Altruism During Predation in an Assassin Bug

Total Page:16

File Type:pdf, Size:1020Kb

Altruism During Predation in an Assassin Bug View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 11543 Identification number: DOI : 10.1007/s00114-013-1091-9 Official URL: http://dx.doi.org/10.1007/s00114-013-1091-9 To cite this version: Dejean, Alain and Revel, Messika and Azémar, Frédéric and Roux, Olivier Altruism during predation in an assassin bug. (2013) Naturwissenschaften, vol. 100 (n° 10). pp. 913-922. ISSN 0028-1042 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Altruism during predation in an assassin bug Alain Dejean & Messika Revel & Frédéric Azémar & Olivier Roux Abstract Zelus annulosus is an assassin bug species mostly sticky substance of the sundew setae on their forelegs aids in noted on Hirtella physophora, a myrmecophyte specifically prey capture. Group ambushing permits early instars to cap- associated with the ant Allomerus decemarticulatus known to ture insects that they then share or not depending on prey size build traps on host tree twigs to ambush insect preys. The Z. and the hunger of the successful nymphs. Fourth and fifth annulosus females lay egg clutches protected by a sticky instars, with greater needs, rather ambush solitarily on differ- substance. To avoid being trapped, the first three instars of ent host tree leaves, but attract siblings to share large preys. nymphs remain grouped in a clutch beneath the leaves on Communal feeding permits faster prey consumption, enabling which they hatched, yet from time to time, they climb onto the small nymphs to return sooner to the shelter of their leaves. By upper side to group ambush preys. Long-distance prey detec- improving the regularity of feeding for each nymph, it likely tion permits these bugs to capture flying or jumping insects regulates nymphal development, synchronizing molting and that alight on their leaves. Like some other Zelus species, the subsequently limiting cannibalism. Communicated by: Sven Thatje Keywords Conspecific tolerance Predation Prey sharing Reduviidae . Zelus annulosus A. Dejean (*) Écologie des Forêts de Guyane, Campus agronomique, BP 316, 97379 Kourou cedex, France e-mail: [email protected] Introduction A. Dejean Group hunting followed by food sharing brings fitness bene- Université de Toulouse; UPS, Ecolab, 118 route de Narbonne, 31062 Toulouse, France fits to the participants through increased per capita food intake while minimizing the cost of capture. Indeed, in addition to M. Revel avoiding predation, preys are captured more effectively with National Research Council of Canada, 6100 Royalmount Avenue, less risk of injury. This is known in social spiders (Settepani Montreal, Quebec H4P 2R2, Canada et al. 2013; Yip and Rayor 2013) and some ant species (Cerda M. Revel and Dejean 2011) and, among vertebrates, in fishes (de Waal Centre INRS, Institut Armand-Frappier, Université du Québec, 2006), birds, cetaceans, otters, carnivorans, and chimpanzees Laval, Quebec H7V 1B7, Canada (see the synthesis in Bailey et al. 2013). Harris hawks coop- F. Azémar eratively hunt and rear young (Coulson and Coulson 1995). CNRS, Laboratoire Écologie Fonctionnelle et Environnement Hyenas, Lycaon, wolves, and lions also redistribute food (UMR-CNRS 5245), 31062 Toulouse, France between adults (Bailey et al. 2013), as do eusocial insects. Delayed benefits from food sharing occur in vampire bats F. Azémar Université de Toulouse; UPS, INP, Ecolab, 118 route de Narbonne, which regularly fail to obtain blood, their only food, and die 31062 Toulouse, France after 70 h if starved. Unsuccessful individuals can receive regurgitations from roost-mates, frequently relatives. Yet, re- O. Roux ceiving regurgitations depends mostly on having previously IRD; Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (UMR-IRD 224), Équipe BEES, IRD 01, BP provided the helper with blood, resulting in the formation of 171, Bobo-Dioulasso, Burkina Faso food-sharing groups characterized by mutual allogrooming (Carter and Wilkinson 2013). A chimpanzee possessing food, decemarticulatus, shelter. Workers of this species build particularly meat, can share it with close relatives or in re- gallery-shaped traps permitting them to capture preys 1,800 sponse to harassment by beggars or obtain a delayed benefit times their weight (Dejean et al. 2005, 2013;Grangieretal. through grooming and forming coalitions according to dom- 2008a). Allomerus workers tolerate the fragile Z. annulosus inance (Silk et al. 2013). Altruistic motivation for food sharing first instar nymphs on their host plants (these nymphs are thus exists in bonobos which share their food with a stranger rather protected from other ants) and, later, the relatively large last than with a group mate, but do not give food if a social instar nymphs do not attack these ants (Revel et al. 2010). interaction is impossible (Tan and Hare 