Zelus Renardii (Hemiptera Reduviidae) a Leafhopper Assassin Bug Candidate for Adult Philaenus Spumarius Biocontrol

Total Page:16

File Type:pdf, Size:1020Kb

Zelus Renardii (Hemiptera Reduviidae) a Leafhopper Assassin Bug Candidate for Adult Philaenus Spumarius Biocontrol Zelus renardii (Hemiptera Reduviidae) a leafhopper assassin bug candidate for adult Philaenus spumarius biocontrol Valdete Sefa PhD Student I authorize the use and reproduction of any content, data and digital images in this presentation by CIHEAM, or anyone authorized by CIHEAM 1 Topic’s - and presentation Introduction of Xylella • Quarantine pathogen (EPPO A2 list) Evidences fastidiosa pauca ST53 • in Apulia Rapid invasion by insect vectors for Zelus • Philaenus spumarius main vector of renardii Encounter with Xylella fastidiosa pauca ST53 (Zr) indigenous vectors: (Saponari et al., 2014) Philaenus spumarius, attitude to Neophilaenus campestris & Philaenus italosignus prey adult Philaenus spumarius (vectors) control (Salerno et al., 2017) Zr a NEC (Natural Enemies Complex) acclimated Induction of OQDS (Saponari et al., 2013) candidate as biocontrol component in Xf vector IPM I authorize the use and reproduction of any content, data and digital images in this presentation by CIHEAM, or anyone authorized by CIHEAM 2 Topic’s - and presentation Z. renardii laboratory Z. renardii accepts P. Breeding of Z. renardii Breeding of Z. renardii breeding: spumarius and other on liquid or jellified on biological micro- bionomic and cannibalism mainly Hemipteran preys liver based diet capsulated diet I authorize the use and reproduction of any content, data and digital images in this presentation by CIHEAM, or anyone authorized by CIHEAM 3 Main Results Z. renardii findings in Bari (Italy). Observation The first breeding 1st year attempts • Long-living adults • Easy to breed on different insects • One egg cluster per week • Adult vs nymphs cannibalism 2nd year (320 replications) gave the following information: • Zelus “glues” the prey by forelegs and promptly pierces them by stylets; Mean total time (minutes) taken for the behaviour of Zr preying Ps. • Saliva (?) causes the sudden death of the prey in seconds; • Mean time to attack 42.5 min (SD 26.6) while, feeding time was 30.7min (SD 7.9). • Mean time of attack + mean feeding time/ per predation was about 73 min. 3st year • Successful breeding of Zelus with artificial diet • Complete life cycle from ‘egg to egg’ in laboratory • Feeding of Zelus in micro- capsulate artificial diet Cornara et al., 2016 Total time activity for attack and feeding on all Ps of Zrf and Zrlb I authorize the use and reproduction of any content, data and digital images in this presentation by CIHEAM, or anyone authorized by CIHEAM 4 Impact and Prospect • Our laboratory experiences define the killing bug as manageable • We have evidences to propose Zr as biocontrol component in Xf vector IPM • Leafhopper assassin bug mass rearing on artificial diets and adult field mass release will contribute to the effectiveness of the biological control action for the adult vector I authorize the use and reproduction of any content, data and digital images in this presentation by CIHEAM, or anyone authorized by CIHEAM 5 Thank You Get in Touch Via ceglie 9, Valenzano (BA) Valdete Sefa [email protected] +393407864290 .
Recommended publications
  • Encounters Between Aphids and Their Predators: the Relative Frequencies of Disturbance and Consumption
    Blackwell Publishing Ltd Encounters between aphids and their predators: the relative frequencies of disturbance and consumption Erik H. Nelson* & Jay A. Rosenheim Center for Population Biology and Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616, USA Accepted: 3 November 2005 Key words: avoidance behavior, escape behavior, induced defense, non-consumptive interactions, non-lethal interactions, predation risk, trait-mediated interactions, Aphididae, Homoptera, Aphis gossypii, Acyrthosiphon pisum Abstract Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non-consumptive, defense-inducing encounters relative to consumptive encounters (hence- forth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : con- sumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics.
    [Show full text]
  • Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
    Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals.
