U U r'- ""» iT2 S~A~ES ENVIRCNMEN~A_ C^^Ci CP 9£SE>PC:- ANC :EV£_O HAZARDOUS WASTE ENGINEERING «ESE>RCH

The Hydrologlc Evaluation of Landfill Performance (HELP) Model

HELP UPDATE APHIL 1986

A IBM PC version of the HELP Model-VeT'on l.C < 5 available. in addition to the IBM wlnfrane Version 1.0. The »C version should run on IBM PC-XT or IBM PC-AT systems wl tft a wtfl co-proctssor cfilp. !3M PC cowarfblt syst««5 rtav« not been t*st«3; nowever, trie PC version should run on most tn» comatlbles.

REQUIRED HARDWARE AMD SOFTWARE:

A. 334k byt*s or vr* of ailn »*or/ 8. 3087 «tfl co-croc«s$op 1f IBM rT or 80287 «itJi co-proc«ssor 1f IB« AT or C. noppy Disk Or1v« (5.25 1n, dual-sited douele-c Dr1v«

To receive tJ>« IBM PC yer?1on, send 5 ft1a»«. forwtted, 5.25 1 ncn diskettes (double-$1d«d/doub1e-d«ns1ty )

. »*i.O. WRES, Environ»«ui Lab. USA£ Mtef^ert Coe<-1«nt Station P.O. 3cx 631 391IC

Send 6 diskettes, 1f you also «ant i csor a' tfte source cad*. Please reamxr to have the diskettes 'orvrt** (1.*.. formtted rlthout tJ>e DOS operation r. stM files). '1t4*« <«t« again tftat your PC CO^«Jt»r Ktst nave a BitJi co-processor cm 9 !i.e.. 8087 or 80237 cftlp).

Version 2.0 of the HELP Model 1s cun*»«t1;r ander aevelopaent and 1s anticipated to be available 1n uvt fill of

Please also note ttiit the "User's Guidi 'or Version 1" and the "Oocunentatlon for Version 1" are ONLT AVAI'jkBLE fro« the Matlonal Technical Information Services (KTIS1. To order the reports contact:

MT1S 5285 Port *oy«l 9ao

The model entitled 'The Hydrologic Evaluation of Landfill Performance- (HELP) was written to run on aainfraae computer systeas and IBH-coapatiftie personal computers (PC). This PC version of the HELP Mdtl function! very •iiilar to Version 1 in accordance with tht instruction* in the User's Guiie fl) and the attached Inttris U«»r'« Cuid». Th» togin»»ring approach to t.-.t «at*r balanc* tquation* is sisilar to those dtscrib»d in the Supporting Documentation (2) for Version 1, but the snovielt, tvipotranspiration, unsaturated hydraulic conductivity, v*g»tative growth, and lateral drainage routines have been iaproved. This PC version of the HEL? sodel consists of 0 double-sided, double- density (OS/DO) or 3 double-sided, high-density (DS/HD) 3.23-inch floppy diskettes. The contents of each are shovn here. DS/DD Diskette Contents File Man*

1. HELP input progrt* RUHHELPI.EXE 2. HELP execution and output progra* RUNHELPO. EXE Example daily rainfall data DATA4 Example daily teeoerature data DATA? Exaaple soil and design data DATA10 Example aiscellaneous climatological data DATA11 Example dally insolation data DATA13 Exaaple output EXAMPLE. OUT 3. Synthetic rainlali generation coefficients TAPE1 for 139 citiM Synthetic tempsrature and solar radiation TAPE2 ifficient* for 104 citiee

4. Default 9-yr rainfall data sets for states AL-HZ TAPE3.A 3. Default 3-yr rainfall data sets for states ID-NT TAPE3.I 6. Default 3-yr rainfall data sets for states NC-OR TAPE3.N

7. Default 3-yr rainfall data sets for states PA-¥Y TAPE3.P a. HEL? input source cod* listing HE1.PI.FOR HELP execution and output source code listing HELPO.FOR DS/HD Diltcetti. Contents Tile Hai>e_

1. HELP input prograa RUMHELPI.EXE HELP execution and output RUNHELPQ.EXE Example daily rainfall data DATA4 Example dally data DATA? Example soil and design data DATA10 Example miscellaneous cli»atological data DATA11 Example daily insolation data DATA13 Example output EXAHPLE.au? Synthetic rainfall generation coefficients TAPE1 for 139 cities Synthetic temperature and solar radiation TAPE2 coefficients lor 184 cltit*

Default 3-yr rainfall data sets for state* AL-HI TAPEO.A Default 3-yr rainfall data sets for state* ID-fIT TAPE3.I Default 3-yr rainfall data sets for states NE-OR TAPE3.H

Default 3-yr rainfall data sets for states PA-VY TAPE3.P HELP input source code listing HELP!.FOR HELP execution and output source code listing HELPtJ. FOR

The user should »ake a backup copy of each of these diskettes prior to running the HELP model. Each of the default 3-yr precipitation data floppy diskettes has a list of states on its label. The user should search the precipitation data diskettes, select the diskette which has the state of interest and vait until the sodel requests the user to insert the diskette into the drive of the user's choice. Alternatively, the user can load the default precipitation data onto his hard disk. The user «ay also copy the synthetic weather generation coefficients onto his hard disk.

REQUIRED HARDWARE The folloving hardware is requiredt a. Nonitor b. Floppy Disk Driv* (S.23-inch double-sided, double- or high-density) c. Hard Disk Drive or • Stcond Floppy Disk Drive d. 3t4k byte« or sore of RAH asoory e. S0t7 or 80217 Rath Co-processor (act required for US-Fortran version) f. Priater if • hard copy is desired

SOFTWARE REQUIREHCIT The user »ust us* Riero Soft Disk Operating System (RS-DOS) Version 2.10 or a higher version. The user sust create or add to an existing CONFIG.SYS file tht following co««ands: FILES'18 BUFFER«18 The purpose at the CONFIG.SYS Flit is to increase the nuaber of data flits which the PC can access. Additional FILES and BUFFERS will be required if DCS is ovtrlain by other software. Increase the number from IS if Error Nu»oer 3012 l« encountered while running the HEL? model. The CONFIG.SYS file lust be in the root or boot up directory. The RUHHELPI.EXE and RUNHELPO.EXE executable aodules were compiled and linked with IBP! Per»onal Csmputer Professional FORTRAN developed by Ryan-HcFariand Corporation. Thli Professional FORTRAN is not needed to run the HELP Bodel. Another version compiled by Microsoft Fortran is available to run without a «ath coprocessor but runs very slowly (about 1/10 as fast).

HARD DISK INSTALLATION Typically the user would install the program in its own subdirectory. The user can build a HELP subdirectory on its root directory by the following set of coBBands. C> CD\ C> BD HELP The user should copy the diskette labeled RUNHELPI.EXE and the diskette labeled RUNHELPO.EXE froa the A drive (floppy dick drive) to the hard disk drive in the HELP subdirectory by these commands: C> CDNHELP C> COPY A:t.§ The user normally would also copy TAPE1 and TAPE2 to the hard drive in analogous Banner.

RUNNING HELP VERSION 2 WITH A HARD DISK A user say run HELP la tvo way* with a hard disk. The default drive (the drive displayed in ths prompt) My either be the hard disk drive or the floppy disk drive. To run tha> prograsj with the hard disk drive as the default drive, the user Bust change/ ths> default drive to C and enter into the appropriate subdirectory where the program is located if the computer is not currently in the correct drive and subdirectory. To start the HELP eodel for entering data, the user should typ* this command: O RUinttL»X Once the modsl starts, it will function according to the instructions in the User's Guide) (1) and attached Interis User's Guide. During the clisatological input, the prograa vill ne«d to read the diskette containing the coefficients for the user specified city to generate daily , solar radiation, and rainfall (synthetic method only^ The user need only enter the letter of the drive which contains the synthetic weather generation coefficients in response to ENTER THE LETTEH OF THE DRIVE WHERE TEMPERATURE. RADIATION, AND RAINFALL PARAMETERS SHOULD BE READ. (A, B, C OR D) If the u«»r (elects tht default ttthod of tnttrlng precipitation . tht program will nted to read tht fivt-ytar precipitation data tst froa the diskette containing the uitr sptcifitd stats. Tht u«tr tntert tht letter cf tht drive which contains tht precipitation data diskette in rtsponss to r ENTER THE LETTER OF THE DRIVE WHERE THE DEFAULT RAINFALL DATA SHOULD BE READ. (A, B, C OR D> Tht default precipitation data are arranged on the disk* by tht alphabttlcal order of the stair*. After loading the data, the model will function according to instruction* in the Uaer's Guide

C> RUNHELPO The progra* will function according to instruction* in tht U*tr'« Cuidt <1) and tht intern guide. To run tht HELP Bodtl using tht floppy di*ktttt drivt for *toring data for tht run, tht u*tr ahould fir*t inttrt a foraatttd disktttt into tht floppy disktttt drivt and changt tht dtfault drivt to tht floppy drivt (in »o*t ca*e« drivt A). Tht program will stort all data file* CONHELP 0 A: A> C:RUNHELPI The ustr »ust havt prtviou*ly copitd tht RUMHELPI prograt, onto tht hard disk and undtr tht HELP subdirectory vhtrt tht cotputtr can find tht progra*. whtn tht progras. a*k« tht u««r to tnttr a Ittttr of tht drivt vhtrt data should b* rtad, tht uttr should *ptcify C if tht data la on tht bard disk, or B if tht u*tr has anotbar floppy drivt and has; net copitd tba- syntbttie wtathtr eotffieitnt data or dtfauit prtcipitatioa data onto tht hard disk. Whtn tht ua«r is finiabtd tnttr ing clisatological and seU data, tht ustr •ay run tht taacutablt and output prograt by typing A> C:tU1fHELPO whilt ktvplng tht data disktttt in drivt A. Tht eodtl vill function according to tht instructions in tht Ustr's Cuidt (1) and tht attacbtd Xnttria Ustr't Guidt. RUNNING HELP VERSION 2 WITH TVO FLOPPY DISK DRIVES AMD MO HARD DISK Ii the user has a two floppy diskettes systes, place tht diskette labeled RUNHELPI.EXE into drive A, and enter tht command: r A> RUNHELPI After the computer ha* finished loading the acdule into aeaory and displayed the input pregraa ienu, remove the input diskette iroa drive A and inser* a blank formatted data diskette into driv* A. The HELP Itodel will then function according to tht instructions in tht User's Guide (1) and the attached Interi« User's Guidt. When the progra* requests the letter of the drive vhere data ihould be read, specify the letter of the espty floppy dii* drive (in «ost cases B) and insert the appropriate data diskette. This diskette »ili either be the synthetic weather coefficient diskette or a diskette containing default five-year precipitation data. When the user has finished entering clisatological, soil, and design data, insert the diskette labeled RUNHELPQ.EXE in drive B and type A> B:RUKHELPO The HELP flodel will function according to the instructions in the User's Guide (l). The RUNHELPI progras store* the data files for your rua (data files: DATA4, DATA?, DATA10, DATA11, and DATA13) on the default drive and the RUNHELPO progras reads these data files froe the default drive during execution. Therefore, it is very isportant that your data files be located on the default drive (the drive displayed in the prompt).

OBTAINING OUTPUT Output say be obtained by tvo scthods. First, the user say obtain printed output during execution by turning on the pover to his printer and then pressing siaultaneously Ctrl PrtSc (control print ). The second •ethod of obtaining output is by capturing the output in a data file. The progras will write the output in a data file of the uswr's choice. The user aust specify a data filt nas» in response to the following instruction: turn DATA FILI IAJJI rot OUTPUT. Fat IXAHPU: AtCASCl.OUT The prograe. vill either create a nev data file of the specified nae* or overwrite the output in the file if it already exists. REFERENCES 1. Schroeder, P. R. , J. H. Horgan, T. H. Valtki and A. C. Gibion. Hydroicci: Evaluation of Landfill Performance (HELP) Hodel: Voluae I. Uwr'f Guide for version 1. EPA/33C-SV-84-OC9, Hunicipal Environmental Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 1984. 2. Scnrceder, P. R. , A. C. Gibson, and H. D. Saolen. Hydrologic Evaluation of Landfill Performance (HELP) Hodei: Volume II. Documentation for Version 1. EPA/S30-SW-84-010, Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 1984. February 1988 Environmental Laboratory

Dear KELP Model User: I am enclosing a copy of Version 2 of the Hydrologie Evaluation of Landfill Performance (HELP) model and instruction* describing ho* to run tht model on an IBM compatible personal computer. I have also included a brief guide for users vho are fasiliar vith running HELP Version 1. The guide highlights the ma^or change* to Version 1 vhich have bttn incorporated into version 2. A cosplete user's guide, documentation and verification report is currently being prepared but probably vill not be available for release until the end of this year. For user inexperienced in running HELP Version 1, a user's guide and a documentation report that support both the mainframe and PC versions of Version 1 have been published by the USEPA; their respective numbers are EPA/330-SW-84-009 and EPA/330-SH-84-010. These reports are available from the National Technical Information Service (NTZS) and their RTIS accession numbers are respectively PM3-100-840 and PB83-100-832. Orders from NTI5 may be placed by calling (703) 487-4630. Tvo verification studies of the HELP model have been completed and published by the USEPA. The first is entitled 'Verification of the Lateral Drainage Component of the HELP Rodel Using Physical Models* and has a document number of EPA 600/2-87-049. The second is entitled 'Verification of the HELP Rodel Using Field Data* and has a document number of EPA 600/2- 87-030. Their KTXS accession ousters are PB87-227104 and PB67-227318, respectively. If you have any problem* running HELP Version 2, pleas* contact me at (601) 634-3709 -conwtrdtl or 542-3709 (FTS).

Sincerely,

Paul R. Schroeder, PhD, PE Research Civil Engineer Water Resources Engineering Group Encl as USER'S GUIDE FOR HELP VERSIOK 2 r FOR EXPERIENCED USERS

Introduction This guide is intended for users who are familiar with running HELP Version 1. This guide describes the major changes to HEL? Version 1 which have been incorporated into HELP Version 2. Complete details for running the aodel are not provided here.

ClimatQlooical Input In addition to the default and manual methods of entering rainfall data, *HELP Version 2 offers a synthetic method. The WGH model, a synthetic weather generator developed by the Agriculture Research Service, ha* been incorporated into the HEL* model. Th* synthetic weather generator produce, daily values of precipitation, minimum and maximum temperature, and solar radiation. Ver.ion 2 us*, th* synthetic v*ath*r g*n*rator to produce dally values of mean temperature and solar radiation regardle.. of the method of rainfall input. Input of data for the other climatological parameters has also undergone so** revisions.