2013). Although several authors have provided information on the In insects, egg clutching, in addition to improving egg predatory behavior of different harpactorine species (Edwards survival by preventing desiccation, is often associated with 1966;Inoue1982, 1985;Haridassetal.1987, 1988; Weirauch toxicity or impalatability and favors larval/nymphal aggrega- et al. 2012; Zhang and Weirauch 2013), we aimed to verify if tion (Janz 2002) which frequently permits early instars to clutch laying by females is followed by nymph clustering with organize a group defense (Jolivet 2008). Feeding efficiency the subsequent possibility of group hunting and prey sharing is improved when larval aggregation is associated with com- by examining the modalities of their hunting behavior. munal feeding in the herbivore larvae of sawflies, chrysomelid beetles, and lepidopterans (Wilson 1971; Grégoire 1988). Communal feeding is infrequent among predatory insects that Materials and methods lay their eggs in clutches. Group hunting and prey sharing were noted in the first instar larvae of aphidophagous Study site and models ladybirds (Moore et al. 2012), in the nymphs and adults of a predacious pentatomid (Heteroptera) (Ables 1975), and in This study was conducted between 2009 and 2013 at the field some harpactorine assassin bug nymphs (Heteroptera; station at Petit Saut, Sinnamary, French Guiana (5°03′39″ N; Reduviidae) (Inoue 1982;Haridassetal.1988; Jackson et al. 53°02′36″ W) and in the forest around the station; also, some 2010). Z. annulosus individuals were gathered from La Montagne Except for the vertebrate blood-feeding Triatominae, other des singes (5°04′19″ N; 52°41′42″ W), ca. 50 km away from reduviid subfamilies are almost exclusively composed of ar- Petit Saut. The climate is tropical moist, with 3,500 mm of thropod predators (Hwang and Weirauch 2012; but see annual precipitation distributed over 280 days. Bérenger and Plutot-Sigwalt 1997). Prey capture success in Z. annulosus was only found on pubescent plants, mostly most harpactorine species, related to prey size (Inoue 1985; H. physophora. The females lay egg clusters under the leaves Cogni et al. 2002), is enhanced by the presence of a sticky and deposit a sticky secretion on them that seems sufficient to substance that coats their legs. “Resin bugs” gather this sub- ward off predators and ants. They then fly away, leaving the stance from certain plants (Forero et al. 2011). In some species eggs to develop unattended. Between 10 and 22 first instar of the genus Zelus, the substance is secreted by specialized nymphs hatch from these egg clusters (Revel et al. 2010;AD, dermal glands and sticks to the “sundew setae” (so-called MR, and OR, personal communication). because they resemble the trichomes of sundew carnivorous plants) that cover the tibiae of the forelegs (Werner and Reid The hunting zones and preys of different instars of Z. 2001; Betz and Kölsch 2004; Weirauch 2006; Zhang and annulosus nymphs Weirauch 2013). Because they lack these sticky glands, the first instars use the sticky secretions deposited by females on We surveyed 65 Hirtella trees on which we had noted the their egg mass to increase their predation success (Weirauch presence of Z. annulosus nymphs, representing ca. 240 h of 2006; Law and Sediqi 2010). Also, Agriosphorus dohrni focal samplings distributed over 80 non-consecutive days nymphs (Harpactorinae) allocate short periods to active for- during the rainy season in which individuals were observed aging where they form search groups of ten or more individ- continuously for periods of time of more than 2 h (generally uals of different origins (not necessarily siblings); small preys limited by the rain or nightfall). In addition, during a series of are eaten selfishly, whereas large preys are shared (Inoue observations permitting us to cover the 24 h of the 1982, 1985). nycthemeron, we verified each hour if the nymphs were The nymphs of the assassin bug Zelus annulosus are effi- hunting or sheltering under the leaves (35 to 43 diurnal con- cacious predators that develop mostly on Hirtella physophora trols; 16 to 48 nocturnal controls). (Chrysobalanaceae) (Revel et al. 2010). This is an In both approaches, we noted if, depending on the instar, understorey-dwelling myrmecophyte (i.e., a plant housing the nymphs stayed under the leaf where they hatched or left to ants in hollow structures) whose long-lived leaves bear hunt on its upper side, whether they remained grouped or not, extrafloral nectaries and a pair of pouches at the base of each and finally if they moved to a different leaf. We also noted lamina where colonies of the myrmicine ant, Allomerus what insects were captured by these nymphs plus information on their size and the period of the year. Using a quartz crystal frequencies between behavioral acts, presented as percentages, microbalance, we weighed several live preys and Z .
