Nitrate-Responsive Oral Microbiome Modulates Nitric Oxide Homeostasis and Blood Pressure in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Nitrate-Responsive Oral Microbiome Modulates Nitric Oxide Homeostasis and Blood Pressure in Humans View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/111622/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Vanhatalo, Anni, Blackwell, Jamie, L'Heureux, Joanna, Williams, David, Smith, Ann, van der Giezen, Mark, Winyard, Paul, Kelly, James and Jones, Andrew 2018. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical Biology and Medicine 124 , pp. 21-30. 10.1016/j.freeradbiomed.2018.05.078 file Publishers page: https://doi.org/10.1016/j.freeradbiomed.2018.05.07... <https://doi.org/10.1016/j.freeradbiomed.2018.05.078> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. 1 Nitrate-responsive oral microbiome modulates nitric oxide 2 homeostasis and blood pressure in humans 3 4 Anni Vanhatalo1, Jamie R. Blackwell1, Joanna L’Heureux1, David W. Williams2, Ann 5 Smith3, Mark van der Giezen1, Paul G. Winyard4, James Kelly1, Andrew M. Jones1 6 7 1 College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK; 2 8 School of Dentistry and 3 Division of Population Medicine, Cardiff University, Cardiff CF14 9 4XY UK; 4 University of Exeter Medical School, University of Exeter, Exeter EX1 1TE, UK. 10 11 Running Head: Dietary nitrate and oral microbiome 12 13 14 Correspondence: 15 Anni Vanhatalo, Ph.D. 16 E-mail: [email protected] 17 Tel: 01392 722886 18 Fax: 01392 264726 19 1 20 Abstract 21 Imbalances in the oral microbial community have been associated with reduced 22 cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to - - 23 health is the nitrate (NO3 )-nitrite (NO2 )-nitric oxide (NO) pathway, which relies on oral - - - 24 bacteria to reduce NO3 to NO2 . NO (generated from both NO2 and L-arginine) regulates 25 vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S 26 rRNA genes we examined the relationships between the oral microbiome and physiological 27 indices of NO bioavailability and possible changes in these variables following 10 days of - 28 NO3 (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) - 29 normotensive humans (n=18). NO3 supplementation altered the salivary microbiome 30 compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and - 31 decreasing the relative abundance of Bacteroidetes (-46%; P<0.05). After NO3 32 supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were 33 greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo - - 34 condition (all P<0.05). NO3 supplementation increased plasma concentration of NO2 and 35 reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. 36 High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella - - 37 were correlated with greater increases in plasma [NO2 ] in response to NO3 supplementation. 38 The current findings indicate that the oral microbiome is malleable to change with increased - 39 dietary intake of inorganic NO3 , and that diet-induced changes in the oral microbial 40 community are related to indices of NO homeostasis and vascular health in vivo. 41 42 Keywords: Ageing; cardiovascular health; oral nitrate reduction; nitrite; 16S rRNA 43 sequencing; host-microbe symbiosis; prebiotic. 44 2 45 Introduction 46 - 47 Inorganic nitrate (NO3 ) is a natural part of the human diet that is found in high - 48 concentrations in many vegetables. NO3 itself is biologically inert and human cells are - 49 believed to lack NO3 -reductase capability. However, commensal bacteria in the oral cavity - 50 can use nitrate as a terminal electron acceptor for ATP synthesis, reducing NO3 to nitrite - - 51 (NO2 ; which can be vasoactive in low-oxygen and low-pH conditions) and this NO2 can be - 52 further reduced to the potent vasodilator, nitric oxide (NO) (Dejam et al. 2004). The NO3 - - - 53 NO2 -NO reduction pathway underpins the discovery that dietary NO3 supplementation - 54 through consumption of NO3 salts (Larsen et al. 2006) or vegetable products such as beetroot 55 juice (Kelly et al. 2013a; Webb et al. 2008) reduces blood pressure (BP) in healthy young and 56 old humans. 57 - - 58 The importance of a functioning oral microbiome for the NO3 - NO2 -NO reduction pathway 59 is highlighted in cases where use of antibacterial mouthwash markedly blunts the increase in - 60 plasma and saliva NO2 concentrations and associated decrease in BP following ingestion of a - 61 standardised NO3 dose (Govoni et al. 2008; Kapil et al. 2013; McDonagh et al. 2015). 