A Central Role for Canonical PRC1 in Shaping the 3D Nuclear Landscape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download The
BIOCHEMICAL CHARACTERIZATION AND REGULATION OF TRANSCRIPTION OF POLYCOMB GROUP RING FINGER 5 by Christopher Larson Cochrane B.Sc., The University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2013 © Christopher Larson Cochrane, 2013 Abstract The Polycomb Group (PcG) is a highly conserved group of genes which serve to repress transcription via specific modifications of histones in chromatin. The PcG has well-established roles in development and is involved, by mutation or dysregulation, in many human diseases including cancer. This study identifies the gene PCGF5, which is a paralogue of the oncogene Bmi1, as a transcriptional target of Notch signalling in T cell acute lymphoblastic leukemia (T-ALL). Evidence suggests that this regulation is direct and that the Notch transactivation complex binds DNA at several regions near the PCGF5 gene. PCGF5 is found to be expressed at a higher level in T-ALL than other hematopoietic malignancies. PCGF5 is found to associate with the PcG proteins RING1A and RING1B and its overexpression results in increased ubiquitylation of histone H2A, suggesting it shares functional similarity to Bmi1. Despite their similarities, Bmi1 and PCGF5 have a different spectrum of binding partners and are targeted to different locations in the genome. Overexpression of PCGF5 does not significantly alter hematopoietic development in vivo; however, enforced expression of PCGF5 in bone marrow progenitors results in the generation of fewer colonies in a myeloid colony forming assay. This study suggests that PCGF5 may have as yet unappreciated roles in PcG biology and merits further study into its effects on development and hematopoietic neoplasia. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Specification in Embryonic Stem Cells Through Activation and Repression
Article Polycomb Regulates Mesoderm Cell Fate- Specification in Embryonic Stem Cells through Activation and Repression Mechanisms Graphical Abstract Authors Lluis Morey, Alexandra Santanach, Enrique Blanco, ..., Elphe` ge P. Nora, Benoit G. Bruneau, Luciano Di Croce Correspondence [email protected] (L.M.), [email protected] (L.D.C.) In Brief Morey et al. reveal that Mel18, a Polycomb-complex-associated protein, is an essential epigenetic regulator of cardiac differentiation. During directed differentiation of embryonic stem cells, Morey et al. find that Mel18-PRC1 complexes exchange subunits in a stage- specific manner and instruct sequential gene activation and repression programs to specify mesoderm fate, prevent alternate lineage commitment, and promote cardiac differentiation. Highlights Accession Numbers d Mel18 is required for PRC1 stability and maintenance of gene GSE67868 repression in ESCs d Mel18 is essential for ESC differentiation into early cardiac- mesoderm precursors d Different Mel18-PRC1 complexes are assembled during cardiac differentiation d Distinctive PRC1 complexes bind to highly active and repressed genes in MES cells Morey et al., 2015, Cell Stem Cell 17, 300–315 September 3, 2015 ª2015 Elsevier Inc. http://dx.doi.org/10.1016/j.stem.2015.08.009 Cell Stem Cell Article Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms Lluis Morey,1,2,6,* Alexandra Santanach,1,2 Enrique Blanco,1,2 Luigi Aloia,1,2 Elphe` ge P. Nora,3,4 Benoit G. Bruneau,3,4 -
A Midbody Component Homolog, Too Much Information/Prc1-Like, Is Required For
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447958; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A midbody component homolog, too much information/prc1-like, is required for microtubule reorganization during both cytokinesis and axis induction in the early zebrafish embryo Nair, S 1,2,*, 1Welch, E.L. 1,*, Moravec, C.E. 1, Trevena, R.L.1, Pelegri, F. 1 * shared first authorship 1. LaBoratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA 2. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India Correspondence to: Francisco Pelegri at [email protected] 608-262-2920 Short title: zebrafish Prc-1L, cytokinesis and axis induction Key words: zebrafish, Prc-1, cytokinesis, midBody, microtuBule reorganization, axis induction bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447958; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract We show that the zeBrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1family of microtuBule-associated proteins. Embryos from tmi/prc1l homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that tmi/prc1l has a role in midBody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal tmi/prc1l function is also essential for the reorganization of vegetal pole microtuBules required for embryonic axis induction. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
Transcriptional Regulation of the P16 Tumor Suppressor Gene
ANTICANCER RESEARCH 35: 4397-4402 (2015) Review Transcriptional Regulation of the p16 Tumor Suppressor Gene YOJIRO KOTAKE, MADOKA NAEMURA, CHIHIRO MURASAKI, YASUTOSHI INOUE and HARUNA OKAMOTO Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan Abstract. The p16 tumor suppressor gene encodes a specifically bind to and inhibit the activity of cyclin-CDK specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 complexes, thus preventing G1-to-S progression (4, 5). and is found altered in a wide range of human cancers. p16 Among these CKIs, p16 plays a pivotal role in the regulation plays a pivotal role in tumor suppressor networks through of cellular senescence through inhibition of CDK4/6 activity inducing cellular senescence that acts as a barrier to (6, 7). Cellular senescence acts as a barrier to oncogenic cellular transformation by oncogenic signals. p16 protein is transformation induced by oncogenic signals, such as relatively stable and its expression is primary regulated by activating RAS mutations, and is achieved by accumulation transcriptional control. Polycomb group (PcG) proteins of p16 (Figure 1) (8-10). The loss of p16 function is, associate with the p16 locus in a long non-coding RNA, therefore, thought to lead to carcinogenesis. Indeed, many ANRIL-dependent manner, leading to repression of p16 studies have shown that the p16 gene is frequently mutated transcription. YB1, a transcription factor, also represses the or silenced in various human cancers (11-14). p16 transcription through direct association with its Although many studies have led to a deeper understanding promoter region. -
Protein Interactions in the Cancer Proteome† Cite This: Mol
Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG. -
Mouse Cbx2 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Cbx2 Knockout Project (CRISPR/Cas9) Objective: To create a Cbx2 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cbx2 gene (NCBI Reference Sequence: NM_007623 ; Ensembl: ENSMUSG00000025577 ) is located on Mouse chromosome 11. 5 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 5 (Transcript: ENSMUST00000026662). Exon 4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mutations cause malformations of the axial skeletal, reduced viability, poor growth and male to female sex reversal. Exon 4 starts from about 11.75% of the coding region. Exon 4 covers 6.81% of the coding region. The size of effective KO region: ~106 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 Legends Exon of mouse Cbx2 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 4 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1343 bp section downstream of Exon 4 is aligned with itself to determine if there are tandem repeats. -
Protein Quality Control in the Nucleolus Safeguards Recovery of Epigenetic
RESEARCH ARTICLE Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock Maria Azkanaz1, Aida Rodrı´guezLo´ pez1, Bauke de Boer1, Wouter Huiting2, Pierre-Olivier Angrand3, Edo Vellenga1, Harm H Kampinga2, Steven Bergink2, Joost HA Martens4, Jan Jacob Schuringa1†, Vincent van den Boom1†* 1Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; 2Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; 3Cell Plasticity & Cancer, Inserm U908, University of Lille, Lille, France; 4Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands Abstract Maintenance of epigenetic modifiers is of utmost importance to preserve the epigenome and consequently appropriate cellular functioning. Here, we analyzed Polycomb group protein (PcG) complex integrity in response to heat shock (HS). Upon HS, various Polycomb Repressive Complex (PRC)1 and PRC2 subunits, including CBX proteins, but also other chromatin regulators, are found to accumulate in the nucleolus. In parallel, binding of PRC1/2 to target genes is strongly reduced, coinciding with a dramatic loss of H2AK119ub and H3K27me3 marks. Nucleolar-accumulated CBX proteins are immobile, but remarkably both CBX protein accumulation and loss of PRC1/2 epigenetic marks are reversible. This post-heat shock recovery of pan-nuclear CBX protein localization and reinstallation of epigenetic marks is HSP70 dependent. Our findings *For correspondence: demonstrate that the nucleolus is an essential protein quality control center, which is indispensable [email protected] for recovery of epigenetic regulators and maintenance of the epigenome after heat shock. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Polycomb Repressor Complex 2 Function in Breast Cancer (Review)
INTERNATIONAL JOURNAL OF ONCOLOGY 57: 1085-1094, 2020 Polycomb repressor complex 2 function in breast cancer (Review) COURTNEY J. MARTIN and ROGER A. MOOREHEAD Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada Received July 10, 2020; Accepted September 7, 2020 DOI: 10.3892/ijo.2020.5122 Abstract. Epigenetic modifications are important contributors 1. Introduction to the regulation of genes within the chromatin. The poly- comb repressive complex 2 (PRC2) is a multi‑subunit protein Epigenetic modifications, including DNA methylation complex that is involved in silencing gene expression through and histone modifications, play an important role in gene the trimethylation of lysine 27 at histone 3 (H3K27me3). The regulation. The dysregulation of these modifications can dysregulation of this modification has been associated with result in pathogenicity, including tumorigenicity. Research tumorigenicity through the increased repression of tumour has indicated an important influence of the trimethylation suppressor genes via condensing DNA to reduce access to the modification at lysine 27 on histone H3 (H3K27me3) within transcription start site (TSS) within tumor suppressor gene chromatin. This methylation is involved in the repression promoters. In the present review, the core proteins of PRC2, as of multiple genes within the genome by condensing DNA well as key accessory proteins, will be described. In addition, to reduce access to the transcription start site (TSS) within mechanisms controlling the recruitment of the PRC2 complex gene promoter sequences (1). The recruitment of H1.2, an H1 to H3K27 will be outlined. Finally, literature identifying the histone subtype, by the H3K27me3 modification has been a role of PRC2 in breast cancer proliferation, apoptosis and suggested as a mechanism for mediating this compaction (1). -
The Genetic Basis for PRC1 Complex Diversity Emerged Early in Animal Evolution
The genetic basis for PRC1 complex diversity emerged early in animal evolution James M. Gahana,1, Fabian Rentzscha,b, and Christine E. Schnitzlerc,d aSars Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway; bDepartment for Biological Sciences, University of Bergen, 5006 Bergen, Norway; cWhitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 320803; and dDepartment of Biology, University of Florida, Gainesville, FL 32611 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved August 9, 2020 (received for review March 20, 2020) Polycomb group proteins are essential regulators of developmen- chromatin compaction and gene silencing (5–13). The classical tal processes across animals. Despite their importance, studies on model of transcriptional silencing by Polycomb complexes entails Polycomb are often restricted to classical model systems and, as first recruitment of PRC2, which deposits H3K27me3, followed such, little is known about the evolution of these important by PRC1 recruitment through its H3K27me3 binding subunit, chromatin regulators. Here we focus on Polycomb Repressive leading to H2A ubiquitylation and repression (14–16). In recent Complex 1 (PRC1) and trace the evolution of core components of years, this model has been elaborated upon extensively, revealing canonical and non-canonical PRC1 complexes in animals. Previous a more complex interplay between PRC1 and PRC2 compo- work suggested that a major expansion in the number of PRC1 nents, histone modifications, and other factors such as DNA complexes occurred in the vertebrate lineage. We show that the methylation and CpG content that regulate the recruitment and expansion of the Polycomb Group RING Finger (PCGF) protein fam- activity of both complexes and subsequent transcriptional ily, an essential step for the establishment of the large diversity of repression (17–31).