Recommended publications
  • Encounters Between Aphids and Their Predators: the Relative Frequencies of Disturbance and Consumption
    Blackwell Publishing Ltd Encounters between aphids and their predators: the relative frequencies of disturbance and consumption Erik H. Nelson* & Jay A. Rosenheim Center for Population Biology and Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616, USA Accepted: 3 November 2005 Key words: avoidance behavior, escape behavior, induced defense, non-consumptive interactions, non-lethal interactions, predation risk, trait-mediated interactions, Aphididae, Homoptera, Aphis gossypii, Acyrthosiphon pisum Abstract Ecologists may wish to evaluate the potential for predators to suppress prey populations through the costs of induced defensive behaviors as well as through consumption. In this paper, we measure the ratio of non-consumptive, defense-inducing encounters relative to consumptive encounters (hence- forth the ‘disturbed : consumed ratio’) for two species of aphids and propose that these disturbed : consumed ratios can help evaluate the potential for behaviorally mediated prey suppression. For the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was high, 30 : 1. For the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), the ratio of induced disturbances to consumption events was low, approximately 1 : 14. These results indicate that the potential for predators to suppress pea aphid populations through induction of defensive behaviors is high, whereas the potential for predators to suppress cotton aphid populations through induced behaviors is low. In measuring the disturbed : consumed ratios of two prey species, this paper makes two novel points: it highlights the variability of the disturbed : con- sumed ratio, and it offers a simple statistic to help ecologists draw connections between predator–prey behaviors and predator–prey population dynamics.
    [Show full text]
  • Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
    Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals.
    [Show full text]
  • Good Water Ripples Volume 7 Number 4
    For information contact: http://txmn.org/goodwater [email protected] Volume 7 Number 4 August/September 2018 Editor: Mary Ann Melton Fall Training Class Starts Soon Good Water Mas- ter Naturalist Fall Training Class will start Tuesday even- ing, September 4th. The class will meet UPCOMING EVENTS on Tuesday eve- nings from 6:00- 8/9/18 NPSOT 9:30 p.m. Some 8/13/18 WAG classes and field trips will be on Sat- 8/23/18 GWMN urdays. The first class is Tuesday, Austin Butterfly Forum 8/27/18 September 4. The 9/5/18 NPAT last class will be December 11. Cost is $150 and includes the comprehensive Texas Master 9/13/18 NPSOT Naturalist Program manual as well as a one year membership to the Good 9/20/18 Travis Audubon Water Chapter. For couples who plan to share the manual, there is a dis- count for the second student. 9/24/18 Austin Butterfly Forum Click here for online registration. The Tuesday classes will start at 6:00 9/27/18 GWMN p.m. and finish around 9:30. There are four Saturday field trips and classes planned. The schedule will be posted in the next week or so. Check back Check the website for additional here after August 15 for the link to the schedule. events including volunteer and training opportunities. The events Click here: https://txmn.org/goodwater/Training-class-online-application/ are too numerous to post here. for Online Training Registration David Robinson took our Spring Training Class this year. He says, "The Fall Training Class Starts Soon 1 Instructors & Speakers were absolutely fantastic.