    [Show full text]
  • Good Water Ripples Volume 7 Number 4
    For information contact: http://txmn.org/goodwater [email protected] Volume 7 Number 4 August/September 2018 Editor: Mary Ann Melton Fall Training Class Starts Soon Good Water Mas- ter Naturalist Fall Training Class will start Tuesday even- ing, September 4th. The class will meet UPCOMING EVENTS on Tuesday eve- nings from 6:00- 8/9/18 NPSOT 9:30 p.m. Some 8/13/18 WAG classes and field trips will be on Sat- 8/23/18 GWMN urdays. The first class is Tuesday, Austin Butterfly Forum 8/27/18 September 4. The 9/5/18 NPAT last class will be December 11. Cost is $150 and includes the comprehensive Texas Master 9/13/18 NPSOT Naturalist Program manual as well as a one year membership to the Good 9/20/18 Travis Audubon Water Chapter. For couples who plan to share the manual, there is a dis- count for the second student. 9/24/18 Austin Butterfly Forum Click here for online registration. The Tuesday classes will start at 6:00 9/27/18 GWMN p.m. and finish around 9:30. There are four Saturday field trips and classes planned. The schedule will be posted in the next week or so. Check back Check the website for additional here after August 15 for the link to the schedule. events including volunteer and training opportunities. The events Click here: https://txmn.org/goodwater/Training-class-online-application/ are too numerous to post here. for Online Training Registration David Robinson took our Spring Training Class this year. He says, "The Fall Training Class Starts Soon 1 Instructors & Speakers were absolutely fantastic.
    [Show full text]
  • Iowa State Journal of Research 62.4
    U.t::r Volume 62, No. 4 ISSN0092-6345 May, 1988 if ISJRA6 62(4); JUL l l 1988 477 HIBBERD, K. A. Selection for amino acid overproducer mutants in maize: Valine selections.................... 479 HORSCH, R. B. and collaborators. Agrobacterium­ mediated gene transfer to plants; engineering tolerance to glyphosate . 487 McCOY, T. J. Tissue culture selection for disease resistant plants . 503 MEREDITH, C. P., A. J. CONNER, and T. M. SCHETTINI. The use of cell selection to obtain novel plant genotypes resistant to mineral stresses . 523 RANCH, J. and G. M. PACE. Science in the art of plant regeneration from cultured cells: An essay and a proposal for a conceptual framework . 537 SMITH, R. H. and S. BHASKARAN. Sorghum cell culture: Somaclonal variation/ screening . 571 WIDHOLM, J.M. In vitro selection with plant cell and tissue cultures: An overview. 587 IOWA STATE JOURNAL OF RESEARCH Published under the auspices of the Vice President for Research, Iowa State University EDITOR ............................................. ... BRUCE W. MENZEL ASSOCIATE EDITOR ........................................... PAUL N. HINZ ASSOCIATE EDITOR .......... ......... .. ..... ............ RAND D. CONGER ASSOCIATE EDITOR ........ ........................... DWIGHT W. BENSEND ASSISTANT EDITOR-COMPOSITOR ................... CHRISTINE V. McDANIEL Administrative Board N. L. Jacobson, Chairman J. E. Galejs, I. S. U. Library W. H. Kelly, Collf'gf' of Sciences and Humanities W. R. Madden, Office of Business and Finance B. W. Mf'nzel, Editor W. M. Schmitt, Information Service G. K. Serovy, College of Enginef'ring Consultants Gerald Klonglan, Consultant for Sociology Faye S. Yates, Promotion Consultant This is the final issue of the Jcm•a State Journal qf RPsearch (ISSN 0092-6435). Publication of the Journal began in 1926.
    [Show full text]
  • Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
    Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey.