62 Epidemiological studies also indicate that dysbiosis of the oral microbial community is 63 associated with poor cardiovascular health (Briskey et al. 2016). Conversely, a diet rich in - 64 vegetables, which contain high concentrations of inorganic NO3 , significantly protects 65 against both coronary heart disease and stroke (Bondonno et al. 2017; Hung et al. 2004; 66 Joshipura et al. 2009). Ageing has been associated with reduced salivary flow rate (‘dry 67 mouth’) and altered oral bacterial colonisation (Percival et al. 1991; Xu et al. 2015), but it is - 68 not known whether the abundances of NO3 reducing oral bacteria decline with age. Dietary - - 69 NO3 intake, and the abundance of NO3 -reducing oral bacteria, therefore represent routes to 3 70 lower blood pressure and maintain and improve cardiovascular health across the human 71 lifespan. 72 - - 73 It is possible that dietary NO3 as a prebiotic treatment might promote proliferation of NO3 - 74 reducing bacteria. In a rodent model, a NO3 -rich diet over 7 days increased abundance of - 75 oral bacteria (Streptococcus and Haemophilus) that contain NO3 reductase genes (Hyde et al. - 76 2014a). In saliva samples of hypercholesterolaemic humans, 6 weeks of NO3 77 supplementation with beetroot juice significantly increased the abundance of Neisseria - 78 flavescens and tended to increase Rothia mucilaginosa which are known NO3 reducers - 79 (Velmurugan et al. 2016). These studies indicate that increased dietary NO3 intake may alter - 80 the oral microbiome in a way which enhances an individual’s ability to reduce ingested NO3 , - 81 resulting in greater plasma NO2 concentration and a greater reduction in systemic blood 82 pressure. However, characterisation of potential changes in the oral microbiome of healthy - 83 young and old humans in response to NO3 supplementation is lacking. 84 85 In the present study, we used 16S rRNA gene sequencing to investigate whether abundances - 86 of NO3 -reducing bacteria on the surface of the human tongue modulate an individual’s - 87 response to NO3 supplementation in young (18-22 years) and old (70-79 years) normotensive - 88 adults. We hypothesised that at baseline, abundances of known NO3 -reducing bacteria 89 (including Neisseria, Prevotella, Rothia, Veillonella and Actinomycetales) would be greater 90 in young compared to old participants, and that high abundances of these bacteria at baseline - 91 would be associated with higher plasma NO2 concentrations, and greater changes in blood - 92 pressure and arterial stiffness in response to NO3 supplementation. Secondly, we investigated - 93 whether 10 days of regular dietary NO3 ingestion altered the oral microbiome compared with 94 placebo supplementation. It was hypothesised that oral microbiomes would be different 4 - 95 between placebo and NO3 conditions, and specifically that the relative abundances of - - 96 bacteria capable of NO3 reduction would be greater after NO3 compared to placebo 97 supplementation. 98 99 Methods 100 101 Ethical approval 102 The study was approved by the institutional Ethics Committee (Sport and Health Sciences, 103 University of Exeter) and conducted in accordance with the code of the ethical principles of 104 the World Medical Association (Declaration of Helsinki). All participants gave their written, 105 informed consent before the commencement of the study, once the experimental procedures, 106 associated risks, and potential benefits of participation had been explained. 107 108 Study participants 109 Nine old adults including six females (mean ± SD, age 75 ± 3 yrs, age range 70-79 yrs, height 110 162 ± 6 cm, body mass 61.8 ± 14.0 kg) and three males (age 73 ± 5 yrs, age range 70-78 yrs, 111 height 172 ± 4 cm, body mass 77.7 ± 11.6 kg) and nine young adults including five females 112 (age 20 ± 1 yrs, age range 19-22 yrs, height 168 ± 7 cm, body mass 67.9 ± 10.3 kg) and four 113 males (age 20 ± 2 yrs, age range 18-22 yrs, height 180 ± 4 cm, body mass 73.4 ± 12.9 kg) 114 volunteered to participate in this study (Table 1). All participants were of Caucasian 115 ethnicity. The nine old adults represented a subsample of a larger cohort tested for a Dunhill 116 Medical Trust funded project (R269/1112) from which the microbiome of the tongue and 117 saliva were retrospectively analysed. Participants were screened prior to participation to 118 ensure suitability for the study. All participants were ostensibly healthy and were not taking 119 medication or dietary supplements. None of the participants were tobacco smokers and all 5 120 reported having no oral diseases.