Riinfall Th* rainfall data ent*r*d by *ith«r of th* thre* method* are stored in a data file named OATA4. In V*r.ion 1 th* rainfall data i. *tor*d in a data 111. named TA?E4. Th. format of both data filM are identical; the rainfall, value* ar* report** la inch** with two decimal place*. Old rainfall data filM built a* TA?E4 *«y be ueed in HBJ Tersion 2 by renaming th* file. DATA4. g**th»tia Qatioa. Du* to th* addition of th* synthetic weather aenerator Isilf cm* gaWat. daily rainfall far many citie. throughout th. country. Tn*> VQO model u*e* a fir«t-ord*r Hartow chain to generate the occurrence of wet or dry day.. Th. probability of rain on a given day l* condition** 00 th* w*t or dry .tatu. of th. pr.vio«. day. For w.t day. "lyl vith rainfall of 0.01 inch or -or.) a two paraa*t*r gamma distribution i. uMd to d.t*r.in. th* aaount of rainfall. WGO require four paraaet.r. to generate rainfall: the probability of a w.t day given that it wa. dry the pJJviou* day, th. probability of a w.t day giv*n that it wa. w.t on th. pr*viou* day, and a .hape and ecal. paraaet.r used in th. gam** attribution Each of th*s* four param*t.rs ar. constant for a given month but are yaried fro. month to month. The value, of the*, par.rn.ter. for each of the 139 cities listed in Table 1 are stored in a data fu. named 'APE- Tor PC users, a diskette containing these parameters is included vit-i »he" prsgra-. HEL? Veriion 2 can use up to twenty years of daily precipi-at--n value, in its simulation, but the synthetic rather generator can produce" .. ,any years of data as you like within the ^imitation of .,« y space to stsre the generated values. r •?«*• ^a

Default Cat;on. HELP Version 2 reads five-year daily data sets of precipitation ires data file TAPE3 instead of data file TAPE9. TAPE3 contains live-year precipitation data sets for each of the 102 cities lasted in Table 2; these are the SIM values available in Version 1. Un'ike TAPE9 of version 1. TAPES dees not contain mean monthly temperatures, ••an monthly insolation values, and leal area indices for fractional parts of the growing season because of the addition of the synthetic weather generator and a vegetative growth icdel 'containing or generating these values. Manual Potion. In the/ manual or user specified rainfall input option, a user may enter a nev set of precipitation data; add, delete, or replace years of data in an existing set of precipitation data; or edit dally values from an existing precipitation data set entered by any option. If the user modifies rainfall in any vay, the program vill compute nev daily temperatures and solar radiation values since rainfall influences these paramters. The user say enter or modify rainfall for any of the 184 cities listed in Table 3. The synthetic weather generator has routines to correct the rainfall and temperature values from these 184 cities to your actual site. The program can store up to tventy years of daily rainfall.

Cther Climatolooieal Parameters HELP Version 2 synthetically generates temperature and solar radiation, and handles input of maximum leaf area index and evaporative zone depth identically in the synthetic, manual, and default options. Users can edit the maximum leaf area index, and evaporative zone depth in the manual rainfall option. Winter cover factor and vegetation type are no longer entered. These data are stored in different data file and different formats than used in Version 1. Temperature and Solar Radiation. The VGE1 synthetic weather generator incorporated into HXL* V*r*loa 2 compute* dally value* of temperature and solar radiatioa. Rlcaardsoa (1561) describe* the procedure for generating dally maximum and siniswa temperature value* and mean solar radiatioa value*. Tb* VGOi model require* several statistical coefficient* describing the dirtritatloa of maximum and minimum temperature* and mean solar radiatioa. Value* of th*«* coefficients for each of the 1S4 cities listed in Table 3 are stored ia a data file named TAPE2. The WOT model a* applied in HEL? V*r*ioa 2 also require* the normal mean monthly temperatures to provide better predicted temperature value*. The** temperature* for the 184 cities are also stored ia TAFE2. For PC users, the data file is included on the diskette containing the rainfall generation parameters. The generated .daily temperatures and solar radiation values are a function of the rainfall and therefore the rainfall data must be entered and corrected a* desired before the final temperature and solar radiation value* eaa b* generated. Therefore, it is important to go through the manual climstological data input routine before running the simulation if the rainfall data was edited TABLE I- LISTING CF DEFAULT CITIES CONTAINING SYNTHETIC RAINFALL DATA

ALABARA IOWA NEVADA SOUTH DAKOTA BIRHINGHAR 3ES ROINES 'ELKO HURON R08ILE DUBUQUE LAS VEGAS RAPID CITY SCNTGGRERY KANSAS RENO TENNESSEE ARIZONA DODGE CITY WINNERUCCA CHATANQQGA FLAGSTAFF TOPEXA NEW HAMPSHIRE KNOXVILLE PHOENIX WICHITA CONCORD NASHVILLE Y'JRA KENTUCKY HT. WASHINGTON RERPHIS ARKANSAS COVINGTON HEW JERSEY TEXAS FORT SRITH LEXINGTON NEWARK ABILENE LITTLE ROCK LOUISVILLE NEV REXICO ARARILLO CALIFORNIA LOUISIANA ALBUQUERQUE AUSTIN 3AKERSFIELO BATON ROUGE ROSWELL BROWNSVILLE BLUE CANYON HEW ORLEANS HEW YORK CORPUS CHRISTI EUREKA SHREVEPORT ALBANY DALLAS FSESNO HAINE BUFFALO EL PASO ST. SHASTA CARIBOU HEW YORK GALVESTON SAN 01EGO PORTLAND SYRACUSE HOUSTON SAM FRANCISCO HARYLAND NORTH CAROLINA SAN ANTONIO COLORADO BALTIMORE ASHEVILLE TEHPLE COLORADO SPGS MASSACHUSETTS CHARLOTTE WACO DENVER BOSTON GREENSBORO UTAH GRAND JUNCTION NANTUCXET RALEIGH HILFORD PUEBLO RICHIGAN NORTH DAKOTA SALT LAKE CONNECTICUT DETtOIT BISHARCX VIRGINIA WINDSOR LOCKS GRAND RAPIDS WILLISTON NORFOLK DELAWARE RINNESOTA OHIO RICHROND WIU1INGTON DULUTH CLIVELAND WASHINGTON DIST. OF COLURBIA RINNEAPOLIS COLURBUS OLYHPIA WASHINGTON RISSISSIPPI TOLEDO SPOXANE FLORIDA JACKSON OKLAHORA STARPEDE PASS JACKSONVILLE RE1IDIAN OKLAHOHA CITY WALLA WALLA HI Art I RISSOURI TULSA YAKIRA TALLAHASSCE COLURBIA OREGON WEST VIRGINIA TARPA KANSAS CITY BURNS CHARLESTON GEORGIA ST. LOUIS REACHES WISCONSIN ATLANTA HONTAIA REPfOlO GREtN BAY AUGUSTA IXLLIlOS PEIDLCTOI LACROSSE RACON GltAT PALLS PORTLAND RADISON SAVAJOUI HA VU SALE! HILVAUXEX HAWAII SETT. SUHNIT WYOaiNC HONOLULU KALISPILL PENNSYLVANIA CHTYCNNE ID AND RILES CITY PHILADELPHIA PUOtTO RICO BOISE NEBRASKA pirrsiuiGi SA1 JUAN POCATELLO GRAND ISLAND RHODC ISLAND ILLINOIS norm pum PROVIDENCE CHICAGO SCOTTSBLUTT SOUTH CAROLIIA INDIANA CHARLESTON EYANSVILLC COLURBIA FORT VATNI INDIANAPOLIS TABL£,h.,,LIST:NC °F DEFAULT CITIES CONTAINING DEFAULT RAINFALI DA'A

ALASKA ILLINOIS NEVADA RHODE ISLAND ANNETTE CHICAGO ' ELY PROVIDENCE BETHEL E. ST. LOUIS LAS VEGAS FAIRBANKS SOUTH CAROLINA INDIANA NEW HAMPSHIRE CHARLESTON ARI23NA INDIANAPOLIS CONCORD FLAGSTAFF NASHUA SOUTH DAKOTA PHOENIX IOWA RAPID CITY TUCSOM DES HOINES NEV JERSEY EDISON TENNESSEE ARKANSAS KANSAS SEABROCK KNOXVILLE LITTLE ROCK DODGE CITY NASHVILLE TOPEXA NEV HEXICO CALIFORNIA ALBUQUERQUE TEXAS FRESNO KENTUCKY BROWNSVILLE LOS ANGELES LEXINGTON NEV YORK DALLAS SACRAHENTO CENTRAL PARK . EL PASO SAN OIEGO LOUISIANA ITHACA HIDLAND SANTA HARIA LAKE CHARLES NEV YORK CITY SAN ANTONIO NEV ORLEANS SCHEXECTADY COLORADO SHREVEPORT SYRACUSE UTAH DENVER CEDAR CITY GRAND JUNCTION HAIHE NORTH CAROLINA SALT LAKE CITY AUGUSTA GREEKS10RO CONNECTICUT BANCO! VERHONT BRIDGEPORT CARIBOU NORTH DAKOTA BURLINGTON HARTFORD PORTLAND BISHARCX flONTPELIER NEW HAVEN RUTLAND MASSACHUSETTS OHIO FLORIDA BOSTON CINCINNATI VIRGINIA JACKSONVILLE PUIWIELD CLEVELAND LYNCHBURG HIAHI WOICESTEJI COLUHBUS NORFOLK ORLANDO PUT-IK-B1Y TALLAHASSEE MICHIGAN WASHINGTON TAJIPA E. LANSINC OKLAHORA PULLBAN V. PALS BEACH SAULT STt. RARIE OKLANOBA CITY SEATTLE TULSA YAKIHA GEORGIA BIIMESOTA ATLANTA ST. CLOUD OREGON WISCONSIN WATIIBJTILLI ASTORIA RAOISOM RISSOUIZ HEDPORO HAWAII COLUB1IA PORTLAND WYOBING HOMOUJUI CHEYENNE HOITAJU PENNSYLVANIA UNDER IDAHO GLASGOW PHILADELPHIA BOISE GREAT PALLS PITTSBURGH PUERTO RICO POCATEILO SAN JUAN NEBRASKA GRAND ISLAND NORTH ORAHA TABLE 3. LISTING CF DEFAULT CITIES CONTAINING SYNTHETIC TTHPERATL'RE AND SOLAR RADIATION DATA

ALABAMA INDIANA MEBRASKA RHODE ISLAND 3I3HINGHAH EVANSVILLE GRAND ISLAND PROVIDENCE -C3ILE FORT WAYNE NORTH PLAITS SOUTH CAROLINA "CKT3CHERY INDIANAPOLIS ORAHA CHARLESTON ALASKA IOWA SCOTTSBLUFF COLUMBIA ANNETTE DES KOINES NEVADA SOUTH DAKOTA BETHEL DUBUQUE ELKO HURON FAIRBANKS KANSAS ELY RAPID CITY ARIZONA DODGE CITY LAS VEGAS TENNESSEE FLAGSTAFF TOPEKA RENO CHATANOOGA PHOENIX VICHITA WINNEHUCCA KNOXVILLE TUCSON KENTUCKY NEV HAHPSHIRE REJ1PKXS YUHA COVIM6TON CONCORD NASHVILLS ARKANSAS LrXINGTON HT. WASHINGTON TEXAS FORT SHITH LOUISVILLE NASHUA ABILENE LITTLE ROCX LOUISIANA NE¥ JERSEY AHARILLO CALIFORNIA BATON ROUGE EDISOH AUSTIN BAKERSFIELD LAKE CHARLES NEVARK BROWNSVILLE BLUE CANYON NEV ORLEANS SEABROOK CORPUS CHRISTI EUREKA SHRE7SPORT NEV flEXICO DALLAS LCS ANGELES 1AINE ALBUQUERQUE EL PASO FRESNO AUGUSTA ROSVEU. GALVESTON HT. SHASTA BANGO1 NEV YORK HOUSTON SACRAHENTO CARIIOU ALBANY HIDUND SAN DIEGO PORTLAND BUFFALO SAN ANTONIO SAN FRANCISCO HARYLAHD CENTRAL PARK TEHPLE SANTA NAftlA BALTIMORE ITHACA VACO COLORADO HASSACKUSETTS NEV YORK CITY UTAH COLORADO SPGS BOSTON SCHENECTAOY CEDAR CITY DENVER IANTUCXZT SYRACUSE HILFORD GRAND JUNCTION PUIMFICLD NORTH CAROLINA SALT LAKE CITY PUEBLO ASHSTILLC VEKRONT CONNECTICUT HXCRISAI CHARLOTTE BURLINGTON DCTtOIT GREZISMRO RONTPCLIER HARTTORO C. UISXRO RALEX61 RUTLAND NEV KAVtX OtAJD RAPIDS NORTH DAKOTA VIRGINIA WINDSOR LOCKS SAUL STt. HARIE BISRARCX LYNCHBURG DELAWARE HINHSOTA VILLISTOI BORPOU WIUIMT01 DULUT1 OHIO RXCHROND 01 ST. Of COLUH1IA BINUAWLIS CINCINNATI VAS8XNGTON WASHl ST. CLOUD CLEVELAND OLYHPIA FLORIDA BISSISSIPPI COLUHBUS PULLRAN JACKSON PUT-IN-BAY SUTTLl NIAHI TOLEDO SPOKANC ORLANDO RXSSOURX OKLAHORA STARPECE PASS TALLAHASSCI COLUHIXA OKLAHOHA CITY VALLA VALLA TAHPA KANSAS CITY TULSA YAKIHA w. PALH BEACH ST. LOUIS (Continued) TABLE 3. (Concluded) 3XXXXXXXX!