    [Show full text]
  • Iowa State Journal of Research 62.4
    U.t::r Volume 62, No. 4 ISSN0092-6345 May, 1988 if ISJRA6 62(4); JUL l l 1988 477 HIBBERD, K. A. Selection for amino acid overproducer mutants in maize: Valine selections.................... 479 HORSCH, R. B. and collaborators. Agrobacterium­ mediated gene transfer to plants; engineering tolerance to glyphosate . 487 McCOY, T. J. Tissue culture selection for disease resistant plants . 503 MEREDITH, C. P., A. J. CONNER, and T. M. SCHETTINI. The use of cell selection to obtain novel plant genotypes resistant to mineral stresses . 523 RANCH, J. and G. M. PACE. Science in the art of plant regeneration from cultured cells: An essay and a proposal for a conceptual framework . 537 SMITH, R. H. and S. BHASKARAN. Sorghum cell culture: Somaclonal variation/ screening . 571 WIDHOLM, J.M. In vitro selection with plant cell and tissue cultures: An overview. 587 IOWA STATE JOURNAL OF RESEARCH Published under the auspices of the Vice President for Research, Iowa State University EDITOR ............................................. ... BRUCE W. MENZEL ASSOCIATE EDITOR ........................................... PAUL N. HINZ ASSOCIATE EDITOR .......... ......... .. ..... ............ RAND D. CONGER ASSOCIATE EDITOR ........ ........................... DWIGHT W. BENSEND ASSISTANT EDITOR-COMPOSITOR ................... CHRISTINE V. McDANIEL Administrative Board N. L. Jacobson, Chairman J. E. Galejs, I. S. U. Library W. H. Kelly, Collf'gf' of Sciences and Humanities W. R. Madden, Office of Business and Finance B. W. Mf'nzel, Editor W. M. Schmitt, Information Service G. K. Serovy, College of Enginef'ring Consultants Gerald Klonglan, Consultant for Sociology Faye S. Yates, Promotion Consultant This is the final issue of the Jcm•a State Journal qf RPsearch (ISSN 0092-6435). Publication of the Journal began in 1926.
    [Show full text]
  • Exocrine Secretions of Wheel Bugs (Heteroptera: Reduviidae: Arilus Spp.): Clarifi Cation and Chemistry Jeffrey R
    Exocrine Secretions of Wheel Bugs (Heteroptera: Reduviidae: Arilus spp.): Clarifi cation and Chemistry Jeffrey R. Aldricha,b,*, Kamlesh R. Chauhanc, Aijun Zhangc, and Paulo H. G. Zarbind a Affi liate Department of Entomology, University of California, Davis, CA, USA b J. R. Aldrich consulting LLC, 519 Washington Street, Santa Cruz, CA 95060, USA. E-mail: [email protected] c USDA-ARS Invasive Insect Biocontrol & Behavior Laboratory, 10300 Baltimore Avenue, Bldg. 007, rm301, BARC-West, Beltsville, MD 20705, USA d Universidade Federal do Paraná, Departamento de Química, Laboratório de Semioquímicos, CP 19081, 81531 – 980, Curitiba – PR, Brazil * Author for correspondence and reprint requests Z. Naturforsch. 68 c, 522 – 526 (2013); received August 21/November 6, 2013 Wheel bugs (Heteroptera: Reduviidae: Harpactorinae: Arilus) are general predators, the females of which have reddish-orange subrectal glands (SGs) that are eversible like the os- meteria in some caterpillars. The rancid odor of Arilus and other reduviids actually comes from Brindley's glands, which in the North (A. cristatus) and South (A. carinatus) American wheel bugs studied emit similar blends of 2-methylpropanoic, butanoic, 3-methylbutanoic, and 2-methylbutanoic acids. The Arilus SG secretions studied here are absolutely species- specifi c. The volatile SG components of A. carinatus include (E)-2-octenal, (E)-2-none- nal, (E)-2-decenal, (E,E)-2,4-nonadienal, (E)-2-undecenal, hexanoic acid, 4-oxo-nonanal, (E,E)-2,4-decadienal, (E,Z)-2,4- or (Z,E)-2,4-decadienal, and 4-oxo-(E)-2-nonenal; whereas in A. cristatus the SG secretion contains β-pinene, limonene, terpinolene, terpinen-4-ol, thy- mol methyl ether, α-terpineol, bornyl acetate, methyl eugenol, β-caryophyllene, caryophyllene oxide, and farnesol.