Recommended publications
  • Nitrate-Responsive Oral Microbiome Modulates Nitric Oxide Homeostasis and Blood Pressure in Humans
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/111622/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Vanhatalo, Anni, Blackwell, Jamie R., L'Heureux, Joanna E., Williams, David W., Smith, Ann, van der Giezen, Mark, Winyard, Paul G., Kelly, James and Jones, Andrew M. 2018. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical Biology and Medicine 124 , pp. 21-30. 10.1016/j.freeradbiomed.2018.05.078 filefile Publishers page: https://doi.org/10.1016/j.freeradbiomed.2018.05.07... <https://doi.org/10.1016/j.freeradbiomed.2018.05.078> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Free Radical Biology and Medicine 124 (2018) 21–30 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Original article Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans T ⁎ Anni Vanhataloa, , Jamie R. Blackwella, Joanna E.
    [Show full text]
  • INFECTIOUS DISEASES NEWSLETTER May 2017 T. Herchline, Editor LOCAL NEWS ID Fellows Our New Fellow Starting in July Is Dr. Najmus
    INFECTIOUS DISEASES NEWSLETTER May 2017 T. Herchline, Editor LOCAL NEWS ID Fellows Our new fellow starting in July is Dr. Najmus Sahar. Dr. Sahar graduated from Dow Medical College in Pakistan in 2009. She works in Dayton, OH and completed residency training from the Wright State University Internal Medicine Residency Program in 2016. She is married to Dr. Asghar Ali, a hospitalist in MVH and mother of 3 children Fawad, Ebaad and Hammad. She spends most of her spare time with family in outdoor activities. Dr Alpa Desai will be at Miami Valley Hospital in May and June, and at the VA Medical Center in July. Dr Luke Onuorah will be at the VA Medical Center in May and June, and at Miami Valley Hospital in July. Dr. Najmus Sahar will be at MVH in July. Raccoon Rabies Immune Barrier Breach, Stark County Two raccoons collected this year in Stark County have been confirmed by the Centers of Disease Control and Prevention to be infected with the raccoon rabies variant virus. These raccoons were collected outside the Oral Rabies Vaccination (ORV) zone and represent the first breach of the ORV zone since a 2004 breach in Lake County. In 1997, a new strain of rabies in wild raccoons was introduced into northeastern Ohio from Pennsylvania. The Ohio Department of Health and other partner agencies implemented a program to immunize wild raccoons for rabies using an oral rabies vaccine. This effort created a barrier of immune animals that reduced animal cases and prevented the spread of raccoon rabies into the rest of Ohio.
    [Show full text]
  • Mechanistic Model of Rothia Mucilaginosa Adaptation Toward Persistence in the CF Lung, Based on a Genome Reconstructed from Metagenomic Data
    Mechanistic Model of Rothia mucilaginosa Adaptation toward Persistence in the CF Lung, Based on a Genome Reconstructed from Metagenomic Data Yan Wei Lim1*, Robert Schmieder2, Matthew Haynes1¤, Mike Furlan1, T. David Matthews1, Katrine Whiteson1, Stephen J. Poole3, Christopher S. Hayes3,4, David A. Low3,4, Heather Maughan5, Robert Edwards2,6, Douglas Conrad7, Forest Rohwer1 1 Department of Biology, San Diego State University, San Diego, California, United States of America, 2 Computational Science Research Center, San Diego State University, San Diego, California, United States of America, 3 Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America, 4 Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America, 5 Ronin Institute, Montclair, New Jersey, United States of America, 6 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America, 7 Department of Medicine, University of California San Diego, La Jolla, California, United States of America Abstract The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system.