3EGRGIA HCNTANA OREGON ATLAHTA BILLIKGS ASTORIA VIRGINIA AUGUSTA GLASGOW CHARLESTON KACCN BURNS WISCONSIN GREAT FALLS REACHAH SAVANNAH HAVRE GREEK BAY NEDFORO LACROSSE WATXINSVILLE HELENA PENDLETON HAWAII KALISPEU. RADISON PORTLAND HILWAUKEE HONOLULU HILES CITY SALEM IDAHO *YOHING BOISE SETT. SUHHIT CHEYENNE POCATELLO PENNSYLVANIA LANDER PHILADELPHIA PUERTO RICO ILLINOIS PITTSBURGH CHICAGO SAN JUAN E. ST. LOUIS or created outside oi tht HELP Version 2 pro^raa. Tht statistical cotfficients and normal mean monthly ttmptraturts for tht stltcttd city irt ttortd in a data filt namtd DATA11. The daily temptraturt and dally toiar radiation valuts art stored respectively in data files named DATA? and DATA13. Area Indicia. HELP Version 2 requires a maximum leaf area indtx for the location to compute daily leaf area indicts by a vegetative growth aodel incorporated in Version 2. Tht vegttativt growth model ustd »»• extracted froa tht SWRRB (A Simulator for Wattr Rtsourcts in Rural Basins) nodtl dtvtloptd by tht Agriculture Research Servict. Tht daily Itaf area indicts during tht growing stason art cosputtd during extcution and considering ttiptraturt and wattr strtss btsidts tht saxisus leaf arta indtx and tht btginning and tnding datts of tht growing stason (planting and harvtsting datts). Tht«s valuts art also stort^ ia data filt TAPE2 with the temperature and solar radiation parastttrs and coefficients. Tht valuts of naxiMut Itaf arta indtx and growing stason datts for tht stltcttd city are stored in data filt OATA11. Tht same valut of saxisus Itaf artt Indtx is ustd for each year of tht simulation. Tht proijrat prospts for tht aaxisus leaf arta indtx by displaying typical valuts for difftrtnt levels of vegetative cover likely to bt achieved with tht level of management of tht landfill (such as, ftrtllization, soil quality, wattring, set ding, etc.). For example, ENTER THE HAXIHUH LEAF AREA INDEX. TYPICAL VALUES ARE: 0.0 FOR BARE GROUND 1.0 FOR POOR GRASS 2.0 FOR FAIR GRASS 3.3 FOR GOOD GRASS S.O FOR EXCELLENT GRASS "These valuts art somewhat hightr than recommended ia Version 1. Svaaorattvt 2ont Death. HELP Version 2 prompts the user to tnttr an evaporative zone depth by displaying typical value* for the location based on the vegetative cover type. For txampit, ENTEt THE EVAPORATIVE ZOIC DEPTH IN INCHES. TTfXCAL VALUES FOt PHILADELPHIA PEHSTLTAIXA ARC: 9 II. POt U*I GROUND 21 XI. FOB PAXI GXASS •ja ii. rot nciLLorr GRASS The typical tvaporativt zone depths shown art stortd in data file TAPE2 for tach of tht 184, citie* listed in Table 3. Tht stlected evaporative zone depth is stortd in data file DATA11. Soil and De«ion Data Input Several change* were al*o included in the «oil and deeign data input for HELP Ver*ion 2. The principal change*" art presented below. The tore significant change* are a revi**d **t of default toll characteristic*. the optisn of epecifyino: the initial *oi«tur* content of all layer* except the liners, new clas*lf ication of layer type*, an increa** in the nueoer of layers permitted, and the elimination of the input of an evaporation coefficient. The toll and de*ign data are stored in a data file naaed DATA10; it* foraat 1* different fro* the data file u*ed in Ver*ion 1.

Ir.itial Soil water HELP Version 2 allow* th* u**r th* option of entering the initial acil »ater content of all layer* except liner* or having th* progra* calculate the initial *oil »at*r content*. If th* progra* initialize* th* *oil vater, the prograa assign* th* •*•• *cil *ci*tur* value* u*ed in Version 1 and then run* on* year of simulation using th* fir*t year of cliaatological data *.o initialize the soil *ater. Th* progra* then start* th* simulation using "the first year of cinatological data again to determine vater balance cc«ponents. The -odel doe* not repeat th* first year of calculation* if the user specifies tn» initial soil »ater. Th* initialization option is provided by the following question.

DO YOU WANT THE FROGRAfl TO IHITIALI2Z THE SOIL WATER COMTENT FOR EACH LAYER? IF YOU AHSVEI MO, YOU WILL BE ASKED TO ENTER THE S8IL WATER COHTEHT FOR EACH LAYER. ENTER YES CR NO.

of Layers HELP Version 2 allow*; a total of 12 layer* and 4 barrier soil liner* instead of 9 and 3, r*«p*ctiv*ly, in HELP Ver*ion 1. Th* progra* print* this e.*«*ag* concerning l«y*r«. THREE TYPES OF UTCIS RAT 1C USED II THE DCSXGM: VE1TIC1L PEXCOUTXOI. UTTXAi DRAIMACX, AMD lAUIEl SOIL LIHCt. A urn or RCOCXATT TO HIGH PCTntAiiLirr RATEIXAL WITHOUT DIA IMAGE COLUCTTOM SYSTEHS IS CUSSXFXEO AS A TtlTICAL POCOUTIOI LAYER. A LATER PEMITTIMO LATERAL DRAINAGE TO COLLCCTXOI STSTEXS OX PERXHETER DRAINS IS CLASSIFIED AS A LATERAL DRAINAGE LA YES. VERTICAL DRAINAGE AND LATERAL DRAINAGE IOTX OCCUR II A LATERAL DlA IMAGE LAYER. A LAYER OF MATERIAL DESIGNED TO INHIIXT PEXCOUTIOt IS CLASSIFIED AS A BARRIER SOIL LIMEX. IN ADDITION, A LAYEX OX A PAXT OF A LAYER OF HATERIAL COVERED §Y A FLEXIBLE REBBRANC LIIEX IS CLASSIFIED AS A BARRIER SOIL LINEX WITH A FLEXIBLE RERBXANE LIXEX. ii>* RULES 11*1 1. THE TCP LAYER CANNOT BE A BARRIER SOIL LINER 2. A BARRIER SOIL LINER HAY HOT BE AOJACEKT TO ANOTHER SOIL 2. AA LATERAVERTICAL L DRAINAGPERCOLATIOE LAYERN LAYE. R HA'Y NOT BE PLACED DIRECTuittua?Y

ENTi3 THE NURBER CF LAYERS IN YOUR DESIGN. rCU ^AY USE UP TO 12 LAYERS AND UP TO 4 BARRIER SOIL LZNESS.

'.aver Types

HELP version 2 uses four layer types which describes the ianntr in th.v function as described above. The layer type called WASTE in Version 1 « a' ' not used in version 2. Tht laytr types tre numbered as described in the program as follow*:

ENTER THE LAYER TYPE FOR LAYER 1. ENTER 1 FOR A VERTICAL PERCOLATION LAYER-. 2 FOR A LATERAL DRAINAGE UYER, 3 FOR A BARRIER SOIL LINER, AND 4 FOR A BARRIES SOIL LINER VITH A FLEXIBLE HEHBRANE LINER.

Default Soli

HELP V»r«ion 2 u««t a r»vi»»d s«t oi default toil characttristics ba*«d on a »ort •xttn«iv» r»c»ntly published d»«crtption of toil characteristics that also provided inforaation on parameters required for the nev unsaturated hydraulic conductivity relationship used in this version. Table 4 lists the default soil types and characteristics used in HEL? Version 2. The default runoff curve nu»ber relationship for calculating the curve nuiber as a function of the soil type and vegetation level has also been updated.

Execution Chanoea In Modeling Hany ehamgea) have bwa a«de to the execution of the HEL? sodel in version 2; MS* have already been Mentioned. The prograe nev use* synthetically derived dally temperatures and solar radiation value* in the calculation oi anovawlt and evapotraaspiration instead of interpolated temperature* based on aeaa moethly temperature*. The snovmelt routine is virtually identical to the previous routine except that the base teaperature for snovmelt to start to occur has been lowered to account for the difference between daily maximua teaperature and daily average temperature. Use of synthetical!/ derived temperatures greatly improves snov accumulation, runoff, and infiltration during the vinter aoatha for colder regions. Daily solar radiation values improves daily predictions of fvspotrapspiratlon. TABLE 4. :E-AULT UNVEGETATED, UHCOHPACTED SOIL CHARACTERISTICS aaaaaisiaaaaaaiaaxsaia taata aaa aax a a a •

SOIL TEXTURE FIELD WILTING SAT. HYD. POROSITY CAPACITY POINT USDA CONDUCTIVITY HELP uses (VCL/VQL) (VOL/VOL) (VQL/VQL) (CH/SEC) 1 CcS cs 0.417 -i 0.045 0.018 l.OE-02 4. S sw 0.437 0.062 O.C24 FS 2.8E-03 1 S?1 0. 437 0.083 0.033 3. IE-03 4 LS SB 0.437 0. 103 0.047 1.7E-03 3 LFS SH 0. 437 0. 131 0.038 l.OE-03 6 SL sn 0.453 0. 190 0.085 7.2E-04 7 FSL SH 0.473 0.222 0.104 3. 2E-04 8 L fIL 0.463 0.232 0.116 3.7E-04 9 SiL HL 0.501 0.284 0.135 1.9E-04 10 SCL SC 0.398 0.244 0.136 1.2E-04 11 CL CL 0.464 0.310 0.187 6. 4E-OS 12 SiCL CL 0.471 0.342 0.210 4.2E-OS 13 sc CH 0.430 0.321 0.221 3. 3E-05 14 SiC CH 0.479 0.371 0.251 2.3E-05 13 C CH 0.475 0.378 0.265 1.7E-05 16 Lintr Soil 0.430 0.366 0.280 l.OE-07 17 Lin»r Soil 0.400 0.356 0.290 l.OE-08 18 Hun. i(act* 0.520 0.294 0.140 2. OE-04 19 USER SPECIFIED SOIL CHARACTERISTICS 20 USER SPECIFIED SOIL CHARACTERISTICS

:taaxaaaaaaaaaaaaaaaaaaaaaaaiaiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

10 • ••• RULES MM 1. THE TOP LAYER CAMHOT BE A BARRIER SOIL LINER. 2. A BARRIER SOIL LINER HAY MOT BE AOJACEXT TO ANOTHER SOIL LINER 3. A VERTICAL PERCOLATION LAYER BAY MOT BE PLACED DIRECTLY BELOW A LATERAL DRAINAGE LAYER. ENTER THE NUHBER OF LAYERS IM YOUR DESIGN. YOU MAY USE UP TO 12 LAYERS AMD UP TO 4 BAXRIER SOIL LINERS.

HELP Vtrtion 2 uses four laytr types which describes the tanner in they function as described above. The laytr type called WASTE IB Version i n not used in Vtrsion 2. Tht laytr types art numbered u dtscribtd in tht program as follows: ENTER THE LAYER TYPE FOR LAYER 1. ENTER 1 FOR A VERTICAL PERCOLATION LAYER, 2 FOR A LATERAL DRAINAGE LAYIR, 3 FOR A BARRIER SOIL LIMES, AND 4 FOR A BAJtRXEl SOIL LINE* VXTH A FLEXIBLE RERBRANC LINER.

Dtfnult Soil Tvoem HELP v»rsion 2 usts a revised «tt of dtfault soil characttristics bastd on a Bort txttnsivt rtctntly puollshtd description of sell characteristics that also provided iniormtion on partMttrs required for the new unsaturated hydraulic conductivity relationship used in this version. Table 4 lists the default soil types and characteristics used in HELP Version 2. The default runoff curve number relationship for calculating the curve number as a function of the soil type and vegetation level has also been updated.

Execution

Changes ii nany efcs S«B» have already been aentioned. Tne prograa no* uavs synthetically derived daily temperatures and solar radiation value* in the calculation of snovmelt and evapotranspiration instead of interpolated tt«perature« based on Man monthly temperature*. The snovmelt routine is virtually identical to the previous routine except that the base temperature for snovmelt to start to occur has been lowered to account for the difference between dally taximum temperature and daily average temperature. Use of synthetically derived temperatures greatly improve* snov accumulation, runoff, and infiltration during the winter months for colder rtgionm. Daily solar radiation values improves daily predictions of vvapotrinspiration. TABLE 4 DEFAULT UXVEGETATED, UMCOHPACTED SOIL aaaaxaaaaiaaaaaaa>*>aaaaaaa«aia»..._____ -•-»*

SOIL TEXTURE HELD SAT. HYD. HELP POROSITY CAPACITY POIKT USDf USCS (VOL/VQL) (VOL/VOL) (VQ^/VQ] COHDUCTIVITY 1 CoS OS 2 0.417 0.043 0.018 s sw 0. 437 0. 062 0. 024 l.OE-02 3 FS SH 3.8E-03 4 0. 437 0. M3 0. 033 LS Sfl 0.437 0.103 0.047 3. IE-03 3 LFS SH 1.7E-03 6 0.437 0.131 0. OM SL SH 0. 433 0. 190 0. 043 i.OC-03 7 FSL SH 7.2E-04 8 0.473 0.222 0.104 L HL 0.463 0.232 0.116 3. 2E-04 9 SiL HL 0. 301 0. 244 0. 133 3. 7E-04 10 SCL SC 0. 396 0. 244 0. 136 1.9E-04 11 CL CL 0. 464 0. 310 0. 187 i.2E-04 12 SiCL CL 6. 4E-05 13 0. 471 0. 342 0. 210 SC CH 0. 430 0. 321 0. 221 4.2E-03 14 SIC CR 0.479 0.371 0.233. 3E-01 3 13 C CM 2. 3E-03 IS 0. 473 0. 376 0. 263 Llntr Soil 0. 430 0. 366 0. 280 1. 7E-02 17 Liner Soil l.OE-07 ia 0. 400 0. 336 0. 290 nun. v«*t« 0.320 0.294 0.140 i.oE-oa 19 USD* 2.0E-04 20 SPECIFIED SOIL CHAJUCTE1ISTICS USER SPECIFIED SOIL OUJUCTUISTICS

i a aa a a t a. a aa a i i a a a a a a i

10 Evapotranspiration modeling has also been modified in several other small ways while still using the same aethcds as before. The surface evaporation routine has been changed to compute the evaporation as a function of plant interception and accumulated mow. The albedo is now alto corrected for mow accumulation. Plant transpiration and soil evaporation are functions of the quantity of live and decaying vegetation. Version 1 J3ed typical leaf area Indices and winter cover factors to describe the vegetation while Version 2 uses a vegetative growth and decay model to compute plant biomass and leaf area indices as a function of the specified vegetative condition, solar radiation, temperature and moisture. Drainage calculations in Version 2 has been changed in several manners. L'p.saturated hydraulic conductivity, is now modeled as a function of soil moisture by a form of the Brooks-Corey equation which relates unsaturated hydraulic conductivity to a dimensionless soil moisture raised to a power. The lateral drainage equation was changed to permit use of drainage lengths up to 2COO feet and slopes up to 30 percent, while using the same theory as :n Version 1. The vertical drainage routine was also modified to look ahead at the hydraulic conductivity of tht layer below to determine whether it was able to accept the drainage; therefore, free drainage is no longer required for vertical percolation layers. This permits the use of layers of lower hydraulic conductivity, other than just barrier soil liners, below a vertical percolation layer or a lateral drainage layer.

Cutout In the summary output, HELP Version 2 gives average monthly and annual standard deviations in addition to the monthly and annual means. Honthly and annual totals are printed identically to Version 1 except that their labels have been clarified to state which layers are discharging the lateral drainage and vertical percolation. The monthly output also lists mean monthly heads and monthly standard deviations of daily heads. Daily output, «nen there is two or less soil subprofiles (barrier soil liners), is identical in for* te Version 1. When thrt« or four subprofiies are used in the landfill design, the model allows the user to select up to six variables of either head on any of tht barrier soil liners, lateral drainage from any of the lateral drainagt layer* directly above barrier soil liners, or vertical percolation through any of the barrier soil liners.