    [Show full text]
  • Heteroptera, Reduviidae, Harpactorinae) *
    Redescription of theS. Grozeva Neotropical & genusN. Simov Aristathlus (Eds) (Heteroptera, 2008 Reduviidae, Harpactorinae) 85 ADVANCES IN HETEROPTERA RESEARCH Festschrift in Honour of 80th Anniversary of Michail Josifov, pp. 85-103. © Pensoft Publishers Sofi a–Moscow Redescription of the Neotropical genus Aristathlus (Heteroptera, Reduviidae, Harpactorinae) * D. Forero1, H.R. Gil-Santana2 & P.H. van Doesburg3 1 Division of Invertebrate Zoology (Entomology), American Museum of Natural History, New York, New York 10024–5192; and Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853–2601, USA. E-mail: [email protected] 2 Departamento de Entomologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, Brazil. E-mail: [email protected] 3 Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Th e Netherlands. E-mail: [email protected] ABSTRACT Th e Neotropical genus Aristathlus Bergroth 1913, is redescribed. Digital dorsal habitus photographs for A. imperatorius Bergroth and A. regalis Bergroth, the two included species, are provided. Selected morphological structures are documented with scanning electron micrographs. Male genitalia are documented for the fi rst time with digital photomicrographs and line drawings. New distributional records in South America are given for species of Aristathlus. Keywords: Harpactorini, Hemiptera, male genitalia, Neotropical region, taxonomy. INTRODUCTION Reduviidae is the second largest family of Heteroptera with more than 6000 species described (Maldonado 1990). Despite not having an agreement about the suprageneric classifi cation of Reduviidae (e.g., Putshkov & Putshkov 1985; Maldonado 1990), * Th is paper is dedicated to Michail Josifov on the occasion of his 80th birthday. 86 D. Forero, H.R. Gil-Santana & P.H.
    [Show full text]
  • Die Chemische Ökologie Der Steninae (Coleoptera: Staphylinidae) Mit Einem Beitrag Zur Molekularen Phylogenie
    Die chemische Ökologie der Steninae (Coleoptera: Staphylinidae) mit einem Beitrag zur molekularen Phylogenie Inauguraldissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth Lehrstuhl für Tierökologie II Prof. Dr. K. Dettner Vorgelegt von Carolin Maria Lang aus Stegaurach (bei Bamberg) 28. Oktober 2014 Die vorliegende Arbeit wurde im Zeitraum vom November 2010 bis Mitte Oktober 2014 am Lehrstuhl Tierökologie II der Universität Bayreuth unter Betreuung von Herrn Prof. Dr. Dettner angefertigt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der Universitiät Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 29.10.2014 Zulassung durch die Promotionskommission: 05.11.2014 Wissenschaftliches Kolloquium: 13.02.2015 Amtierender Dekan: Prof. Dr. Rhett Kempe Prüfungsausschuss: Prof. Dr. Konrad Dettner (Erstgutachter) Prof. Dr. Klaus H. Hoffmann (Zweitgutachter) Prof. Dr. Gerhard Rambold (Vorsitz) Prof. Dr. Karlheinz Seifert Inhaltsverzeichnis 1 Einleitung2 1.1 Allgemeine Aspekte zur chemischen Ökologie der Insekten . .2 1.2 Die chemische Ökologie der Steninae . .3 1.3 Das Spreitungsvermögen der Steninae . .6 1.4 Die Phylogenie der Steninae . .9 1.5 Fragestellungen der Arbeit . 14 2 Material und Methoden 17 2.1 Verbrauchsmaterialien und Glasgeräte . 17 2.2 Geräte . 18 2.3 Chemikalien, Kits und Primer . 21 2.4 Sammelstellen der Käfer . 23 2.5 Bestimmung und Haltung der Käfer . 24 2.6 Zucht der Steninae . 25 2.7 Mikroskopie der Larvalbehaarung . 25 2.8 Sektionsmethodik . 27 2.9 GC-MS . 28 2.9.1 Spurenanalytische Untersuchungen an Stenus-Larven . 28 2.9.2 Spurenanalytische Untersuchungen der Pygidialdrüsen der Ima- gines von Stenus und Dianous, sowie an Ameisen der Gattung Formica ................................
    [Show full text]
  • Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
    Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey.