    [Show full text]
  • Rothia Mucilaginosa, Rarely Isolated Pathogen As an Etiological Factor of Infection of Soft Tissues in Young, Healthy Woman Roth
    ® Postepy Hig Med Dosw (online), 2013; 67: 1-5 www.phmd.pl e-ISSN 1732-2693 Case Report Received: 2012.05.30 Accepted: 2012.11.15 Rothia mucilaginosa, rarely isolated pathogen as an Published: 2013.01.11 etiological factor of infection of soft tissues in young, healthy woman Rothia mucilaginosa rzadko izolowany patogen jako czynnik etiologiczny zakażenia tkanek miękkich twarzy u młodej zdrowej kobiety Authors’ Contribution: Hanna Tomczak1A, Joanna Bilska-Stokłosa2B, Krzysztof Osmola2D, A Study Design Michał Marcinkowski2F, Wioleta Błażejewska1F, Katarzyna Myczko1F, B Data Collection 2D 2B C Statistical Analysis Bartosz Mańkowski , Iwetta Kaczmarek D Data Interpretation 1 E Manuscript Preparation Central Laboratory of Microbiology Heliodor Święcicki Clinical Hospital of the Poznań University of Medical F Literature Search Sciences, Poland 2 G Funds Collection Department of Maxillofacial Surgery Heliodor Święcicki Clinical Hospital of the Poznań University of Medical Sciences, Poland Summary This paper presents a rare case of facial soft tissue infection caused by the bacterial strain of Rothia mucilaginosa. Odontogenic background of infection and initial clinical presentation suggested the presence of typical bacterial flora and uncomplicated course of treatment. However, despite surgical intervention and broad-spectrum antibiotic therapy, the expected improvement of a cli- nical status was not achieved. Only detailed bacteriological examination allowed to establish a bacterial pathogen and start a targeted antibiotic therapy. The unusual clinical course was moni- tored by imaging CT examination and further surgical interventions. A significant improvement was obtained in the third week of hospitalization and further antibiotic therapy was continued by means of outpatient treatment. Rothia mucilaginosa infection together with dental intervention is a rare case, since most of the reports in the literature concern the patients with decreased im- munity.
    [Show full text]
  • Influence of the Lung Microbiome on Antibiotic Susceptibility of Cystic Fibrosis Pathogens
    LUNG SCIENCE CONFERENCE CYSTIC FIBROSIS Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens Eva Vandeplassche, Sarah Tavernier, Tom Coenye and Aurélie Crabbé Affiliation: Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium. Correspondence: Aurélie Crabbé, Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. E-mail: [email protected] @ERSpublications Interspecies interactions in the lung microbiome may influence the outcome of antibiotic treatment targeted at cystic fibrosis pathogens http://bit.ly/2WQp0iQ Cite this article as: Vandeplassche E, Tavernier S, Coenye T, et al. Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens. Eur Respir Rev 2019; 28: 190041 [https://doi.org/ 10.1183/16000617.0041-2019]. ABSTRACT The lungs of patients with cystic fibrosis (CF) are colonised by a microbial community comprised of pathogenic species, such as Pseudomonas aeruginosa and Staphylococcus aureus, and microorganisms that are typically not associated with worse clinical outcomes (considered as commensals). Antibiotics directed at CF pathogens are often not effective and a discrepancy is observed between activity of these agents in vitro and in the patient. This review describes how interspecies interactions within the lung microbiome might influence the outcome of antibiotic treatment targeted at common CF pathogens. Protective mechanisms by members of the microbiome such as antibiotic degradation (indirect pathogenicity), alterations of the cell wall, production of matrix components decreasing antibiotic penetration, and changes in metabolism are discussed. Interspecies interactions that increase bacterial susceptibility are also addressed. Furthermore, we discuss how experimental conditions, such as culture media, oxygen levels, incorporation of host–pathogen interactions, and microbial community composition may influence the outcome of microbial interaction studies related to antibiotic activity.
    [Show full text]
  • Identification of Staphylococcus Species, Micrococcus Species and Rothia Species
    UK Standards for Microbiology Investigations Identification of Staphylococcus species, Micrococcus species and Rothia species This publication was created by Public Health England (PHE) in partnership with the NHS. Identification | ID 07 | Issue no: 4 | Issue date: 26.05.20 | Page: 1 of 26 © Crown copyright 2020 Identification of Staphylococcus species, Micrococcus species and Rothia species Acknowledgments UK Standards for Microbiology Investigations (UK SMIs) are developed under the auspices of PHE working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk-standards-for-microbiology- investigations-smi-quality-and-consistency-in-clinical-laboratories. UK SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for- microbiology-investigations-steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the medical editors for editing the medical content. PHE publications gateway number: GW-634 UK Standards for Microbiology Investigations are produced in association with: Identification | ID 07 | Issue no: 4 | Issue date: 26.05.20 | Page: 2 of 26 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public
    [Show full text]
  • S41467-019-13549-9.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-13549-9 OPEN A 5700 year-old human genome and oral microbiome from chewed birch pitch Theis Z.T. Jensen 1,2,10, Jonas Niemann1,2,10, Katrine Højholt Iversen 3,4,10, Anna K. Fotakis 1, Shyam Gopalakrishnan 1, Åshild J. Vågene1, Mikkel Winther Pedersen 1, Mikkel-Holger S. Sinding 1, Martin R. Ellegaard 1, Morten E. Allentoft1, Liam T. Lanigan1, Alberto J. Taurozzi1,Sofie Holtsmark Nielsen1, Michael W. Dee5, Martin N. Mortensen 6, Mads C. Christensen6, Søren A. Sørensen7, Matthew J. Collins1,8, M. Thomas P. Gilbert 1,9, Martin Sikora 1, Simon Rasmussen 4 & Hannes Schroeder 1* 1234567890():,; The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.