Computing The> computing tia* required to run a year of simulation with Version 2 is about 2 to 3 tisst as large as with Version 1. The incrsass in time* requirements resulted primarily from three improvements in tht HELP model: use of an iterative to solve th* highly nonlinear relationship between soil moisture and unsaturated hydraulic conductivity, ust of an iterative solution to solve tht nt» nonlinear lateral drainagt equation that greatly extends tht applicability of tht equation, and inclusion of a vegetative growth model to compute both decaying plant density and actively transpiring plant density as a function of temperature and soil temptrature. A typical cover design with a lateral drainage layer takes about 6 minutes per year.of simulation using a XT-type personal computer and about 2 minutes per year using a AT-type cosputer. A complete landfill titn , cavtr an- , doubit liner requires about 10 ainutes and 4 ainutes per /ear of simulation respectively using a XT and AT computers with iath coprocessors.

Data rile* HELP Version 2 uses nine data files. Data files which are permanent and do net rhangt during tach run ar» identified with th» prefix TAPE Data filei .hich are created by the HELP »odtl during data input and u«ed during execution are identified vith the prefix DATA. The«e file* contain the cliaatological, toil and design parameters for a particular filiation Th* device number on which the progra* opens each data file, the file naae, and contents of each file are given in Table S.

TABLX 3. Data filet used in HEL? Version 2.

Device Ho. Data File Haae Contents 1 TAPE1 Alpha and Beta coefficients for generating rainfall for 139 cities. TAPE2 Temperature and radiation coefficients, rainfall probabilities, saxiiua leaf area index, planting and harvesting dates for 184 cities. TAPE3 five-year daily precipitation data sets for 102 cities. DATA4 Daily precipitation in inches for user specified city. OATA7 Average daily values of temperature in degrees F. for user specified city.

8 User- Output fro* HELP «odel simulation.

10 DATA10 Soil design data.

11 DATA11 Coefficients from TAPE2 for user specified city.

DATA13 Daily values of solar radiation in langleys for user specified city.

12 BIBLIOGRAPHY

Arnold, J. G. , J. R. Williams, and A. D. Hicks. SWRRB, A Simulator for Water Resources In Rural Basins. Agricultural Rtiearcn Service, USDA, iges. Brcoxs, R. H. , and A. T. Corty. Hydraulic Properties of Porous nedia. Hydrology Paper Ho. 3, Colorado State University, 1964. .27pp. Campbell, G. S. A Simple Bethod for Determining Unsaturated Hydraulic Conductivity from Hoisture Retention Data. Soil Science, Vol. n?, HO. 6 1974. pp. 311-314. Horton, R. E. Rainfall Inttrctption. Monthly Weather Reviev, U.S. weather Burtau, Vol. 47, Ho. 9, 1919. pp. 603-623. Knisel, W. J. , Jr. , Editor. CREAHS, A Fit Id Seal* Hodel for Chemical Runoff and Erosion from Agricultural Hanagement Systems. Vols. I, II, and III, Draft Copy, USDA-SEA, AR, Cons. R»s. Report 24, 1980. 643 pp. Ravls, W. J., D. L. Brakcnaitlc, and K. E. Saxton. Estimation of Soil Wattr Properties. Transactions of the American Society of Civil Engineers, 1982. pp. 1316-1320. Richardson, C. w. , and D. A. Wright. VGEX: A Hedel for Generating Daily Weather Variables. ARS-8, Agricultural Research Service, USDA, 1984. 83pp. Richardson, C. V. Stochastic Simulation of Daily Precipitation, Tenperature, and Solar Radiation. Water Resources Research, Vol. 17, No. 1, 1981. pp. 182-190. Ritchie, J. T. A Hodel for Predicting Evaporation fro* a Rov Crop vith Incomplete Cover. Water Resources Research, Vol. 8, No. S, 1972. pp. 1204-1213. Schroeder, P. R. , A. C. Gibson, and B. 0. Seolen. Hydroiogic Evaluation of Landfill Perforsamce (HELP) Bodel: Voluaw II. Documentation for Version 1. EPA/230-SV-f4-010, U.S. Enviroamental Protection Agency, Cincinnati, OH, June, 1944. pp. 234. Schroeder, P. R. , J. R. Horgan, T. H. Valski, and A. C. Gibson. Hydro- logic evaluation of Landfill Performance (HELP) Hodel: Volume I. User's Quids tor Version 1. CFA/930-SV-84-009, U.S. Environmental Protection Agency, Cincinnati, OH, June, 1904. pp. 120. Schroeder, P. R. , and R. L. Peyton. Verification of the Hydraulic Evaluation of Landfill Performance (HELP) dodel Using Field Data. EPA 600/2-67-050, U.S. Environmental Protection Agency, Cincinnati, OH, 1987. pp. 163. Schroeder, P. R. , and R. L. Peyton. Verification of the Lateral Drainage Component of the HELP Hodel using Physical Hodels. fPA 600/2-87-049, U.S. Environmental Protection Agency, Cincinnati, OH, 1987. pp. 117. USDA, Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology. U.S. Government Printing Office, Washington, D.C. , 1972.

13 PB-85-1008AO PB-85-100832

TECHNICAL RESOURCE DOCUMENT JUNE 198A

THE arUtOLOCIC ZVAUtTXOM OF UHWXU. FOJOBUJCZ CHIL?) 2COB.

9,0* Volume I. U»er'« Guide for Version 1 (E?A/530-SV-8i-009 ) o o and £S Volume II. Documentation for Version'1 (E?A/53G-SV-s--0'.C^

oo P. i. Sctiro«d«r, J. H. MDrfaa, I. tL. ««l»kl. «ad ^. C. dbeon £^> U.S. Ar«y £afia*«r W*t«r«»7« Ezp«riant Station , 20 39130

uo oe

uU^j «3 e> , • «I X 0.0 Ul 10 « . JwS «»H» 2 °* 52 Project o«fic«r A • i O Ml • 3 S* "^ B. C. te»i c -2 o «/» Solid «ad Haxardoua H»«te l«s««rch e •*«.*- ilclp«l EanxoaMaiAl la*«Arch Laboratory ^ c 5 S r Cincinnati. 01 43261 w. < O-3 X

— •• —<• IA •e» —w ••* eoc 3 ^O o3 .«c 9e> • .. f«rif Uu U• f3 ^x

e 3 •• o __ u o" 2» 1^ £ MOMtCXPAL OnrHOHKEVT^L (LCSEAJtCS LABOIATOIT <« e o. - OFTIC^OF USZAXCS AJfD DTTtLOPMDlT «""*"" §• x U.S. EBTSOWDTIAL PKUT2LT10H AGC2CT -j— "» § cncanu.il. OH 4526* . T9 U >->

OFTICZ OF SOLID WA5TS A2TO EHZKZHTT R2SFOHSZ U.S. £2IVI10»tZ3tAL PROTXCTXON XCCCT ', X 20460 fvJLEMUBJ

tal Protaction Agaacy ma eraatad bacaaa* of iacraas eoacan about tha daagars of pollution CD tha aad v«Lfars ef tha aaarlcaa paopla. Boxlous air, foul vatar, aad spoil ad land ara tragic tastiaony to tha datarioratiott ef oar aa tarsi anrlromaat. Tha Aty of tha aariroawat aad tha IntarpLty batvaaa it* coarponant* raqulrt a concaatratad aad tatagratad attack on tha problam. Baaaareh aad davilnpaant la tha first aacaaaary stap la problam solution; it iirrolTaa

7. MAID Dlractor ] fixriroiiBMBtal Baaaareh Laboratory

ill Subtitle C of tha laaonrea Coaaarotlon aad Raca«r«ry Act (KOLA.) raquiraa tha garlrm«ri:il Protection Afaacy (ZPA) to aatabllah a Fadaral haxardoua mata aan igaawnt profraa. This prograa mat anaura chat haardooa oastaa arc band lad aaf aly from caaaraden until **"•! dlapoaitioa. EML iaaaad a aarlaa of haxardoua wata rafulatloaa oadar Sabdtla C of tCSA that ia pabLLshad la 40 Coda of Padaral Eayolatlona (OTL) 260 throngo 265 and 122 tbronfh 124. Part* 264 and 262 of 40 71 contain standard* applicable to owiara and oparatora of all far-tl 1 fl aa that traat, atora, or dlapoaa of haxardooa vaataa. ttaataa ar« Idantlflad or liaxad aa haxardooa oadar 40 CFl Pare 261. Tha .Part 264 •tandarda ara Japlaaaatad throcgh pa^^ta laanad by aothortJtad axataa or tha EPA la . accordanca with 40 OFT Part L22 aad Part 124 racniatiotta. Land traamaut, atora«a, aad dlapoaal (LTS9) rafvlatlova in 40 C71 Part 264 laaaad on July 26, 1982* aatabllah parfoiBanea standarda for haxardoos «aata land- filla, autfaca lapoondaantJ, Land craamaat aalta. aad lavata pllaa. Tha BaiTlrowaBtal Protactlon afaaey la aaval0»lof tbraa typaa of docn- aanta far praparara aad ranawara of paxmlt apalieatioaa for haxardooa mata LTSD faellltlaa. Tbaaa typaa laeluda BOA tachmieal Guidaaea Docoa*anta, Parmlt Coldanca Mamiala, aad Tachnlcal ftaaovrca Dnnaianta (TSD'i). Tha 2CUL Taehnlcal Goldanea Dooaaaata praaaet daala* aad opvratlaf apaelfleatlona or daalgn evaluation rarhnlqnaa that faaarally'caaady «lth or damonatraca coapll - anea «lth tha Oaalgn aad Oparatlnf iaqulr«B*aca aad tha Cloaara and Poat- Qoaura Saqulra»ant» of Part 264. Tha Patmit CnUaac* Manuals ara balag davalop«d to daacrlba tha paralt application lafvtvatloa tha Afaaey aaaka and to prorida gvldaaca to applicant* aad paaac vrttara la addraaaiaf tha lafor- •atloa raqulraaaata. Thaaa -MMaT* will laciad* a alacaaalon of aaeh stap ia tha paralttlaf proeaaa, aad a daacrlpti0a of aaca aat of specific a tlona that be coaaldarad far iacioaloa ia tha aaraftt.

tacbaoloflaa aad vraloatlon taehnlqovs aatataoaad *j tha agaacy to eooatimta good aaciaaarlat daaicas), praetlcaa, aad procadaraa. Thay support tha 8CBJL Tacbaical Goidaaea DocTaanta aad Paralt Oaldaaca Haamala ia eartaia araaa (l.a., linars, laachata aanagamant, cleanra eor«rs. vatar balanea) by daacrlb- iag currant tacbaoloflaa and aathoda for da sign lag haaardoua vaata facllitlaa or for araloatiai tha parforaaaea of a facility daaiaa. Althoofh anphaala is givaa to haxardooa waata facilitiaa, cba iaforaacion peasant ad is thaaa TED's may ba uaad in 4»«lr»"*Ht and oparatlng aao-oa^rdaaa vasta LISD facilitiaa as vail. Wharaaa tha SCSa, Tachnical Guldanca Dooaaats aad Paralt Gaidanca Manuals ara dlractly ralatad to tha ragulatlona. cha laforaatlon la thaaa

iv T2D'a covers « broader perspective and should not be used to interpret the requlreosnts of the regulations.

This document L* a first edition draft balng sad* available for public review aad eoawaat. It haa undergone review by recognized experts la the techolral areas covered, bot agency peer review proceealaf ba« not been corn- plated vet. Public coe»ent lj dealred on the accuracy aad uaefulaeac of the preeeated la thlj •aanal. Coa*eata received will be evaluated. aad »utseati0n* foe laprove«ent will be Incorporated, wherever feasible, before publication of the second edition. CososBalcatlons should be addressed to Docjcat dark, BOOB S-269(c), Office of Solid 9**ts (VB-562), U.S. Zsvlron- tal PTOVC-I-JP agency, 401 H Street, S.U., Baahlagton, D.C., 20460. under discussion should be identified by title aad aoaber (e.g., "Solid Haste Leaching Procedure Bsasal, SET ") . ABSTRACT

Tha Eydrologic Braloation of Tra*"jf"fl'1 Performance (H&?) prograai developed to Irtilitata rapid, economical estimation of the amounts of surface nmoff, subsurface drainage, aad l*«ebata that m«7 ba «xp«ct«d to rasult firoa tb» operation of a «ld« rarlaty of pocalbl* Landfill daai^na. lha profr^ nr^^lt the «ffacts of bydroloflc proeasa«j laclodlac pracipitation, mrfaca stocaga, runoff, lafiltratlon, percolation, crapotranapiratlou, aoil aolstur* storaga, and lataral dzalaag* oaiag a quaai-cwo-^laaaalooal approach.. la this doooM&t, aoaM bade ai«aant» of th* aodal art hrlafly da«crlb«d,. laput/output option* ara dlaeuaaad la detail, aad instruction* for rooalnf the program on tha National Computar Can tar IBM Coapntar Sfstam ara f±raa. TMff raport IBU -aotelttad in partial fiilfinaant of Tntaragancy agraaaaat Ihaabar *>^6-F-2-al40 bacwen tha U.S. &rrtronaant*l Fr of action Agancy aad tha U.S. Aray Englaaer Uatar*«7« Experiment Station. Thi* report cover* a period from April 1982 to August 1983, and work ma coBplatad aa of August 1983. QJH1JJII5

Prtfac* ...... IT Abccricc ...... TI FlffUTM ...... Till Tabl«« ...... Till

1. Introduction ...... 1 2. &uic Landfill* D*sipi Concept* ...... 3 3. Profr*» Definition*, Option* and Laatrlction* ...... 7 Introduction ...... 7 Brdrolofie ?roc*s*«« ...... 7 D«ta> l»qnir«Mata ...... 8 4» Profraa Inpat ...... 18 ftalM ...... 20 Or«r*U ProfT« Control (1. 1UIV) ...... 21 *t* (2. TXTlATi) ...... 22 D*t* (3. HmAT*) ...... 24 Soil 0«sa (4. DSBA2JL) ...... 26 M«rmiT Soil D«c*. (5. USDAZJL) ...... 31 Sit« DttscrlpeloB (6. SITZ) ...... 35 Ch«rsctftrlJCic* of Op«& SIUM (7. am) ...... 36 CUaaeolofic D«u became Ulnfall (8. tOSLTl) . . 36 PraeipltAtlon D«u (9. FffTiT) ...... 43 (10. SDdD ...... 45 Slaalatlon Oocpot Control (11. ITaPUJ ...... 47 ...... 48 5 . Piu^nH fticpoc ...... 50 6. EzMplM ...... 53 laf«rcac*« ...... 103 ...... 104 A.. Sc«p« to Log On od Off HCC ...... 104 1. SCC-ACCMC 8uab«ra «nd T«t»laal Id«acifi«r« ...... 107 C. Co«t Aa*lyalj for cha HCC Tlaw-So«nA« Option ...... 120

