Rats and Axolotls Share a Common Molecular Signature After Spinal Cord Injury Enriched in Collagen-1

Total Page:16

File Type:pdf, Size:1020Kb

Rats and Axolotls Share a Common Molecular Signature After Spinal Cord Injury Enriched in Collagen-1 Rats and axolotls share a common molecular signature after spinal cord injury enriched in collagen-1 Athanasios Didangelos1, Katalin Bartus1, Jure Tica1, Bernd Roschitzki2, Elizabeth J. Bradbury1 1Wolfson CARD King’s College London, United Kingdom. 2Centre for functional Genomics, ETH Zurich, Switzerland. Running title: spinal cord injury in rats and axolotls Correspondence: A Didangelos: [email protected] SUPPLEMENTAL FIGURES AND LEGENDS Supplemental Fig. 1: Rat 7 days microarray differentially regulated transcripts. A-B: Protein-protein interaction networks of upregulated (A) and downregulated (B) transcripts identified by microarray gene expression profiling of rat SCI (4 sham versus 4 injured spinal cord samples) 7 days post-injury. Microarray expression data and experimental information is publicly available online (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45006) and is also summarised in Supplemental Table 1. Protein-protein interaction networks were performed in StringDB using the full range of protein interaction scores (0.15 – 0.99) to capture maximum evidence of proteins’ interactions. Networks were then further analysed for betweeness centrality and gene ontology (GO) annotations (BinGO) in Cytoscape. Node colour indicates betweeness centrality while edge colour and thickness indicate interaction score based on predicted functional links between nodes (green: low values; red: high values). C-D: The top 10 upregulated (C) or downregulated (D) transcripts sorted by betweeness centrality score in protein-protein interaction networks shown in A & B. E-F: Biological process GO analysis was performed on networks of upregulated and downregulated genes using BinGO in Cytoscape. Graphs indicate the 20 most significant GO categories and the number of genes in each category. G: MSigDB-Transfac was used to identify potential transcription factor binding sites in differentially regulated genes. The ten transcription factors that might regulate the highest number of upregulated (black) or downregulated (grey) genes are shown. The ubiquitous transcription factor SP1 is predicted to have binding sites for the greatest number of differentially regulated genes. H: The transcription factors MAZ, SP1, JUN and NFATC1 which are predicted to regulate a large number of differentially regulated genes (G) are significantly increased 7 days post-SCI in the rat microarray dataset. Graph displays their adjusted p value (T-Test) and fold-change upregulation after rat SCI (see Supplemental Table 1). Supplemental Fig. 2: Axolotl 7 days microarray differentially regulated transcripts. A-B: Protein-protein interaction networks of upregulated (A) and downregulated (B) transcripts identified by microarray gene expression profiling of axolotl SCI (3 sham versus 3 injured spinal cord sample replicates; each replicate is a pool of 10 axolotl spinal cords) 7 days post-injury. Microarray expression data and experimental information is publicly available online (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71934) and is also summarised in Supplemental Table 2. Protein-protein interaction networks were performed using StringDB using the full range of protein interaction scores (0.15 – 0.99). Networks were then further analysed for betweeness centrality and gene ontology annotations (BinGO) in Cytoscape. Node colour indicates betweeness centrality while edge colour indicates interaction score based on the predicted functional links between nodes (green: low values; red: high values). C-D: The top 10 upregulated (C) or downregulated (D) transcripts sorted by their betweeness centrality score in protein-protein