    [Show full text]
  • Arthropod Communities and Transgenic Cotton in the Western United States: Implications for Biological Control S.E
    284 Naranjo and Ellsworth ___________________________________________________________________ ARTHROPOD COMMUNITIES AND TRANSGENIC COTTON IN THE WESTERN UNITED STATES: IMPLICATIONS FOR BIOLOGICAL CONTROL S.E. Naranjo1 and P.C. Ellsworth2 1U.S. Department of Agriculture, Agricultural Research Service, Phoenix, Arizona, U.S.A. 2University of Arizona, Maricopa, Arizona, U.S.A. INTRODUCTION Cotton, transgenically modified to express the insecticidal proteins of Bacillus thuringiensis (Bt), has been available commercially in the United States since 1996. Bt cotton is widely used throughout the cotton belt (Layton et al., 1999), and more than 65% of the acreage in Arizona has been planted to Bt cotton since 1997. In the low desert production areas of Arizona and California, Pectinophora gossypiella (Saunders), the pink bollworm, is the major target of Bt cotton. A number of other lepidopterous species occur in this area, but they are sporadic secondary pests of cotton whose population outbreaks are typically induced by indiscriminate use of broad-spectrum insecticides. As a result of the adoption of Bt-cotton and the coincident introduction and adoption of selective insect growth regulators for suppression of Bemisia tabaci (Gennadius), insecticide usage in Arizona cotton over the past decade as declined from a high of 12.5 applications per acre in 1995 to 1.9 in 1999 (Ellsworth and Jones, 2001). These reductions in insecticide use have broadened opportunities for all biological control approaches in cotton. Beyond concern for the maintenance of susceptibility in target pest populations there also are a number of ecological and environmental questions associated with use of transgenic crops, one of the most prominent being effects on non-target organisms.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]
  • Altruism During Predation in an Assassin Bug
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 11543 Identification number: DOI : 10.1007/s00114-013-1091-9 Official URL: http://dx.doi.org/10.1007/s00114-013-1091-9 To cite this version: Dejean, Alain and Revel, Messika and Azémar, Frédéric and Roux, Olivier Altruism during predation in an assassin bug. (2013) Naturwissenschaften, vol. 100 (n° 10). pp. 913-922. ISSN 0028-1042 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Altruism during predation in an assassin bug Alain Dejean & Messika Revel & Frédéric Azémar & Olivier Roux Abstract Zelus annulosus is an assassin bug species mostly sticky substance of the sundew setae on their forelegs aids in noted on Hirtella physophora, a myrmecophyte specifically prey capture. Group ambushing permits early instars to cap- associated with the ant Allomerus decemarticulatus known to ture insects that they then share or not depending on prey size build traps on host tree twigs to ambush insect preys. The Z. and the hunger of the successful nymphs. Fourth and fifth annulosus females lay egg clutches protected by a sticky instars, with greater needs, rather ambush solitarily on differ- substance. To avoid being trapped, the first three instars of ent host tree leaves, but attract siblings to share large preys.
    [Show full text]
  • Primera Cita En España De La Especie Zelus Renardii (Kolenati, 1857
    Primera cita en España de la especie Zelus renardii (Kolenati, 1857) (Heteroptera: Reduviidae) que representa la segunda cita en Europa First record in Spain of the species Zelus renardii (Kolenati, 1857) (Heteroptera: Reduviidae) representing the second record in Europe Luis Vivas Subdirector y Coordinador de la Galería de Invertebrados de BiodiversidadVirtual.org – Valencia (España) – [email protected] RESUMEN: El redúvido de origen norteamericano Zelus renardii s e cita mediante sus fotografías por primera vez en España y por segunda vez en Europa. Se constata la presencia de ninfas en diferentes fases, y de varios individuos adultos, depredación de diversos tipos de insectos, tanto como su presencia en dos localizaciones distintas. PALABRAS CLAVE: Heteroptera, Reduviidae, Harpactorinae, Zelus renardii , Península Ibérica, España, aloctonía. ABSTRACT: The reduvid Zelus renardii from North America is recorded through photographs for the first time in Spain and the second time in Europe. The presence of nymphs in different stages, several adult specimens and predation of various types of insects is proved as well as its presence at two different locations. KEY WORDS: Heteroptera, Reduviidae, Harpactorinae, Zelus renardii , Iberian Peninsula, Spain, allochthonous. Introducción Constantemente se están encontrando en muchas partes del mundo especies animales y vegetales de origen alóctono. La actividad humana es el principal vector para la aparición de estas aloctonías, sea mediante introducciones dirigidas en un intento por luchar contra otras especies que afectan a intereses económicos humanos, o por transmisiones accidentales. En el caso de la especie Zelus renardii (Kolenati, 1857) (Fig. 1) puede tratarse de un ejemplo de esta actividad humana de creación de aloctonías o puede que sencillamente sea un insecto con gran capacidad adaptativa a la luz de los estudios recientemente publicados.