Til FICTTIKS

Buab«r Paga 1 Typical hazardous vast a i«»<*-n 1 profil* ...... 5 2 Typical Landfill profile ...... 12

3 &alacion«hlp b«r*a«n SCS eorv« mab«r aad •^n-lima, infilcraclon ratio (SDL) for rarioua T«f«cac±r« eorars ...... 17 4 Balacianaoip avonf typ«« of iapoc ...... 19

TABT.F5

Pag< of D*fanlc CiciM and S&atM ...... 9 2 Default Soil CharactarSjcicJ ...... 15

riii ncuRzs ifaaber . 1 Typical hazardous mste >«*<«-n i profile ...... 3 2 • B*1 Jy1 Mi^mp between runoff, precipitation, and retention ...... S SCS raiafall-nmoff relation aormallzad oa retention pamatar S ...... 10

SCS iaf lltrmtlott rata (HIZ) for. variooa ...... \ ...... 13 Error ia lateral drainage computation aa a fnnci of istarral period and h*ad ...... 29 6 fittant of aonlinaarlt7 la dralnaffa currma ...... 30 7 G*naral relation becinan aoil-watar, aoil taartore, aad trfdranlig condttctlrlty ...... 37 Pate Constants Used is HZL? Modal ...... 33 Sell Variables for Default Soil Data Input ...... 34 diaatolofie Characteristics for Default Input ...... 33 Typical L«af Area Index Distribution* for Various Ve^etatire Covers ...... 38 5 Manual Cllawtolofic Input ...... ^. .... 41 6 Listing of Default Cities aad States ...... 42 7 Default dloatolofic Input Variables ...... 43 3 **iit«*I Soil Characteristics Input ...... 43 9 Default Soil Characteristics Input ...... 45 10 Default Soil Characteristics ...... 46 11 Design Data Input ...... 47 12 Daily Output Veriables ...... 4J 13 Output of Monthly Totals ...... 20 14 Output of Annual Totals ...... 51 15 Output of averafe TaloaM ...... 54 16 Output of Peak Dally Values ...... 57 17 Data Tiles and Device Jfaatbers ...... 60 13 Job Control Cards ...... 63 The •ochera «culd Ilk* to tacpr*M th«ir linear* appreciation to Mrs. Qj«rrl Lloyd, Mr. Thoaaj E. Sch«* to «rpra*a th«ir sincara appreciation to Mrs. Ch«ryl Lloyd and Mr. Thou* E. Sch**f«r, Jr. of th« EsvirotMcntAl lagi- n««ria( DiTljion. U.S. Azay Enfln**r Watarway* Izp«ria>nt Station, for their contributions to th« d«r*lop«ant of this uaar's guida. szcrxoB i

urtKi.muwu.ua

The Hyc*?"ligic Evaluation of t^^^^-f n Performance CHT1?) computer program lj A quaai-cvo-diaensional bydrologic model of water movement acroaa, into, through, aad ous of landfill*. Tha modal accepts climatologic, soil, and design data and utilizes a solution technique that account* for tha efface* of surface storage, runoff, infiltration, percolation, evapotraaapiratioa, aoil moisture storage, and Lataral drainage. T^^-M-M ry«tarns *-*rituH*i varioua of vegetation, cover soilj, vaata calls, special drainage layer*, aad ralatiTaly Isparaaabla barriar aoila, aa wall aa ayachatic •aafaraaa co^rars and lisars, may b« •cxialad. Tba program waa danralapad Co facilitata rapid •atiaation of tha nnimri of runoff, dratnaga, aad laacn«ta chat say ba azp«ctad to raault from tna op«r»eioa of a vida rariaty of lf«»**flll daaigna. Iha modal, applicabla eo op«n, partially cloaad, aad fully cloaad aicaa, is a tool for both daaignar» aad paxmit vritars.

Tha ^TPT? program vaa davalopad by tha U.S. Iray Corpa of Enginaars Watar- vays Ezpariaant Station (WES), Viduburg, SS, for tha U.S. Environmental ?ro- taction igancy (Z?X) M"V.«**i>*i .WaviTmmmnrai &«a«arch Laboratory, Cincinnati, OH, in raaponaa to na«da idantifiad by tha EP1 Offica of Solid Waata, Waahing- toa., DC. rapraaaata a major adranca bayoad tha Eydrolofic Simulation on Solid Baata Oiapeaal Sitaa (2SSTOS) program (1, 2) which vaa aljo daralop«d at BIS. For azampla. tha HSSTOS modal did not allow for Lataral flow through draiaaga um T mmmf^ t ^^adlmd aacsratad vaxrical flow only la a vy rQdivantary manaar , •*»** lac lad ad iafilcratioa, parcoLation. aad arapocranapiration roctinaa almoat identical to caoaa o««d la tha Chamiril, laaoff , aad Eroaiou from Agricaltaral rfmnamanr Syatam* (CXZaHS) modal which waa d«r«lop«d by tha tt.S. Daparrmant of Afrieuleara (3) . Tha HZL? modal ia much lapror«d (la taraa of applicabil- ity to T^nj^Ha) with raap«ct to thaaa component*; howrar. tha infiltration routiaa still raliaa haavily oa tha Hydrology Section of tha National Engi- neering Handbook (4), aa do both HSSSDS and CREAMS. TTPT,P aodel i* applicable to moat i«^<<»"«n application* , but waa developed specifically to perform hazardous waste dispoaal landfill evalua- tions as required by the Resource Conservation aad Recovery Act. Hazardous vaata dispoaal la*»**-ni« generally should have a liner to prevent migration .of waste out of the TMH^II , 4 final cover to •ioiaiize the production of

a 1 Ltachata foLlovlng closure, careful controls of runon and runoff, and liaits on the buildup of laachata head over the liner to no more than one foot. The EEL? aodel is ua*fnl for predicting the amounts of runoff, drainage, and laachata expected for reasonable design as well as the build-up of leachat* above the liner. However, the model should not be expected to produce credi- ble results from input unrepresentative of landfills.

OVOLTIBf

The principal purpose of this user'a guide is to provide the basic infor- aation needed to uae the computer program. Thn*, Alia seam attention must be given to dafinitlons, descriptions of variables, and Interpretation of results, only a •*«t««i amount of such information is provided. However, detailed documentation providing la-depth coverage of the theory and assump- tions on which the model is based, as wall as the Internal logic of the pro- gram, is also available (5). Potential BEL? users are strongly encouraged to read through the documentation and this nsar's guide before attempting to use the program to evaluate a landfill design. Assistance in running the program can be provided by the developers at WES. They can be reached by ei-amerrJiI telephone at (601) 634-3710 or via the !TS system at 542-3710. outlina of the) remaladar of this manual is presented below* • Section 2 - Basic Land fill design concepts • Section 3 - Program definitions, options, and restrictions • Section 4 - Program input • Section 5 - Program output • Section 6 - Appendix A - Detailed explanation of hov to execute the program on KA's Satioaal Computer Center system • Appendix B - Uatlag 'of iafotmation needed to aecaea the Sational Computer Canter system • Appendix C - Coat analysis for executing HELP on the Satioaal Computer Center system SZCT10H 2

BASIC UBTOFILL QESICZ CONCEPTS

Over the past 30 to 40 years tha sanitary landfill has come to be widely recognized as an •canonical and effective mesaa for disposal of municipal and industrial solid wastes. Today, modern methods of Landfill construction and aanagemeat are sufficiently developed to ensure that even Large volaes of such materials can be handled and disposed of la such a way aa> to protect pub- lic health, •!"•«••*«• adverse affacta on th« •sriroa*antf aad, ia aasy ca«««, oltiaataly «nh*nc« land rmluaa. Mora r«c«ntly, public attention baa ba«o focu*«d on a «p«cial claaa of •atariali conooly rafarrad to aa haxardeva mat*a. Tha ehABicxI aad physical diversity, anrlroimantAl paraiatanca, aad aeata md locj-tarn dacrlaantal ^ffacta on hxaaa, pLant, and •niril haalth of May of taaam aubacancaa ara aodi that graat car* «oat ba axarcia*d in aiapeaiag of tbam. Baxa,rdoua uftstaa ara produced la such Larjm quantitias and ar« so aiT«r«a that onir«rsally accapt^bla disposal aathodj hxra yat to ba a«rljMd. Bovwar, it appaars that, for -thai praaaat, diapeaal (or, of tan a0ra praci««ly, «tor*««) in sacara land- fills is tha prodant approach in aany iastaaifiaa. Tha currant stat*-of-tha—arc calls for what nay ba thought of siaply a« aa.aziaaaion of sanitary landfill technology atiliziag vary conaarrativa daaira crttaria. Sam* iaportant basic prlflciplaa and concapts of T«*«*^II dasl«a *r* s«M>rixad balow. Spacific amphaais is givan to dijpoaal of hajnrdo** ••cartAla, but tha discussion is applicabla to ordinary sa&itary 1 •«!«**

T f Affirm P&ODOCTZ0V Storaga of aay maxa aatanal la a laisfill «•••• aavaral potantial prob- loas. Aaonf thaiaa is taa posdbla conta«iJj«tis» at sail aad ground aad sur- faca vatara that aay occur MM laacbata proavcaa* »y IB tor or liquid vustaa •firing Into, through, aad out of th« laadfill aOgrataa Into adjacaat tra^s. This problan it aspacially Important Js«n baa»rdo«a mstaa ara larolv*d siaca •any of thas* substaacas ara quita rasiatsnc to biaLogical or chaalcal degra- dation and, thus, may ba aapactad to parsiat ia taair original fora for laany y«ars, perhaps avan for cantarias. Given thU poaaibllity it is desirable for hazardous msta Landfills to ba designed to prevent aay waste or laachata froa ever moving into adjacent areas. This objective is beyond the capability of technology, but does represent a goal ia the design aad operation of today's l-^niT. 2ie Eydrologic Evaluation of Landfill Performance (HELP) nodal has been developed specifically as a tool that may b« used by designers aad regulatory reviawers to choose designs that a^iai** potential contamina- tion problems, bat yet are practical given the state-of-the-art. la the context of a landfill, laachata may be described as liquid that has percolated through the layers of waste material. Thus, laachata may be composed of liquids that originate from a maaber of sources including reac- tions associated with decomposition of vests materials, precipitation, surface drainage, sad groundwmtar. The chemical quality of laachata varies widely depending upon a number of factors 1*"1 •"*•***£ the quantity produced, the origi- nal nature of the buried waste materials, and the various chemical and bio- chemical reactions that may occur as the vasts materials decompose. la the absence of evidence ta the contrary, most regulatory agencies prefer to assxsBe that any laachata produced will be contaminated to such an extent that into either ground or surface wetari is undesirable. Considered in the light of the potential water quality impact of laachata contamination, this approach appears reasonable. The quantity of leachata produced Is affected ta some extent by decompo- sition reactions, but is largely governed by the amount of external water entering the' landf-fHI. Thus, a key first step la con trolling leachata con- tamination is to limit production by preventing, to the extent feasible, the entry of external water into the waste layers. A second, though equally important, szep is to collect any latachata that Is producsd for subsequent treatment and disposal. Techniques are currently available to limit the amount of 1+T*h**^ that T Into ad Joining areas to a virtually immeasur- able voltssa so long as the integrity of the landfill structure and leachata control system is maintained.

OESI® FOB. Tf-vrpATT COSOLOL • A schematic profile view of a typical hazardous vasts landfill Is shown is Figure L The bottom layer of soil may be hauled in, placed, and compacted to specifications following excavation to a suitable subgrade, or may be natu- rally existing material. la either case, the base of the T«™<<»-m should act as a barrier layer her lag some ••<»•<««• thiciaeas aad « very low hydraulic con- ductivity (or permeability). Chemical nreaaent may be used either vlth or without compaction ta reduce permeability to an acceptable level. As an sdded factor of sa-fary, SB ixpersmaala synthetic membrane may be carefully bedded la granular material and placed at the top of the barrier soil layer, the com- bination of low pex»eability barrier soil sad optional membrane Is often referred ta as tH* T***^f*^ * liner. Immediately above the liaer is a drainage layer consisting of sand with suitably spaced perforated or open Joint drain pipe embedded at the base, the drainage layer is typically at least one foot thick and serves to collect any laachata that may percolate through the vmste layers. The top of the liaer is sloped la such 4 vay as to prevent ponding by encouraging laachata to flov toward the drains. The net effect is such that very little leachata should percolate through the liner system to tha natural formations below. Taken as VEGETATION

SLOPE • 3 to 5 TOP SOIL

LOW PERMEABILITY SOIL 3 to 5%

WASTE

SANO

-MAIN SLOPE-3 to 5%

LOW PERMEABIUTY SOIL'

Flgur* I. TTplcal baaardouj ««st« Landfill profile (net to

5 a Uiol* the drainage layer, optional membrane, and barriar soil may be referred to as the drainage/liner system.

After the Landfill is cloaed, the' drainage/liner System serves basically la a back-up capacity. However, while the i«M>**-n ^j optta ^4 mct*. ^ being added, these components are the principal «j«fTOM agaiaat contamination of adjacent areas. Thus, care mast be given to their design aad construction. Day-to-day operation of a modern sanitary landfill "•"'It for wastes to be placed la relatively thin lifts, compacted, aad covered with compacted soil each day. Thua, wastes should not be left exposed more thaa a few hours. While the dally soil cover serves effectively to hide the wastes aad limit the access of auisaace inserts aad potential disease vectors, it is of limited value for preventing the formation of laachata. Thus, even though a similar procedure may be utilized for hazardous wastes, it is imperative that the drainage/ liner system function well throughout the active life of the landfill aad beyond.