interaction networks shown in A & B. Note that 4 of the most central downregulated (D) transcripts after axolotl SCI namely TSPO, ELAVL1, MYC (cMYC) and ISG15 are 4 of the most central upregulated transcripts after rat SCI (see Supplemental Fig. 1D). E-F: Biological process GO analysis was performed on the networks of upregulated and downregulated genes using BinGO in Cytoscape. Graphs indicate the 20 most significant GO categories and the number of genes in each category. G: MSigDB-Transfac was used to identify potential transcription factor binding sites in differentially regulated genes. The ten transcription factors that might regulate the highest number of upregulated (black) or downregulated (grey) genes are shown. Note SP1 is again likely regulating the highest number of differentially regulated genes but unlike rats (see Supplemental Fig. 1H) none of the transcription factors identified was differentially regulated in the axolotl gene expression array. Supplemental Fig. 3: Visualization of intersecting rat and axolotl transcripts and gene ontology (GO) analysis. The 4 different groups of shared differentially regulated genes found in rat and axolotl microarrays 7 days post-SCI are visualised as protein-protein interaction networks made in StringDB v10 and CytoScape. Overrepresented biological process GO terms in each group and number of genes in each GO term are depicted in graphs. GO terms were retrieved using BinGO in CytoScape. A: Group 1; 153 genes upregulated in axolotls but downregulated in rats. B: Group 2; 156 genes upregulated in both axolotls and rats. C: Group 3; 77 genes downregulated in axolotls but upregulated in rats. D: Group 4; 228 genes downregulated both in axolotls and rats. Smaller networks (pointed by arrows) depict the genes that make up the indicated GO terms. Zoom-in to browse genes. Note that Group 1 (A) returned only 2 terms. Supplemental Fig. 4: Comparison of rat proteomics and transcriptomics. A-B: Comparison of shot-gun high-throughput proteomics and microarray transcriptomics in rats identifies 110 and 90 molecules that were upregulated (A) or downregulated (B) both at the mRNA and protein levels 7 days post-SCI. C-D: The 10 most significant biological process GO terms retrieved using BinGO in the 110 upregulated (C) and 90 downregulated (D) proteins. Note that “extracellular matrix” and “collagen” categories are the most significant GO terms in the group of 110 upregulated proteins after SCI (C). Proteomics identifications and protein spectral counts for each sample can be browsed in Supplementary Tables 3 & 4. Supplemental Fig. 5: Type I collagen staining in advanced 12 week-old lesions. A-B: Collagen-1 (COL1A red; the antibody recognises both COL1A1 and COL1A2 chains) and CD34 (green) were costained in 30µm thick T10 injured spinal cord cryosections. Spinal cord tissue was collected 12 weeks post-SCI. (B) is a magnified area from (A). C-D: COL1A (red) was costained in 30µm intact T10 spinal cord cryosections with CD34 (green). (D) is a magnified area from (C). Supplemental Fig. 6: CD34+ cells are distinct from CD45+ cells in lesions 2 weeks post-SCI. A-B: CD45 (red) and CD34 (green) were costained in 30µm T10 injured spinal cord cryosections. Spinal cord tissue was collected 2 weeks post-SCI. (B) is a magnified area from (A). CD34 and CD45 are proximal but there is no cellular colocalisation. CD45 (pan leukocyte marker) will likely stain leukocytes including monocytes. The marker is retained in macrophages and is also expressed by activated microglia (albeit less than infiltrating monocytes and tissue macrophages). CD45 staining pattern resembles activated macrophages and microglia. C-D: CD45 (red) was costained in 30µm intact T10 spinal cord cryosections with CD34 (green). (D) is a magnified area from (C). Supplementary Figure 1 UPregulated Genes RAT 7D UPregulated Genes BIOLOGICAL PROCESS A