    [Show full text]
  • Bacillus Thuringiensis Plants Expressing Cry1ac, Cry2ab and Cry1f Are Not Toxic to the Assassin Bug, Zelus Renardii H.-H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Masthead Logo Entomology Publications Entomology 2-2015 Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii H.-H. Su Cornell University J.-C. Tian Cornell University S. E. Naranjo U.S. Department of Agriculture J. Romeis Agroscope RFoichlloawrd thi L. sH aelndlmich additional works at: https://lib.dr.iastate.edu/ent_pubs IowaP Satrate of U ntheiversitAygr, rlonomhellmi@iy aasndta tCe.reopdu Sciences Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Environmental Indicators and Impact Assessment See next page for additional authors Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/518. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii Abstract Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E.
    [Show full text]
  • Why Lacewings May Fail to Suppress Aphids …
    yield losses were apparent. As has been Why lacewings may fail to suppress aphids. found in studies of several different cot- ton insect pests, plants that are setting bolls appear to have limited abilities to compensate for feeding damage. During Predators that eat other the late season, when bolls are opening and cotton lint is exposed, cotton aphids create problems by excreting large quan- predators disrupt cotton tities of sugary honeydew, which fall onto lint and create “sticky cotton.” Problems with sticky cotton become ap- aphid control parent during harvest, ginning and yarn manufacturing, and threaten overseas markets and the price premiums Califor- Jay A. Rosenheim D Lawrence R. Wilhoit nia cotton has historically received. Be- cause the cotton aphid is already resis- tant to many insecticides in California and an even larger array of pesticides in The predatory green lacewing, predators may attack other predators, the southern United States, long-term with potentially negative effects on pest Chrysoperla carnea, is often management of aphids will probably control. Here, we report a study de- need to rely on noninsecticidal alterna- abundant in mid- and late-season signed to determine the effectiveness of tives. cotton fields in the San Joaquin lacewing larvae, Chrysoperla carnea, as Cotton grown in the San Joaquin Val- Valley. However, neither these biological control agents of the cotton ley generally develops large populations aphid, Aphis gossypii, which feed on natural populations nor insecfary- of generalist predators, including big- mid- and late-season cotton in the San eyed bugs (Geocoris spp.), damsel bugs reared and mass-released lace- Joaquin Valley.
    [Show full text]
  • ON Frankliniella Occidentalis (Pergande) and Frankliniella Bispinosa (Morgan) in SWEET PEPPER
    DIFFERENTIAL PREDATION BY Orius insidiosus (Say) ON Frankliniella occidentalis (Pergande) AND Frankliniella bispinosa (Morgan) IN SWEET PEPPER By SCOT MICHAEL WARING A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 ACKNOWLEDGMENTS I thank my Mom for getting me interested in what nature has to offer: birds, rats, snakes, bugs and fishing; she influenced me far more than anyone else to get me where I am today. I thank my Dad for his relentless support and concern. I thank my son, Sequoya, for his constant inspiration and patience uncommon for a boy his age. I thank my wife, Anna, for her endless supply of energy and love. I thank my grandmother, Mimi, for all of her love, support and encouragement. I thank Joe Funderburk and Stuart Reitz for continuing to support and encourage me in my most difficult times. I thank Debbie Hall for guiding me and watching over me during my effort to bring this thesis to life. I thank Heather McAuslane for her generous lab support, use of her greenhouse and superior editing abilities. I thank Shane Hill for sharing his love of entomology and for being such a good friend. I thank Tim Forrest for introducing me to entomology. I thank Jim Nation and Grover Smart for their help navigating graduate school and the academics therein. I thank Byron Adams for generous use of his greenhouse and camera. I also thank (in no particular order) Aaron Weed, Jim Dunford, Katie Barbara, Erin Britton, Erin Gentry, Aissa Doumboya, Alison Neeley, Matthew Brightman, Scotty Long, Wade Davidson, Kelly Sims (Latsha), Jodi Avila, Matt Aubuchon, Emily Heffernan, Heather Smith, David Serrano, Susana Carrasco, Alejandro Arevalo and all of the other graduate students that kept me going and inspired about the work we have been doing.
    [Show full text]