When the capacity of the landfill Is reached, the waste cells may be covered with a cap, or flaal cover, typically composed of three distinct lay- ers as shown ia Figure 1. Ac the base of the cap, or cover, Is a drsiaage layer aad barrier soil layer similar to that used at the base of the landfill. Agaia, aa impermeable synthetic membraae may be used If needed. The top of the barriar soil Layer is graded,-so that water pareoLatlag iato the draiaage layer will tend to move horizontally toward some removal system located at the edge of the TM«*»*'M or snbuait thereof. A layer of soil suitable for the support of vegetative growth is placed on top of the upper draiaage Laymr to complete the landfill. 'A two-foot thick layer of soil having a high Loam-content serves this purpose nicely. The upper surface is gradad so that ruaoa is mlaimized aad as much precipitation as possible is converted to ruaoff, without censing excessive erosion of the cap. The vegetation used should be selected to grow readily, provide a good cover evea during the winter when it is doraaat, aad have a root system that will act penetrate laeo the upper barriar Layer. Grasses are usually best for this purpose. The »*—Mp*v4*~ of site selection, surface grading, transpiration from vegetation, sail evaporation, drainage through the saad, sad the low hydraulic conductivity of the barriar soil serves effectively to srln/lartts laachata pro- duction from external water. Added effectiveness is gained by the use of impermeable synthetic membranes ia tarn cap aad liner. However, it is impor- tant that the cap be no more permeable than the liner; otherwise, the landfill could gradually fill with liquid and ultimately overflow Iato sdjaceat areas. phenomenon is sometlaaa referred to as the "bathtub" affect. The "T-g model is designed to perfoa water budget calculations for land- fills baviag as many as alae Layers by modeling each of the hydrologic pro- cesses that occur. Thus, it is possible to design * laadflll to achieve specific goals, or evaluate the performance of a givea landfill design, with the aid of the model. A description of the program is presented ia the fol- lowing section. SZCTXOH 3

F&OOLttf DlfLNiliOHS, OPTIOSS ASD USTZICTIOKS

Bie Hydrologic Evaluation of landfill Performance (HUP) program vms developed to assist i««df IJT designers and regulators by providing a cool to allov'rapid, economical screening of alternative designs. Specifically, the program may be used to estiaats the magnitudes of various components of the ueter budget,

The modal uses cJJaatologlc, soil, and design data to produce daily esti- of water movement across. Into, through, and out of landfills. To pllsh this, da.il y precipitation is partitioned Into surf act storage (snow), runoff, iaf 11 oration, surface evaporation, evapotranspiration, perco- lation-, stored soil moisture, and subsurface lateral drainage to maintain t umter budget. Surface ran on and subaurface lateral inflow are not considered. la this chapter emphasis is placed on data requirements-, nomenclature, important assumptions, program limitations, and other fundamental information aeeded by all users to facilitate running the program. Readers desiring detailed «T"im»+±n**. of the solution techniques employed are directed to tbe program documentation (3). aUXOIjOCXC BLXZSSZS As noted above, tbe BTT.S- program models a number of hydro!ogle processes. Runoff is computed using the Soil Conservation Service Runoff Curve Somber method. Whan the" program is run for a closed landfill using the default soil data option, a default runoff carve number is selected automatically. Bow- ever, the program gives the user an opportunity to override the default value. When soil data are entered manually, and ufaen an open landfill is being mod- eled, the user must estiaata an appropriate runoff curve number. a complete discussion of the curve number technique is available from the Soil Conserva- tion Service (4). Factors such as surface slope and roughness are not considered directly la estioatlag runoff, and hence infiltration. Bowever, they may be taken into account la the mermil selection of a curve number. This approach to runoff estlaation is made possible by considering only dally precipitation to tils, and not the intensity, duration and distribution of individual rainfall events (stesas). Percolation and vertical mtar routing arc modeled using Dmrcy's Lav for saturated flov with Modifications for unaa titrated condition*. Lateral drain- age 1* computed analytically from a linearized Bouaalnemq equation corrected to agree aith. noser ical of tha noallamarized fora for the ranfa of design specifications oa«d In hazardous uaata Landfllla. firapo traaapiratlon 1* aatioatad by a morflflad Paaaan aathed adjuatad for limiting aoil aoijtur* conditions. Datailad aolvtlon a«tbodj for all hydrologic proea«a«s ara pr«- »antad In th« program decoawntatlon (5) •

Hxa HELP program rcqalraa climatologic, aoil, and d«aign data. Bower, •officiant da-fault cliaatologle aad aoil data ara latarnallj availabla to «»t- isfy ta* naada of many urnra. although tha medal *»*^»*l"t dafault clim*.to- logic and aoil data, tbaa* data ahould not ba .oaad unlaaa thay trra bmaa axammad and Tcrlflad to ba rapraMntatlTa of tba alta oadar ready. la all eaaaa, tna uaaz abould attampt to aequlra data • pacific to thm alta and oaa toa«« xrailabla data bafora aapplamvantiag with, da fault data, da basic data raquicsmmnta aad input option* ara brlafly diacuaaad b«lo«. Stap-by-ttap inxtrocrions for aatariag data lato tba program ara gJbran la Section 4, aad coatplata input/ satput LLs tings for thram «xampla« ara prmaaatad ia Sactioa 6.

Cliaatologic Data _ Climatsloglc data. Including dally precipitation ia iacfaaa, maaa monthly tamparaturaa ia *?, maaa monthly laaolatlon (solar radiation) ia Langlay*, laaf araa indie as, aad viatar corar factors, may ba aatarad manually or •alec tad from built-ia dafault data films. Default cllaatologic data ara ^ available for only 102 cities; therefore, noaa of tbmac cities may ba repre- aaatatlvm of tba study alta. Thm precipitation data baam is also Limited to only five y*ar« af dally records isaich may »ot ba repre»«ntat±ve since tha period of record could harm bmem mm m ally vmt or dry. It is also highly rac- oumwaaaQ to rva T^ sisnlarlon for more fr***'n five ymars to auaine the daslgtt under tha raaga of poaalbla rj, 1ms tologle conditions. Dafault Data Option- Default clisvatologic data coasistlng of five ymars (usually 1974-78) of obsmrved daily precipitation aad one set of value* for maaa monthly tempera- ture, mmaa monthly insolation, aad laaf area index for each of tha cities listed iu Table 1 ara built lato tha program. These data may ba accessed and used simply by giving tha appropriate responses to straightforward program queries as dascrlbed la Section 4. It is important to understand that, voile the program requires daily pre- cipitation, tempera tare, aad insolation data, it latarpolatas for average daily temparaatra aad -Insolation from mean monthly data. Therefore, even TABLE 1. LISTDTC 0? PgyAULT CITIES AND STATES

Alaska Illinois Nevada Rhode Island Annette Chicago 0.7 Providence Bachal E. St. Louis T-aa Yegas Fairbanks South Carolina Indiana Kav Bampahlre Charlaston Arizona Indianapolis Concord • w_ -.!_« .. South Dakota

Kansas eTTCoflk tooxrilla Ulock Dodg. City ,J~! Haairrill. Topaka Rev tteziee _ Calif oral* _ Albuqusrque i«aca» . Kentucky n n Los Aastfts Uxlagton Iteir Tork Pmrk n Pm«o £?oS' * Color«io dry

Banjor Cariboo Berth Dakota Burllnjton SrtSrt Portia^. Ilmarck

Boston ' Ciaclanati Worecstar Columbus Borfolk Oriaado Utcb^aa Put-ia-Bay Ifcshiagton Taliahassee . E. ^asinc Oklahoeia laapa Sault Sta. Harla Oklahoma dry Saattle -. Pala Baach _ Tulsa Takiaa Georgia St. Qoud Oregon Visconsln Atlanta Aatorla Madison ttaao^i Itodford Portl d Ha.ll jfa ' ~ Cha Honolulu ** PamsylTania Laadar Idaho^ Cralla

Grand IslanT , ^d HortA OaaJaa though the default data set contains actual historical observation* of pre- cipitation, no atteapt is wade to aodel th« exact weather conditions existing on any given day.

The default cllaatolofic data base Includes values for two variables that relate to the effects of vegetation on evapotranspiration; leaf area index (LAX) and winter cover factor. LAX is defined as the diaensionless ratio of the leaf area of actively transpiring vegetation to the nominal sur- face area of land on which the vegetation is (roving. The -ESJ program aasoaes that LAX may vary fro« a srtMnnM value of 0 to a M-»*I»^ Talus of 3. The foraer is representative of no actively growing vegetation (i.e., bar* ground or donest vegetation) and the latter represents the aost dense stand of actively growing vegetation considered. Default LAX data sets consist of thirteen Julias dates (spaced throughout the entire year) and corresponding ««•«•"• LAX values for a good row crop and an excellent stand of grass. A different set of LAX data is provided for each of the 102 cities listed in Table 1. The program adjusts these aaxdara values downward if necessary, depending upon the vegetative cover specified, and interpolates for daily val- ues la order to aodel evapotranspiration during the growing season* For the reaainder of the year, transpiration is ••enaeri not to occur. However, even dormant vegetation can serve to insulate the soil and, thus, affect evapora- tion. Sinter cover factor*, which vary from 0 for row crops to 1.8 for an tallest stand of grass, are used to account for tnia effect. Manual Data Option— When the —«•"•] cUmatologic data input optloe is utilized, the user provide daily precipitation data for each year of late rest. The "-^tnr^i allowable period of record is 20 years asd the ataiawja is 2 years. A separsta set of temperature, insolation, LAX, asd viatar cover factor data may be entered for each year, or a single set of data way be used for *\T- years. The iaforaation needed to ester cliaetologic data its lag the eanual input option is presented in Section 4. For most locations, observed preeipitatioe aad temperature data are readily available. Possible sources include Local weather stations, librar- ies, universities, agricultural aad climetologtc rweearca facilities, asd the National Climatic Caster, BOAA, Federal Builaiag. Aaftvllla, Worth Carolina 28801. Insolation data amy be more difficult ts eetala; however, average val- ues are commonly reported it crsaitacrural »«»Licatl«ma, solar heating head- books, aad general reference works. A general aiacnsalsm pertaining to LAX values for different types of vegetation is tree sated ia the program documen- tation (5). •

Vegetative Cover Data If the default ellaatologic or soil data options are used, the user Bust specify one of seven types of vegetative cover. Acceptable default types of vegetation are bare grouad (i.e., no vegetation); excellent, good, fair asd Door stands of grass; aad good aad fair stands of row crops. The default LAX data sets for a good row crop asd an excellent stand of grass are modified for lesser stands of vegetation when these types are specified by the user. The values for a good row crop are multiplied by Q.I for a fair row crop asd the 10 values for an excellent stand of grass art multiplied by 0.17, 0.33, and 0.57 for poor, fair and good stands of grass, respectively. Similarly, the hydrau- lic conductivity of che cop soil layer is correceed for che effaces of roocs when ch« user specifies on* of ehe 21 default soil ryp«s for the cop layer. The hydraulic conduce! viey of soil wlchouc vegecacion is mulciplied by 5.0, 4.2, 3.0, 1.3. 1.9 and 1.5 for excellent, good, fair and poor stands of grass, and good and fair rov crops, respectively. The user muse also specify aa evaporaeive zone depth as one of ehe cliaa- tologic variables. The evaporaeive zone-depth may be thought of iimply as che msTlToma depth from which water may be removed from che !.•*»«<*< T* by evapotran- spiration. Thus, where vegecacion is present, ehe evaporaeive depth should at lease equal ehe expected average depth of root penetration. In actual fact, ehe infloerc* if plane roots generally extends well beyond the depth of root penetration because of capillary suction created as water is extracted from ehe soil. However, Halting ehe evaporaeive depth eo ehe expected average depth of root penecracion may be justified as a conservative approach eo land- fill evaluation since ghi« results in reduced estimates of evapotranspiration and increased estimates of Lateral drainage and percolation. Evaporation will, of course, occur even if no vegetation is present. Thus, it Is reason- able that some evaporaeive depth be specified even for the bare ground (no vegetation) condlcion. Saggesced conservative values of evaporaeive depth range from 4 laches for bar* ground, eo 10 inches for a fair scand of grass, eo 18 inches for an ereellent scand of grass. The. program does not permit ehe evaporaeive depth eo be greater Chan ehe depth eo ehe cop of ehe topmost bar- rier soil Layer. Design and Soil Daea The user muse specify data describing che various materials contained ia the landfill (e.g., top soil, clay, sand, waste) and che physical layout (design) of che T*m<*-fii (e.g., size, thickness of various Layers, slopes, etc.). Either che defaulc or manual input options may be utilized for soil data; however, design data muse be eaeered manually. I-amlf-m Profile- The EEL? program may be used eo model landfills composed of up to nine distinct Layers. However, there are some limitations on ehe order in which ehe Layers may be arranged which muse be observed if meaningful resules are eo be obtained. Also, each Layer muse be identified as either a vertical perco- laclon, lacaral drainage, waste, or barrier soil Layer. -This identification is very iapereaae because che program models wacer flow chrough ehe various types of Layers ia dlfferene way*. However, ia all cases, che program assumes that each Layer is homogeneous wieh respect eo hydraulic conductivity, crans- missiviey, wilting point, porosity, and field capacity, a typical closed iM«j?-ni profile is shown on Figure 2. The circled numbers indicate ehe layer identification system used by che program. Vertical percolation Layers (a.g., layer 1 on Figur* 2) are assumed to have greac enough hydraulic conductivity that vertical flow in ehe downward direction (i.e., percolation) is not significantly resericted. Lateral drain- age is not permitted, but water can move upward and be Lost to «vapotranspira- tion if che Layer is wlchin ehe specified evaporaeive zone. Percolation is 11 EVAFOTRANSP1RAT10N i r- VEGETATION BUN OFF WWtumii INFILTRATION

UJ VEGETATIVE LAYER e t u e s LATERAL DRAINAGE LAYER LATERAL OMAJNA6C u ,

BARRIER SOIL LAYER w FCRCOLAT1ON (FROM BASE OF COVER) i t i T © WASTE LAYER

e a. LATERAL DRAINAGE a LATERAL DRAINAGE LAYER

BAim.n SOIL LAVE* ^^T^'.-e «*r«cf

PERCOLATION (FKOM BA3C OF LANDFILL)

Figur* 2. Trpical Landfill profile.

12 modeled as being independent of the depth of water saturated soil (i.e., the head) abov* the layer. Layers designed co support vegetation should generally b« designated as vertical percolation layers. Lateral drainage layers are assumed to have hydraulic conductivity high enough that little resistance to flov is offered. Therefore, the hydraulic conductivity of a drainage layer should be equal to or greater than that of the overlying layer. Verde. 1 flow is modeled in the same manner as for a vertical percolation layer; however, lateral outflow is allowed. This lateral drainage is considered eo be a function of the slope of the bottom of the layer, the •STl»n* horizontal distance that water must traverse to drain from the layer, and the depth of water saturated soil above the top of the under- lying barrier soil layer. (Note: a lateral drainage layer may be underlain by only another lateral drainage layer or a barrier soil layer.) The lateral drainage submodel has been calibrated for drainage slopes between 0 and 10 percent and for •**"**"• drainage distances between L5 and 200 feet. Lay- ers 2 and 2 on Figure 2 are lateral drainage layers. Barrier soil layers restrict vertical flow. Thus, such layers should .have hydraulic conductivity substantially lower than for vertical percolation, lateral drainage, or waste layers. The program only allows downward flow in barrier soil layers. Thus, any water moving into a barrier layer will eventu- ally percolate through it. Percolation is modeled as a function of the depth of water saturated soil (Bead) above the base of the layer. The program rec- ognises two.types of barrier layers; chose composed of soil alone, and those composed of soil overlain by an impermeable synthetic membrane. Jn the -latter case, the user must specify some membrane leakage fraction. This factor may be thought of simply as the fraction (range 0 co 1} of the msT-dmm daily potential percolation (i.e., the percolation that would occur, in response to some given head, in the absence of the membrane) through the layer that is expected to actually occax on a day when the memorame is iff place, assuming che barrier layer is subjected to the same head. The aet effect of specifying the presence of a membrane is to reduce the effective hydraulic conductivity of the layer. The factor may also be considered as the fraction of the area that drains into the barrier soil layer throusn leaks in the membrane liner. The program does net model aging of the membrane. Layers 3 and 6 shown on Figure 2 are barrier layers. Water movement through a waste layer la meeeiee* ia the same manner as for a vertical percolation layer. However, laemtifyiaa; a Layer as a waste layer indicates to the progrssi which layers should be cemsiaered part of the land- fill cap or cover (see Figures I sad 2), sad w»-t«a Layers should be considered as part of the liner/drainage system. Layer * smew* em Figure 2 is a waste layer. If the topmost layer of a landfill profile U Uaatified as a waste layer, the program assumes that the landfill U opem. In this case tne user must specify a runoff curve number (discussed above) and the fraction (a factor that may vary from 0 to L) of the potential surface runoff that is actually collected and removed from the landfill surface.

