bioRxiv preprint doi: https://doi.org/10.1101/495739; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploring the role of Polycomb recruitment in Xist-mediated silencing of the X chromosome in ES cells Aurélie Bousard1*, Ana Cláudia Raposo2*, Jan Jakub Żylicz1,3*, Christel Picard1, Vanessa Borges Pires2,4, Yanyan Qi5, Laurène Syx1, Howard Y. Chang5,6, Edith Heard1†, Simão Teixeira da Rocha1,2† 1 Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, 26, rue d'Ulm, 75005 Paris, France. 2 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649- 028 Lisboa, Portugal. 3 University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK. 4 Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal. 5 Center for Dynamic Personal Regulomes, Stanford University, Stanford, CA 94305, USA. 6 Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. * these authors contributed equally † co-corresponding authors Correspondence: Edith Heard:
[email protected] Simão Teixeira da Rocha:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/495739; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Bousard, Raposo, Zylicz et al., Abstract Xist RNA has been established as the master regulator of X-chromosome inactivation (XCI) in female eutherian mammals but its mechanism of action remains unclear.