GOLM1 SERF2 LIMD2 SLFN13 KLHL6 LYRM5 MFSD11 TMEM181 ARMC10 BRI3 CR1L TMEM206 NHLRC3 SIDT2 CCDC115 FAM76A FAM219B GUCD1 SLC25A45TMEM39B ESYT1 TMEM168 OGFOD3 NTMT1 SPATS2L FRMD4B SMPDL3A FOLR2 OAF PLEKHA4 NT5DC2 KLHL5 POC1B SOGA1 S100A3 FILIP1L C5orf43 CCDC125 TMEM208 NKAIN1 FAM198B ZMYM5 HRCT1 C E INMT RARRES1 MXRA8 PTPLAD2 PSCA SFT2D1 MFSD12 ALPK3 FAM193A ZFAND3 MPV17L TMEM37 GINM1 SCAMP4 PLAC9 FAM108C1 FKBP15 VGF COA4 IAH1 ABRACL TMEM131 NT5DC1 PARP12 TMEM140 APOOL SLAMF9 GSDMD CEP128 ZDHHC6 SLFN5 RPP25L FAM105A FAM76B TMEM123 GPR84 ZDHHC7 EMP3 FEZ2 ATP8B2 CHADL LRRC8B GPR34 ZNFX1 IER5 EMP1 SLC35A4 CALHM2 ATP10D ADAP2 SEPN1 PSMG2 OSBPL11 CCDC93 MTPAP LRRC40 ABHD2 SCAND1 PION TOR4A LEPROT LRRC8D ZFP36L2 RNF169 SCPEP1 LMAN2 C20orf111 REXO2 Sep-09 OMA1 CRYM PLGRKT CDCA3 LRP10 DNAJC13 LRRC41 RAB20 OTUD1 RNF217 TTPAL ISLR ALDH2 ZCCHC6 ARL4A DNASE1L1 KCNN4 SWAP70 WSB1 TFPT RNF122 SLC12A9 TRAFD1 STK19 PAPD4 SLC25A24 SBF2 NPEPL1 NLN IRGM PTTG1IP TBC1D23 TBC1D2B CDK2AP2 HILPDA TMEM14C PDCD2 XYLT2 UBTD1 EPB41L2 OST4 CRIP1 TM9SF1 KCTD12 NAV1 HMGN2 PPFIBP1 EXTL3 TATDN1 SULF2 FCRL2 CLEC12A GNPTAB TIMM22 MS4A6A LRRC59 TNFAIP8L2 QSOX1 EIF2D HLX LILRB4 F8 SMIM3 WDR83OS MYO7A PRRC1 KDELC2 JTB PTPLA ARL11 NCLN PGAP2 EBPL DSCR3 SERTAD2 ADAMTS9 CENPW METRNL CCZ1B MTX1 SLC35E3 FBXO6 SLC25A39 DLGAP4 ZNRF2 TFEC NPL RENBP RTP4 IFI44 PHLDA1 SLC15A3 SLC15A4 CYP20A1 DDAH2 TEX264 ILDR2 RNF213 TEX261 SLC10A3 SLC35B1 LMF2 LAMA4 Most central Genes NUDT4 SASH3 DCAF11 RELL1 COX16 VPS13C FAM107B DHRSX DENND6A DENND3 TMEM248 CD276 WDR81 MPV17L2 CLIC1 FNDC3B ACOT1 PRSS23 RNF149 PDK3 FBXO46 BCKDK RNLS PCED1B TMEM86A RCBTB2 TMEM176A ATL3 BTG3 ETFDH FAM110A APBA3 TTC7A SPSB1 SYNGR1 ARHGAP42 LRRC42 CGGBP1 EVA1B ACOT9 C2orf18 CPNE8 BZW2 cellular process TTC13 EML3 CTHRC1 ANKRD49 NXPE4 SOWAHC EPSTI1 FBXL6 DRAM1 LMCD1 TMEM150ATMEM223 PXDC1 LYSMD3 RCN3 FABP5 DNAJC14 FAM49B SBNO2 SLC38A10 EEPD1 SP140 TMEM176B SZRD1 MOSPD3 VNN1 KCNE4 FRMD8 KANK2 RAI14 FAM111A OLFML3 CAPN5 CCDC90A ZFYVE26 RDH10 MFSD5 MYADM TMEM134 SLC44A2 CD300A AVPI1
Recommended publications
  • Hedgehog Signaling Modulates Cholesterol Homeostasis in Chondrocytes and in Osteoarthritis
    HEDGEHOG SIGNALING MODULATES CHOLESTEROL HOMEOSTASIS IN CHONDROCYTES AND IN OSTEOARTHRITIS by Shabana Amanda Ali A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by Shabana Amanda Ali 2014 HEDGEHOG SIGNALING MODULATES CHOLESTEROL HOMEOSTASIS IN CHONDROCYTES AND IN OSTEOARTHRITIS Shabana Amanda Ali Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Osteoarthritis (OA) is a common degenerative disease of the joint that is characterized by degradation and calcification of articular cartilage, and subchondral bone changes. Hedgehog (Hh) signaling is known to be activated in human and murine OA. Since Hh signaling regulates Gli‐mediated gene expression, we identified Hh target genes that are expressed in chondrocytes. Microarray analyses were performed to detect changes in gene expression when the Hh pathway was modulated in human OA cartilage samples. Results from the Affymetrix Human Gene 1.0 ST microarray were analyzed for differentially expressed genes from three patient samples. Using Ingenuity® Pathway analysis, several genes known to be involved in sterol homeostasis were found to be modulated with Hh inhibition. We hypothesized that Hh signaling regulates cholesterol biosynthesis in chondrocytes, and that modulating cholesterol homeostasis impacts the severity of OA. To investigate the function of cholesterol in the cartilage, mice with chondrocyte‐specific cholesterol accumulation were generated. This was achieved by excising Insig1 and Insig2, major negative regulators of cholesterol homeostasis. Over time, mice with chondrocyte‐specific cholesterol accumulation exhibited impaired growth of the long bones. With aging or surgically induced joint instability, these mice ii developed more severe OA than control littermates.