13 The wr* program can model op to «<«• layers la the T«^f-ti^ profile. AS assy as ehree layers may be identified as barrier soil layers. While eh* pro- gram Is quit* flexible, there are son* basic rules chat must be followed rela- tive eo eh* order la which cha layers arc arranged in eha prof Ha. First, a vertical percolation layer or a vast* layer may noc be placed directly belov * lateral drainage, \layer. Second, a barrier soli layer may not'be placed directly belov another barrier soil layer. Third, when a barrier soil is not placed directly below the lowest drainage layer all drainage layers la the lowest subprofil* are treated as Terries! percolation layers. Thus, no lateral drainage is il,lowed in this subprofile. Fourth, the top layer may not be a barrier soil layer. Important BnmeunliFure used by the program is indicated on Figure 2. For computational purposes the soil profile is partitioned late subprofiles which are defined ia relation to the location of the barrier soil layers. For exam- ple, the upper subprofile shown on Figure 2 extends from eh* surface eo che bottom of •the upper barrier soil layer (layer 3), while the lower subprofile extends from the cop of che wasce layer co che base of the lower barrier soil layer. If an intermediate barrier soil layer had been specified, a third (intermediate) subprofile would have been defined. Since there can be no mor* than ehree barrier soil layers Chare can be no more chan ehree subprofiles. The program models che flow of water ehrough one subprofile at a. cime wieh che percolation- from one subprofila serviag as che inflow co the underlying sub- profile, sad so on ehrough Che eomplece profile. . * • * Soil Data— The type of soil present ia each layer must be specif lad by che user. ^t^» can be accomplished using either *rh* default or manual *i^<** laput options. Characteristics for 21 default soil types are presenced ia Tabls'2. The first ehree columns represenc soil texture designations used by che T*TT? program, and two standard classification systems—the U.S. Department of Agriculture system sad che Unified Soil Classification System. The numerical entries represent typical values correspond lag eo che various soil types and are used by che gTr^P program, as needed, for computational purposes. These values were obcalned mainly from agricultural soils which may be less dense and more aerated yh** typical soils placed in landfills (6, 7, 8). Clays and silcs ia \"~**ll\~ would generally be compacted except for a well managed vegetative layer which may be ^1^*^ to promots vegetative growth. Dncllled vegstacive layers would generally be more compacted than the loams listed ia Tab la 2. Soil cmxsure type L9 is representative of typical mmrtr'fpsT solid waste chat has been compacted. Soil cexture types 20 sad 21 denote very well compacted clay soils chat might be used for barrier layers. Default soil data may be accessed sad used simply by entering the appropriate swil texture num- ber in response co a stralghcforward command from che program. The user may also enter soil characteristics manually. In chis instance, che program will require that numerical values be entered for porosity, field capacity, wilting point, hydraulic conductivity (i.e., saturated hydraulic conductivity) ia tagh*t per hour, and evaporation coefficient ia millimeters per square rooe of day. (Mote: porosity, field capacity, sad wilting point axe all dlmensionless.; La some cases these data may not be actually used by che program. Specifically, the porosity, wilting point, and evaporation

14 IABL2 2. DETAULT SOU CaiRACTSHlSTICS Field Uiltlag Hydraulic • Soil Terror* Clasi raH c Poroaity Capacity Point Conductivity BTT.P HSB4 nscs la/br 7ol/Vol Vol/Vol 7ol/7ol ia/hr am/dar 1 CoS GS 0.500 0.351 0.174 0.107 > 11.95 3.3 2 CoSL OP 0,450 0.376 0.218 0.131 7.090 3.3 3 S sv 0.400 0.389 0.199 0.066 6.620 3.3 4 FS SM 0.390 0.371 0.172 0.050 5.400 3. 3 5 LS SM 0.380 0.430 0.16 0.060 2.780 3. 4 6 LTS SM 0.340 0.401 0.129 0.075 1.000 3.3 7 LV7S SM 0.320 0.421 0.176 0.090 0.910 3. 4 8 SL' • SM 0.300 0.442 0.256 Q.133 0.670 3.8 9 TSL SM 0.250 0.458 0.223 0.092 0. 550 4.5 10 7TSL MB 0.250 0.511 0.301 0.184 0.330 5.0. 11 L 8L 0.200 0.521 0.377 0.221 0.210 4. 5 12 SIL ML 0.170 0.535 0.421 0.222 0.110 5.0 13 SO. sc 0.110 0.453'- 0.319 0.200 0.084 4. 7 . 14 a. a 0.090 0.582 0.452 0.325 0.065 3.9 15 SICL a. 0.070 0.588 0.504 0.355 0.041 4. 2 16 SC a 0.060 0.572 0.456 0.378 0.065 3. 6 17 SIC CE 0.020 0.592 0.501 0.378 0.033 3.8 18 c CS 0.010 0.680 0.607 0.492 0.022 3.5 19 ' Uaste 0.230 0.520 0.320 0.190 0.283 3.3 20 Barrier Soil 0.002 0.520 0.450 0.360 0.000142 3.1 21 Barrier Soil 0.001 0.520 0.480 0.400 0.0000142 3. 1

*Soil claad ?1x*i*lTi the HZL? w>del (»•* text) . b Soil ol *mm* fl/Cl^l1*™ •yvtev us^d by the U.S. DipartBeai t of 4frriculturi1* **» Utified Soil da »*4. .f4/**r4 ntt 3

L5 coefficient are act used for barrier Mil*, and the wilting point and evapora- tion coefficient are not used for any layer below the effective evaporative son*. Brief definition* for some taraa oaed co describe aoil moisture con— tent, and the movement of water through soil, are presented below. Poro«itT--the ratio of the volume of ;\ to the total volume occupied by a soil. Field capacity—the ratio of the volom* of water that a soil retains after gravity drainage ceases to the total Tolas* occupied by a soil. gjltlng point—the ratio of the volume of water that a soil retains after plants can ao longer extract water (thus, the plants remain wilted) to the total volume occupied by a soil.

Available (or plant available) water capacity— the difference between the soil water content at field capacity and*at the wilting point. Hydraulic conductivity—the rate at which water moves through soil in response to gravitational * Evaporation coefficient—(also called trsnsmissivity) an indicator of the relative ease by which water Is tran emitted through soil in response to capil- lary suction. Uaara opting for manual «otl data input should recognize that certain logical relationships must exist among the soil characteristics of a given layer. The porosity, field capacity, and wilting point are all represented by d inertslouless values varying between 0 'and 1, but the porosity must be greater than the field capacity which must, in turn, be greater *fr«« the wilting 'point. The mlnlimai permissible evaporation coefficient is 3.0 ma per square -root of day. The program is designed to accept a combination of default and sanaal soil data if such is desired, *P*** is especially convenient for specifying characteristics of waste layers, to use this option the user simply specifies soil types 22 or 23. The program responds to these soil texture types by ask- ing for the soil characteristics discussed Soil Barner soil Layers aad waste layers may be compacted to restrict the vertical flow of water. flhaa using the default soil data option, the oser may specify that any layer is to be considered compacted. Tor » layer so Identi- fied, the hydraulic conductivity is reduced by a factor of 20, and the drain- able water (i.e., porosity minus field capacity) and plant available water (i.e., field capacity xinus wilting point) are each reduced by 23 percent. When using the w"**1 soil data option, the user simply enters soil data rep- resentative of compacted soil. Layers that support vegetation are act gen- erally compacted.

16 Design Date- The distinction between soil and design data is not always a clear cut one. However, in ghia section the tera design data refers to those items dis- cussed immediately below.

The oser mat eater the total surface area of the landfill to be mdeled in square feet, and the thldoess of each Layer in laches. For drainage lay- ers the slope of the bottost of the Layer (la percent) aad the ««^"i»— horizon- tal drainage distance (ia feet) •art also be supplied. The lateral drainage submodel has been calibrated for slopes between 0 aad 10 percent ^a4 for mxi- oot drainage distances between 22 to 200 feet. When drain tiles are to be used, the appropriate distance is one half the Bsrlnmn spacing. When drains are not used, the appropriate distance is the »•••"*«>"• horizontal distance that water aist travel to reach a free discharge. Depending upon the soil profile chosen and the input option selected, other data such as runoff curve number, aembrane leakage fraction, and potential runoff fraction say be requested by the program, Each of these are discussed ia the appropriate paragraphs above. Some general guidance for selection of runoff curve maabers Is provided in Figure 3 (4, 9). Typical values for •*«<•»•• infiltration rates are provided is Table 2.

0.1 u u MM. MJMt

Figure 3. Relationship between SCS curve ntsaber aad nrlnlana infil- tration rate (KTH.) for various regetative covers 17 szcnov 4 ntprrr

ISTiODOCTXOH One* the program lJ started, it automatically solicits Input fro* the user. This chapter describes the input -nmeiinli givea by the program, the questions th« program asks, possible responses the user eaa prerld*, and the Implication* of th««« r««pon««». Tor conv«nl*nc«, both laput i imaiiuli •«»! qo««tion> «r« r»f«rr«d to •» "quaatlon*11 la th±i chapter. Obrlonaly, ta« ••xada *r« r««lly «t«t«««nt» and aot quaatlon*. For r»f«rac«, «ach qu««tlon haa t»«n aasifiMd aa ld«ntlflc*t±o« aiab«r «hich vill caabl* th« o*«r to flad a d«*crlptlon of th« qoMtioa ia thl§ ehaptar. A brief description of bow to obtain and ran the profra* oa the latlonal Computer Center IBM Computer Systea is fiTea ia.Appeadiz A,. The tea types of data which the user eaa eater are listed below: 1. Overall Program Control (MAJOO , 2. ' Default diaatologic Data (DCDAZA), 3. MfTV?* 1 Rainfall Data QdAZA) 4. Default Soil Data (PSPaTA), 5. Manual Soil Data QSSDAZA), 6. Site Description (SITZ), 7. Characteristics of Open Sites (OPBT), 8. Manual dlaatologlc Data other than Rainfall QCXLT1), 9. Edit of i****«ii Data (PSZCBC),

10. Edit of Soil Data (SDCHT), 11. Siaulation Output Control (SEJDLA), The oaaes ia parentheses are the subroutines ia which the data are entered. The relationship betveea subroutines is shown schematically ia Figure 4. MAIN is the mala program. 18 2. OCOATA

7. OPEN

4. DSOATA

6. SITE

8. UTKLY*

1. MAIN 3.MCSATA

8. PHKHK

7. OPEN

S.MSOATA 8. SITE

10.SOCHK

11. SIMULA

4. Ralatiooshlp asong cyp«« of input

19 SOLZS

Thara ara a few fondamantal mlaa that a usar nut kaap in mind whan using tha program* They ara suaaarixad balow. Whan tha program raquasta a word rasponaa (a.g. TZS or HO), tha raaponsa Bust ba laft Justifiad and tha first four charactarj must ba apallad ear- ractly. For axampla TZS and HO_jSU ar« not ac cap tail*. Bh«n an taring maaatr- leal data, th«rm «Mt""b« ao •trmy' aigna or daclmala. If fawar Talaa* arm aatarad an a Ua« than ara callad for, tha prograai asaigaa xaroa to tha raaalalng locationa. For axavpla. If 10 daily ralafall Taloaa ara raqalrad en a Una and tha vmluaa ara

0. 0.9 0. 0.4 0. 0. 0.22 0. 0. 0. tha uaar can aatar 0 .9 0 .4 0 0 .25

But If tha o»ar antarad 0. . . .9 - 0 .4 0. 0. .25 tha program would atora •

0. 0. 0. .9 -0. 0. 0.4 0. 0. 0.2S Tha oaar should alwya aatar at laaat oaa charactar wo any Una. Otharvlaa, alnea ooat coaputara ragard a blank Una aa aa aod-^jf-flla, tha ma nay ba pramataraly tarslnataii. For axaapla. If tha aaar U an taring rainfall data for a 10 day parlod with no rain. It ia paralaaib-ia to an tar 0 but act to Laara tha antira Una blank. Trailing daciaal pelata ara aot raqulrad «a laa«t aa tha program automatically loiova wbathar to traat a ^mloa aa an iatagar •* flaatlag point varlabla. For axaapla. If a war visha* to aatar tha oamawr alaa. althar 9, 9. or 9.00 ara accaptabla. Tha ptogram d-cidao mhathar ta atara tha vtloaa aa 9 or 9.000000. If tha program la axp«ctlng ona of a«v«ral raaa*ma«a to a quaation (a.g. 1, 2, 3, or 4} aad tha oaar doaa aot aatar aaea a r«ave«aa, tha program naraa tha aaar aad prorldaa anothar opeoctualcy to raaaaad corraetly. In aort eaaaa tha antira quaatloa Is aot rapaatad. Tha uaar Is dlscouragaa fr-om tarmlnatlag t ran during Input aa aoma of tha data may ba loar. If oaeaaaary. though, tha oaar can tarmlnata input by hitting tha "ISCAPI" or "ISTZSaUTT' kay, dap«adlag « tha rypa of tarmlnal balng oaad.

20 Each question (and input command) has been assigned an identifying code composed of two arable numerals separated by a decimal point. The first num- ber always refers to the appropriate subroutine, while the second indicates the order of the questions (and input commands) within the subroutine. These identifying codes assist the user in locating the portion of this chapter that may be of interest in interpreting the questions (and input commands).