    [Show full text]
  • Bioorthogonal Non-Canonical Amino Acid Tagging Reveals Translationally Active Subpopulations of the Cystic fibrosis Lung Microbiota
    ARTICLE https://doi.org/10.1038/s41467-020-16163-2 OPEN Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota Talia D. Valentini 1,4, Sarah K. Lucas 1,4, Kelsey A. Binder1,4, Lydia C. Cameron1, Jason A. Motl2, ✉ Jordan M. Dunitz3 & Ryan C. Hunter 1 fi 1234567890():,; Culture-independent studies of cystic brosis lung microbiota have provided few mechanistic insights into the polymicrobial basis of disease. Deciphering the specific contributions of individual taxa to CF pathogenesis requires comprehensive understanding of their ecophy- siology at the site of infection. We hypothesize that only a subset of CF microbiota are translationally active and that these activities vary between subjects. Here, we apply bioor- thogonal non-canonical amino acid tagging (BONCAT) to visualize and quantify bacterial translational activity in expectorated sputum. We report that the percentage of BONCAT- labeled (i.e. active) bacterial cells varies substantially between subjects (6-56%). We use fluorescence-activated cell sorting (FACS) and genomic sequencing to assign taxonomy to BONCAT-labeled cells. While many abundant taxa are indeed active, most bacterial species detected by conventional molecular profiling show a mixed population of both BONCAT- labeled and unlabeled cells, suggesting heterogeneous growth rates in sputum. Differ- entiating translationally active subpopulations adds to our evolving understanding of CF lung disease and may help guide antibiotic therapies targeting bacteria most likely to be susceptible. 1 Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455, United States. 2 Academic Health Center, University Flow Cytometry Resource, University of Minnesota, 6th St SE, Minneapolis, MN 55455, United States.
    [Show full text]
  • 323C950e4135eb873c5e06ee2f
    Journal of Clinical Medicine Article Characterization of Microbiota in Bronchiectasis Patients with Different Disease Severities Sang Hoon Lee 1 , YeonJoo Lee 2, Jong Sun Park 2, Young-Jae Cho 2, Ho Il Yoon 2, Choon-Taek Lee 2 and Jae Ho Lee 2,* 1 Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul 120-752, Korea; [email protected] 2 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea; [email protected] (Y.L.); [email protected] (J.S.P.); [email protected] (Y.-J.C.); [email protected] (H.I.Y.); [email protected] (C.-T.L.) * Correspondence: [email protected]; Tel.: +82-317-877-054 Received: 10 October 2018; Accepted: 6 November 2018; Published: 9 November 2018 Abstract: The applications of the 16S rRNA gene pyrosequencing has expanded our knowledge of the respiratory tract microbiome originally obtained using conventional, culture-based methods. In this study, we employed DNA-based molecular techniques for examining the sputum microbiome in bronchiectasis patients, in relation to disease severity. Of the sixty-three study subjects, forty-two had mild and twenty-one had moderate or severe bronchiectasis, which was classified by calculating the FACED score, based on the FEV1 (forced expiratory volume in 1 s, %) (F, 0–2 points), age (A, 0–2 points), chronic colonization by Pseudomonas aeruginosa (C, 0–1 point), radiographic extension (E, 0–1 point), and dyspnoea (D, 0–1 point).