    [Show full text]
  • Kinesin-14 Motor Protein KIFC1 Participates in DNA Synthesis and Chromatin Maintenance Ya-Lan Wei1 and Wan-Xi Yang 1
    Wei and Yang Cell Death and Disease (2019) 10:402 https://doi.org/10.1038/s41419-019-1619-9 Cell Death & Disease ARTICLE Open Access Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance Ya-Lan Wei1 and Wan-Xi Yang 1 Abstract The nuclear localization signal (NLS) in kinesin-14 KIFC1 is associated with nuclear importins and Ran gradient, but detailed mechanism remains unknown. In this study, we found that KIFC1 proteins have specific transport characteristics during cell cycle. In the absence of KIFC1, cell cycle kinetics decrease significantly with a prolonged S phase. After KIFC1 overexpression, the duration of S phase becomes shorten. KIFC1 may transport the recombinant/ replicate-related proteins into the nucleus, meanwhile avoiding excessive KIFC1 in the cytoplasm, which results in aberrant microtubule bundling. Interestingly, the deletion of kifc1 in human cells results in a higher ratio of aberrant nuclear membrane, and the degradation of lamin B and lamin A/C. We also found that kifc1 deletion leads to defects in metaphase mitotic spindle assembly, and then results in chromosome structural abnormality. The kifc1-/- cells finally form micronuclei in daughter cells, and results in aneuploidy and chromosome loss in cell cycle. In this study, we demonstrate that kinesin-14 KIFC1 proteins involve in regulating DNA synthesis in S phase, and chromatin maintenance in mitosis, and maintain cell growth in a nuclear transport-independent way. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction KIFC1 mainly cluster the spindles involving in chromo- Kinesin-14 KIFC1 transports various cargos along the some alignment and segregation. While chromokinesins microtubule to the minus ends1.
    [Show full text]
  • When STING Meets Viruses: Sensing, Trafficking Andesponse R
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 1-1-2020 When STING meets viruses: Sensing, trafficking andesponse r Zhaohe Li Siqi Cai Yutong Sun Li Li Siyuan Ding See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Zhaohe Li, Siqi Cai, Yutong Sun, Li Li, Siyuan Ding, and Xin Wang fimmu-11-02064 September 25, 2020 Time: 19:58 # 1 REVIEW published: 29 September 2020 doi: 10.3389/fimmu.2020.02064 When STING Meets Viruses: Sensing, Trafficking and Response Zhaohe Li1, Siqi Cai1, Yutong Sun1, Li Li1,2,3, Siyuan Ding4 and Xin Wang1,2,3* 1 Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China, 2 Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China, 3 Marine Biomedical Research Institute of Qingdao, Qingdao, China, 4 Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2’,3’-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) Edited by: by the host and microbial proteins.
