucilaginosa Adaptation Toward Persistence in the CF Lung, Based on a Genome Reconstructed from Metagenomic Data
Mechanistic Model of Rothia mucilaginosa Adaptation toward Persistence in the CF Lung, Based on a Genome Reconstructed from Metagenomic Data Yan Wei Lim1*, Robert Schmieder2, Matthew Haynes1¤, Mike Furlan1, T. David Matthews1, Katrine Whiteson1, Stephen J. Poole3, Christopher S. Hayes3,4, David A. Low3,4, Heather Maughan5, Robert Edwards2,6, Douglas Conrad7, Forest Rohwer1 1 Department of Biology, San Diego State University, San Diego, California, United States of America, 2 Computational Science Research Center, San Diego State University, San Diego, California, United States of America, 3 Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America, 4 Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America, 5 Ronin Institute, Montclair, New Jersey, United States of America, 6 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America, 7 Department of Medicine, University of California San Diego, La Jolla, California, United States of America Abstract The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system.
[Show full text]