    [Show full text]
  • Antibiotic Resistance Genes in the Actinobacteria Phylum
    European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:1599–1624 https://doi.org/10.1007/s10096-019-03580-5 REVIEW Antibiotic resistance genes in the Actinobacteria phylum Mehdi Fatahi-Bafghi1 Received: 4 March 2019 /Accepted: 1 May 2019 /Published online: 27 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum. Keywords Actinobacteria . Antibiotics . Antibiotics resistance . Antibiotic resistance genes . Phylum Brief introduction about the taxonomy chemical taxonomy: in this method, analysis of cell wall and of Actinobacteria whole cell compositions such as various sugars, amino acids, lipids, menaquinones, proteins, and etc., are studied [5]. (ii) One of the oldest phyla in the bacteria domain that have a Phenotypic classification: there are various phenotypic tests significant role in medicine and biotechnology is the phylum such as the use of conventional and specific staining such as Actinobacteria [1, 2]. In this phylum, DNA contains G + C Gram stain, partially acid-fast, acid-fast (Ziehl-Neelsen stain rich about 50–70%, non-motile (Actinosynnema pretiosum or Kinyoun stain), and methenamine silver staining; morphol- subsp.
    [Show full text]
  • Non Commercial Use Only
    Infectious Disease Reports 2016; volume 8:6320 First report of acute This complication often occurs sporadically, and in such situations, the common source of Correspondence: Enrique Rodríguez de la Rúa, postoperative endophthalmitis infection may be due to the conjunctival flora UGC Oftalmología, Hospital Universitario Virgen caused by Rothia mucilaginosa of the patient. The major pathogens are coagu- Macarena, AV/Fedriani sn, 41010 Sevilla, Spain. after phacoemulsification lase-negative staphylococci (70%), Tel.: +34.606.461164. Staphylococcus aureus (10%), streptococci E-mail: [email protected] Pablo Álvarez-Ramos,1 (9%), other Gram-positive cocci, including enterococci and mixed bacteria (5%), and Key words: Rothia mucilaginosa; endophthalmi- Amparo Del Moral-Ariza,1 tis; phacoemulsification; cataract; biofilm; Gram-negative bacilli (6%). The fact that José M. Alonso-Maroto,1 intraocular lens. Gram-positive bacteria cause >95% of the Pilar Marín-Casanova,2 cases reflect the usual pathogenesis, i.e. con- José M. Calandria-Amigueti,1 Acknowledgements: the Universitario Virgen tamination of the aqueous humor with skin Macarena Hospital is a clinical associated center Manuel Rodríguez-Iglesias,2 bacteria flora during surgery.1 However, of the Network: RETICS RD12/0034 1,3 Enrique Rodríguez de la Rúa unusual germs causing the infection are Enfermedades Oculares. “Prevención, detección 1Ophthalmology Unit, University Hospital sometimes isolated and should be suspected in precoz y tratamiento de la patología ocular preva- Puerta del
    [Show full text]
  • VMB Safety Efficacy Supplement2 190619.Xlsx
    List of taxa (alphabetical order) Bacterial Phylum/Class (Order) based on NCBI taxonomy Minority group browser taxon? Abiotrophia defectiva BV Firmicutes/Bacilli (Lactobacillales) Yes Actinobacillus genus Pathobionts Gammaproteobacteria (Pasteurellales) Yes Actinomyces family BV Actinobacteria/Actinobacteria (Actinomycetales) No Actinomyces genus BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Actinomyces europaeus BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Actinomyces funkei BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Actinomyces neuii BV Actinobacteria/Actinobacteria (Actinomycetales) No Actinomyces odontolyticus BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Actinomyces turicensis BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Actinomyces urogenitalis BV Actinobacteria/Actinobacteria (Actinomycetales) Yes Aerococcus genus BV Firmicutes/Bacilli (Lactobacillales) No Aerococcus christensenii BV Firmicutes/Bacilli (Lactobacillales) No Aeromonas caviae/dhakensis/ Pathobionts Gammaproteobacteria (Aeromonadales) Yes enteropelogenes/hydrophila/janda ei/taiwanensis/veronii Alistipes finegoldii/onderdonkii BV Bacteroidetes/Bacteroidia (Bacteroidales) Yes Alloiococcus genus BV Firmicutes/Bacilli (Lactobacillales) Yes Alloprevotella genus BV Bacteroidetes/Bacteroidia (Bacteroidales) No Alloprevotella rava BV Bacteroidetes/Bacteroidia (Bacteroidales) No Alloscardovia omnicolens Other Actinobacteria/Actinobacteria (Bifidobacteriales) Yes bacteria Anaerococcus genus BV Firmicutes/Tissierellia (Tissierellales)
    [Show full text]