    [Show full text]
  • ACTL6A Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells and Correlates with Poor Clinical Outcomes
    OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH ACTL6A Promotes the Proliferation of Esophageal Squamous Cell Carcinoma Cells and Correlates with Poor Clinical Outcomes This article was published in the following Dove Press journal: OncoTargets and Therapy Rui-zhe Li1 Background: ACTL6A, a regulatory subunit of ATP-dependent chromatin-remodeling Yun-yun Li1,2 complexes SWI/SNF, has been identified as a central oncogenic driver in many tumor types. Hui Qin1 Materials and Methods: We used immunohistochemistry (IHC) to detect ACTL6A Shan-shan Li1 expression in esophageal squamous cell carcinoma (ESCC) tissues. Then, the effect of ACTL6A on proliferation and DNA synthesis was explored by using cell counting kit 8 1 Department of Pathology, School of (CCK8) and EdU retention assays. The potential oncogenic mechanism of ACTL6A in Basic Medical Sciences, Zhengzhou University and First Affiliated Hospital of ESCC cells was also analyzed by flow cytometry and Western blotting. We further estab­ Zhengzhou University, Zhengzhou, lished an ESCC xenograft mouse model to validate the in vitro results. Henan 450000, People’s Republic of China; 2Department of Stomatology, First Results: ACTL6A expression, localized in cancer cell nuclei, was markedly higher in ESCC Affiliated Hospital of Zhengzhou tissues than in the corresponding noncancerous tissues (P<0.001) and was positively asso­ University, Zhengzhou, Henan 450000, ciated with tumor size, histological differentiation, T stage and tumor-node-metastasis People’s Republic of China (TNM) stage. Kaplan–Meier analysis revealed that high ACTL6A expression was signifi­ cantly associated with poor overall survival (OS) (P = 0.008, HR= 2.562, 95% CI: 1.241–­ 5.289), and decision curve analysis (DCA) demonstrated that ACTL6A could increase the clinical prognostic efficiency of the original clinical prediction model.
    [Show full text]
  • Roles and Mechanisms of Kinesin-6 KIF20A in Spindle Organization During Cell Division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She
    European Journal of Cell Biology 98 (2019) 74–80 Contents lists available at ScienceDirect European Journal of Cell Biology journal homepage: www.elsevier.com/locate/ejcb Review Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China ARTICLE INFO ABSTRACT Keywords: Mitotic kinesin is crucial for spindle assembly and chromosome segregation in cell division. KIF20A/MKlp2, a Kinesin-6 member of kinesin-6 subfamily, plays important roles in the central spindle organization at anaphase and cy- KIF20A tokinesis. In this review, we briefly introduce the discovery and classification of kinesin-6 motors in model Microtubule organisms, and summarize the biochemical features and mechanics of KIF20A proteins. We emphasize the Anaphase complicated interactions of KIF20A with partner proteins, including MKlp1, Plk1 and Rab6. Particularly, we Spindle assembly highlight the regulation of Cdk1 and chromosomal passenger complex on kinesin-6 KIF20A at late stage of Mitosis mitosis. We summarized the multiple functions of KIF20A in central spindle assembly and the formation of cleavage furrow in both mitosis and meiosis. In addition, we conclude the expression patterns of KIF20A in tumorigenesis and its applications in tumor therapy. 1. Introduction kinesin superfamily proteins (Miki et al., 2005). Kinesin-6 subfamily is comprised of KIF20A (Lawrence et al., 2004), KIF20B (MPP1) Kinesin superfamily proteins (KIFs) are molecular motors that (Kamimoto et al., 2001; Matsumoto-Taniura et al., 1996; Westendorf mediate the transport of various cargos, including the newly synthe- et al., 1994) and MKlp1 (Lawrence et al., 2004; Nislow et al., 1990; sized protein complexes, vesicles and mRNAs along the microtubule Sellitto and Kuriyama, 1988).
    [Show full text]
  • Sorting Nexins in Protein Homeostasis Sara E. Hanley1,And Katrina F
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2020 doi:10.20944/preprints202011.0241.v1 Sorting nexins in protein homeostasis Sara E. Hanley1,and Katrina F. Cooper2* 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA 1 [email protected] 2 [email protected] * [email protected] Tel: +1 (856)-566-2887 1Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, 08084, USA Abstract: Sorting nexins (SNXs) are a highly conserved membrane-associated protein family that plays a role in regulating protein homeostasis. This family of proteins is unified by their characteristic phox (PX) phosphoinositides binding domain. Along with binding to membranes, this family of SNXs also comprises a diverse array of protein-protein interaction motifs that are required for cellular sorting and protein trafficking. SNXs play a role in maintaining the integrity of the proteome which is essential for regulating multiple fundamental processes such as cell cycle progression, transcription, metabolism, and stress response. To tightly regulate these processes proteins must be expressed and degraded in the correct location and at the correct time. The cell employs several proteolysis mechanisms to ensure that proteins are selectively degraded at the appropriate spatiotemporal conditions. SNXs play a role in ubiquitin-mediated protein homeostasis at multiple levels including cargo localization, recycling, degradation, and function. In this review, we will discuss the role of SNXs in three different protein homeostasis systems: endocytosis lysosomal, the ubiquitin-proteasomal, and the autophagy-lysosomal system. The highly conserved nature of this protein family by beginning with the early research on SNXs and protein trafficking in yeast and lead into their important roles in mammalian systems.