    [Show full text]
  • Cletus Trigonus
    BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN SANA ULLAH DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY MANSEHRA 2018 HAZARA UNIVERSITY MANSEHRA DEPARTMENT OF ZOOLOGY BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN By SANA ULLAH 34894 13-PhD-Zol-F-HU-1 This research study has been conducted and reported as partial fulfillment of the requirements for the Degree of Doctor of Philisophy in Zoology awarded by Hazara University Mansehra, Pakistan Mansehra, The Friday 22, February 2019 BIOSYSTEMATICS OF THE TRUE BUGS (HETEROPTERA) OF DISTRICT SWAT PAKISTAN Submitted by Sana Ullah Ph.D Scholar Research Supervisor Prof. Dr. Habib Ahmad Department of Genetics Hazara University, Mansehra Co-Supervisor Prof. Dr. Muhammad Ather Rafi Principal Scientific Officer, National Agricultural Research Center, Islamabad DEPARTMENT OF ZOOLOGY HAZARA UNIVERSITY MANSEHRA 2018 Dedication Dedicated to my Parents and Siblings ACKNOWLEDGEMENTS All praises are due to Almighty Allah, the most Powerful Who is the Lord of every creature of the universe and all the tributes to the Holy prophet Hazrat Muhammad (SAW) who had spread the light of learning in the world. I wish to express my deepest gratitude and appreciation to my supervisor Prof. Dr. Habib Ahmad (TI), Vice Chancellor, Islamia College University, Peshawar, for his enormous support, inspiring guidance from time to time with utmost patience and providing the necessary facilities to carry out this work. He is a source of great motivation and encouragement for me. I respect him from the core of my heart due to his integrity, attitude towards students, and eagerness towards research. I am equally grateful to my Co Supervisor Prof.
    [Show full text]
  • Arthropod Communities and Transgenic Cotton in the Western United States: Implications for Biological Control S.E
    284 Naranjo and Ellsworth ___________________________________________________________________ ARTHROPOD COMMUNITIES AND TRANSGENIC COTTON IN THE WESTERN UNITED STATES: IMPLICATIONS FOR BIOLOGICAL CONTROL S.E. Naranjo1 and P.C. Ellsworth2 1U.S. Department of Agriculture, Agricultural Research Service, Phoenix, Arizona, U.S.A. 2University of Arizona, Maricopa, Arizona, U.S.A. INTRODUCTION Cotton, transgenically modified to express the insecticidal proteins of Bacillus thuringiensis (Bt), has been available commercially in the United States since 1996. Bt cotton is widely used throughout the cotton belt (Layton et al., 1999), and more than 65% of the acreage in Arizona has been planted to Bt cotton since 1997. In the low desert production areas of Arizona and California, Pectinophora gossypiella (Saunders), the pink bollworm, is the major target of Bt cotton. A number of other lepidopterous species occur in this area, but they are sporadic secondary pests of cotton whose population outbreaks are typically induced by indiscriminate use of broad-spectrum insecticides. As a result of the adoption of Bt-cotton and the coincident introduction and adoption of selective insect growth regulators for suppression of Bemisia tabaci (Gennadius), insecticide usage in Arizona cotton over the past decade as declined from a high of 12.5 applications per acre in 1995 to 1.9 in 1999 (Ellsworth and Jones, 2001). These reductions in insecticide use have broadened opportunities for all biological control approaches in cotton. Beyond concern for the maintenance of susceptibility in target pest populations there also are a number of ecological and environmental questions associated with use of transgenic crops, one of the most prominent being effects on non-target organisms.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]
  • Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes?
    Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes? Mario Ruiz-González, Céline Leroy, Alain Dejean, Hervé Gryta, Patricia Jargeat, Angelo Armijos Carrión, Jérôme Orivel To cite this version: Mario Ruiz-González, Céline Leroy, Alain Dejean, Hervé Gryta, Patricia Jargeat, et al.. Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes?. Insects, MDPI, 2019, 10 (11), pp.391. 10.3390/insects10110391. hal-02362920 HAL Id: hal-02362920 https://hal.umontpellier.fr/hal-02362920 Submitted on 14 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. insects Article Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes? Mario X. Ruiz-González 1,* ,Céline Leroy 2,3, Alain Dejean 3,4, Hervé Gryta 5, Patricia Jargeat 5, Angelo D. Armijos Carrión 6 and Jérôme Orivel 3,* 1 Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador 2 AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, 34000 Montpellier,
    [Show full text]