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Neurodegenerative Triplet Repeat Expansion Disorders
    The Pharma Innovation Journal 2018; 7(11): 34-40 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Neurodegenerative triplet repeat expansion disorders: TPI 2018; 7(11): 34-40 © 2018 TPI A review www.thepharmajournal.com Received: 15-09-2018 Accepted: 20-10-2018 Mitesh Patel, RK Patel, Tushar Chauhan, Jigar Suthar and Sanjay Dave Mitesh Patel Genetics Group of Gujarat Abstract Diagnostic Centre, Mehsana, Epigenetic alterations are the major causes of triplet repeat expansion. The repetitive DNA expands of its Gujarat, India normal length results in sever neurodegenerative conditions. The common types of triplet repeat expansion (TNE) disorders are: Huntington disease, Friedreich ataxia, myotonic dystrophy, SBMA and RK Patel SCA1 out of which Huntington disease, SBMA and SCA1 are categorized as a poly glutamine disorder Sandor Animal Biogenics Pvt. due to the repeat of CAG. In contrast, the friedreich ataxia is occurred due to expansion of the GAA Ltd., Hyderabad, Telangana, whereas myotonic dystrophy is due to the expansion of CTG. The triplet disease follows the mechanism India of anticipation in which the onset of the disease increases with age. Conclusively, no clear mechanism can explain the origin of the disease. The pre mutation can be expanded in full mutation in successive Tushar Chauhan Genetics Group of Gujarat generations and the number of repeats increased with each generation. TNE can observe in both somatic Diagnostic Centre, Mehsana, as well as germ line tissues. Gujarat, India Keywords: triplet repeat expansion disorder, trinucleotide repeats, Huntington disease, SBMA, SCA1, Jigar Suthar friedreich ataxia Genetics Group of Gujarat Diagnostic Centre, Mehsana, Introduction Gujarat, India Since the early 1990s, a new class of molecular disease has been characterized based upon the Sanjay Dave presence of unstable and abnormal expansions of DNA-triplets (Trinucleotides).
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Increased ACTL6A Occupancy Within Mswi/SNF Chromatin Remodelers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.435873; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Increased ACTL6A Occupancy Within mSWI/SNF Chromatin Remodelers Drives Human Squamous Cell Carcinoma Chiung-Ying Chang1,2,7, Zohar Shipony3,7, Ann Kuo1,2, Kyle M. Loh4,5, William J. Greenleaf3,6, Gerald R. Crabtree1,2,5* 1Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. 2Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. 3Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. 4Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. 5Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. 6Department of Applied Physics, Stanford University, Stanford, California 94305, USA. 7These authors contributed equally. *Corresponding author: Gerald R. Crabtree, [email protected] Summary Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit, ACTL6A, is amplified at an early stage in the development of squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives its interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was sub-stoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near-saturation of ACTL6A within BAF complexes.
    [Show full text]
  • Sequences, Annotation and Single Nucleotide Polymorphism of The
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 6-2008 Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki National Cancer Institute at Frederick James C. Mullikin National Human Genome Research Institute Thomas W. Beck National Cancer Institute at Frederick Robert M. Stephens National Cancer Institute at Frederick Stephen J. O'Brien National Cancer Institute at Frederick, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Zoology Commons NSUWorks Citation Yuhki, Naoya; James C. Mullikin; Thomas W. Beck; Robert M. Stephens; and Stephen J. O'Brien. 2008. "Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat." PLoS ONE 7, (3 e2674): 1-17. https://nsuworks.nova.edu/cnso_bio_facarticles/773 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki1*, James C. Mullikin2, Thomas Beck3, Robert Stephens4, Stephen J. O’Brien1 1 Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland,
    [Show full text]