OVERALL PROGRAM CONTROL (1. MAI5) When the program starts, it first prints a heading introducing the grr-? Model and then asks the following:

1.1 DC ~3U «AST TO ESTER OR CHEd QATA 01 TO OBTAIN OUTPUT? ESTER 1 FOR. C.TMATOLOCIC IHPUT, 2 FOR SOIL OR DESICH DATA IHPUT. 3 TO RUN TEE SIMULATION AHD OBTAIN DETAILED OUTPUT, 4 TO STOP THE PROGRAM. AHD ____ 5 TO RUN TEE SIMULATION AHD OBTA2T OSLT SUMMART OUTPUT. If the user enters 1. the program will expect the user to enter cither the default or •**•««?_ climatologic data, depending upon the answer to ques- tion 1.2. 'If the user enters 2, the program will expect the user to enter either default or mannaI soil data, depending upon the answer to question 1.3. If the user enters 3. the simulation will begin and detailed output including a summary will be produced, while if the user enters 4, the ran will be halted. If the user enters 5, the simulation will begin and only a summary of the simulation results will be produced. If the user enters a value other than L. 2, 3, 4, or 5, the question is repeated. The program returns to this question each time it completes a portion of the program. For example, after entering climatologic data, the user must instruct the program whether soil data will be entered, the simulation should begin, or the run should end. If the user answered 1 to question 1.1, the program asks the user what type of climatologic data is to be used in the run.

1.2 DO TOT HAST TO USZ DEFAULT CLUIATOLOCIC DATA?

JLJUUL TES 01 SO. • The user answers TES If is is desired to build a new file of cM ma to logic data from the default data tapes, and 10 if it is desired to enter climatologic data manually. If it is desired to modify climatologic data that were previ- ously entered, a NO answer should be given. A TES answer transfers control to subroutine 2. DCDATA (question 2.1) while a NO answer transfers control to subroutine 3. MCDAIA (question 3.1). If the user answers 2 to question 1.1, the program asks the following question:

1.3 DO TOU WANT TO USE DEFAULT SOIL DATA? ENTER TES OK NO. 21 Tha user should enter US if it is desired to build a new data file of soil data from the default soil texture data, and NO if it is desired to eater soil data manually during tha run or edit previously entered soil or design data. If the user answers 3 or 5 to question 1.1, the programs transfers con- trolls to subroutine 11. SIMULA (question 11.1).

If tha usar answers 4 to question l.l, tha nm is haltad aad tha follow- ing message is print ad:

1.4 E5TEK HJHHZLP TO EEXBH PROGRAM 01 LOGO?? TO LOGO?? COhruiDL STSTEM.

DEFAULT CLCIATOLOGIC TUT* (2. DCBA1A) If tha usar spacifiad that dafault climatologic data would ba usad (a TXS - ° response to question 1.2), tha program first asks if tha usar wants a list of citias far wnich dafault ellaatologie data ara storad. 2.1 DO TOT BAST A LIST 0? DEFAULT CXTXZS? TZS OK 80. ; ' A TZS raspeasa will rasolt la tha program printing a list (Tabla- 1) of tha 102 citias for which 5-y%ar clismtologlc data sats ara storwd. latgardlasa of tha aaswvr to 2.1, tha following quaation is print ad:

2.2 S3T23L HaMf 0? .SXATZ 0? QTIZIZST Tha usar naad only aatar tha first four charaetars of tha state nama. Soma statas aava ao citias for which cllmatologic data ara storad. Tor thasa, tha program raspoads

2.3 TSZU AtZ BO DQTAOLI VALUES TOE aad control is ratanad to qoastioa 2.1. la that casa, cha usar most aatar cilaatoLogic data •aasally or as* tha dafault data for a aasrby city from a neighboring r&ata. Ooea tha sts>ta aamm is aatarad, tha osar most aatar tha asm* of tha city for which cliasreelafle data arw to ba usad in raspoas* to 2*4 ES'LEJL BAKE 0? STY OF ZBTEZEST The user can only select names from the 102 citias girea la response to ques- tion 2.1. This table is reproduced in Section 3 as Table 1. If tha name of tha city is not found in tha default climatologic data base, the program responds with statement 2.3 aad asks question 2.1. If the user wants a listing of the cities, the program produces a listing of tha cities aad returns to question 2.2; else, the program returns to question 2.4.

22 If tha v**» of tha city ia in tha list of citiaa bat do*» act corrajpond with tha uaar spacifiad «tata, tha program rmsponda

2.5 PK^BPRCg LOUISIANA CANNOT BE POUHD ON DEFAULT CLUIAIOLOCIC DATA TILL. sad tha program racaroa to quaation 2.1.

One* tha program baa rmad tha dafanlt cliaatologic data from storaga, it raquaata tha uaar to «p*cify tha typa of ragatativa eovar if tha.T«fatativa typa had not baaa prvrionalj spaciflad dorlug thlj run whaa antarinc dafault •oil data. If prrrlooaly cpacifiad, control ij paaaad to quastlon 2.9; «lsa, tha program aaka

2.6 STT.ECT THZ TT?C OF VtCETATTVE CO VIZ UITDL 5UMBZSL 1 FOB. BAJTC QLOUBD 2 FOR SCZLLOT GBASS 3 roi GOOD cajLSS 4 FOE FAH C3LASS 5 F01 POOL OtASS 6 FOt COCO 100 OOPS 7 FOt FAX! KOV OtOPS _Th«aa valoaa' aat dafanlt valoaa for laaf araa iadicaa and viatar epvar factor* 'which art oaad in crapotranspiration c*leuL»ti«a«. If tha aaar antars a valua othar than a oomfear batvaan I and 7, tha profrma raapcoda

2.7 9 nUPFMPllAIE 7ALDI TH aad provld«« anothar opporranity to antar am a^propriata raapooaa*. Whan dafault soil data ara atilixad. tb« v««acation typa ia alao uaad in salacting tha SCS runoff earra aombar for tha tita and to eorract tha hydrau- lic conductivity of tha vagatatlra layvr. If cn« valua (ivan in tha dafault •oil data input doaa not agraa with tha walaa «p«cifiad ia quaation 2.6, arro— aaoua raaulta may ba 'obtained. Tharafora,

2.« U TOT AXZ 03X9C DETADLT SOU QATA AJQ TEJ TTPI ZS •OT TS SAffi AS USED Z5 HZ OOAflLT SOU QAZA LBPUI, TOP saocLD nrm. THE son, IUTA ACAIS at cotter nz scs UJHOFF CUt VI program than aaka for tha thickaaaa of tha avaporatlra son* aa followa:

2.9 ErTEJ. Tffg E7APORAITTE ZONE DCTTS IS DdZS.

COHSEB.7ATIVE 7ALUES ABZ: 4 Hf. FOR BAREGROUND 10 IS. FOR FAIR GRASS 18 15. FOR EXCELLENT GRASS

23 and the user east respond with en appropriate value.

MAHUAL RAI5FALL TUTA (3. flrpfTAj

If the user specified, ia response to question 1.2, that default cllaato- logic data would not be used, the program asks the user whether it is desired to build a cllmatologic data file from scratch or correct previously entered data. The question posed is

3.1 DO TOT BAST TO E5TTJL PlZdPITAXIOH DATA? TZS OK. 50. If the user wishes to enter a completely new set of precipitation data or to add or replace years of precipitation data la the existing precipita- tion data file, the user should enter TZS to question 3.1; otherwise, the aser should eater HO. A 50 answer passes control to subroutine 9. PBZCEC (question 9.1) where the user is provided an opportunity to correct lines of the precipitation data. A. TZS answer prompts the program to produce Instruc- tions for entering precipitation data and ask question 3.2. 3.2 DO YOU HAST TO COXXZCT 01. ADD TO EXISTZSC PlZdPITAXIOH DATA? UI2JL TZS 01 90. The oser should ester TZS to question 3.2 if the user wishes to add, replace, check or correct year* of precipitation data ia the M^*i«g precipi- tation data file. A TZS answer passes control to question 3.8. An answer of 90 indicates that the user wishes a completely aew set of precipitation data and prompts the program to respond 3.3 TOU AKZ ERTT2DC- A COKPLETZ SB? SET OT PRZCI7ITATIOV DATA. and to instruct the oser to 3.4 arm. THE TZAJL OP nrftripmnoir DATA TO ai QITZIZB. 0 (ZOO) TO CD IAI5TALL IBPTTT. If the nwmr eaters 0 ia response to Instruction 3.A, precipitation input is stopped sad control is paused to subroutine 9. PIZCHZ (question 9.1). If the ueer eaten a year for which precipitation data have been previously entered, the program responds

3.3 ____ ATIFATTT ZXXSTS OT THZ DATA. DO YOU WAST TO RZPLACZ THZ ZJXSTTSC DATA? UTLEJL TZS OR HO. Otherwise, the program transfers control to question 3.6 where the oser is requested to eater the precipitation data. If the user answers NO to question 3.5, control is returned to ques- tion 3.4 and a new year oust be specified. If the user answers TZS, the program will replace the data for the specified year and requests the user to enter the precipitation data as follows:

3.6 E5TEX. TEH DA7T.T PRECIPITATION VALUES PEB. LIKE ABD 37 LUTES PEB. TEAS. FOl _. 3.7 Ltt'IUt. LUTE 1. Tha user should enter 10 raluaa for dally rainfall in inches in accordance with the guidance presented previously in the part of *M« section titled TdLES". After each Una is entered, tha program repeats instruction 3.7 until all 37 Tinas of data ara entered for the year. The program then returns control to question 3.4 «r«rll 20 years of data have been entered if the user is entering a completely new data file or to question 3.8 if the user is work- ing on an existing data file. If tha user wanted to enter precipitation data in order to add more years of data to the existing data or to correct the existing data (i.e., the user ired TES to quaation 3.2), tha program asks 3.3 DO TOT VAST TO ADD 01 1E7LACE ADDJTIOItAL TEABS OF pi£ci?iTAnos VALUES or ^^* EZXSTXJIG DATA? EHTUL TES 01 BO. If tha oaar aasnvars HO to question 3.8,- control is paaaad to subroutine 9. P1EC3Z (quaation 9.1) vhara tha oaar has tha opportunity to correct n««« of data in tha rrtirlng p^-^r^ication data fila. If tha usar anavars TZS, the program Lists tha years for which precipitation data hare b««n stored. If the oser had prcrlooaly antarad data for 1974, 1975. 1976, 1977 and 1978, tha pro- gram would, respond 3.9 DAZJl EZIST F01 5. TEA2S: 1974 1975 1976 1977 1978 If laaa than 20 years of precipitation data are stored, tha program passes control to qoaation 3.4 to allow tha oaar to antar tha year of tha data to b* addad or replaced. Data for a {Iran year stored in tha data fila may be replaced with data for a different year only if 20 years of data ara already stored; elsa, data can b« replaced only with other data for tha sam* year, li 20 years of data ara already stared, tha program responds 3.10 iUUil TZaiS Of FUCHIXaZXOV DaZl HATE ALZZiOT BXZS EJTTEI2D. DO TOP 9ZSR TO IZFLACZ AST TEAXS OT OAZA? LNTKJL TZS 01 SO. A SO answer to question 3.10 prompts tha program to transfer control to subroutine 9. PftFTHT. (quaation 9.1) wnile a TES answer produces tha following instruction: 3.11 QTTZ& THE TEAJL TO BE REPLACED. If tha UMT raaponda with ona of tha yaars in eh* data fila, eoacrol ij pas*«d co quastlon 3.4. If data for tha ya»r spaclfiad by tha usar !• not already •torad, tha program raspends

3.12 _____ IS HOT a THZ ECSTTHG ^ATA

and racurnj control Co qnaacion 3.10. To* osar ahould consuls massaga 3.9 co •alact a.yaax for rapLacamanc th*c prasancly axlacs in eha daca flla.

DZ71IILI SOIL DATA (4. DSDAlA) If eh« o»«r r««pendj US Co qoa«cion 1.3, cha progm ia«o«s soaa fnatal Interaction* on •asarlax »oil data and than prints 4.1 iSTiill TTTLZ OB LISZ 1, ESTZa 10CAZIOH 07 SOLID HASTZ SITZ OB USZ 2, ABC ESTZ& TOOAT'S DATE OB LTNZ 3. Tha usar anears this Information on tha. following lina« la any format daalrad «iaca this information is only na«d for a haadlng. Tha program than r**pends 4.2 7001 TT7ZS 07 LAIZIS HAT BZ USZD IB THZ DESIOI: vu irr i rAT PZ2COLAIIOB, TATTBAT DlAISAfiZ, »AP»TT» sOtt, ABD SASTZ.

IS HOI ULZZ&. BOTH ug^TJf^tr AflD I^T^^A^ D1ADUCZ ATF PBMEITZD F1CK A LAZZSAL son. LAIZJL SHOULD IZ DZSIC3ZD TO OEZBIZ ?ZXCOLAXIOH. AN TVPrgMTA«rr LDfO. tUI BZ USZQ OH TOP OF AST «Ag

tOLZS:

THZ TOP UTH CAWOT BZ A BAUXZK SOU UTT1. A SA2JLLEZ SOIL LAZZX HAT BOT BZ FLACZS ADJACZVT TO AVOOZI SOIL GBLT A *A*»TT» SOU. T^t-rg* OZ AHOTHZZ T^TT«AT BlABAfiZ ^ATT» MAT BZ FLACZD DnifTTT BZLOV A TaTTIaT D1AIHACZ UTTT. TOC MAT U3T 0? TO 9 LATTM AID 0? TO 3 BAIZZZZ, SOIL LAH1S.

UTUl THZ HUMBZZ. 07 LAIZ2S IB TOUR DESIOI. If tha u««r antars a raloa b«eva«n 2 and 9 for tha numb«r of Layars .§.. 5) > tha profraa rvaponda 4.3 THZ LAZEZS ASZ SUHBDLED SUCH THAI SOS. LAZZZ 1 IS THZ TOP LAXE& A5D SOU LAXE& 5. IS THZ BOTTOM LAIEB.. 26 If the user entered 1, the program responds 4.4 son urn. i is TEZ OHLT son. LATZZ. If the user entered * value which 1* less than I or greater »H«n 9, the pro- gram responds

4.3 TOT MAT HA7I 1 TO 9 UZZ2S. ZJTEZR. TEZ SDMBQ. Of LAIOS 15 TOOT. DZSIGH. and the user most eater the msber of Layers again.

After the user has entered an acceptable number of layers, the program asks the following question:

4.6 IS TEZ TOP LAIZZ AIT OTVZGZTAIZC SAND OB. OLA7ZL iNTHL TZS OS. SO.

7h« ansvar to thla qoaatlon affaeta th« aaanar ia vbleh tha program aodals p«reolation threufh tha rr»poratlr« sooa on day* vhaa Infiltration occurs. If TZS is an*v«r«d, tba Modal aaaoaas that thar* Is Httla capillary suction to draw vatar into lowz Layvra and that percolation do«a not occur mtil tha soil •eistara ia tha •raperatlT* con* axeaada tha fiald capacity. Thasa con- ditlona ara aora typical of iiuvafatatad or poorly vagatatad sand or graval layars occasionally oaad ia sami-arld and arid cliaataa. If TO is aaavarad, tha aodal aasoaaa that <&.k? is drawn into tha lowar layars by capillary sec- tion vhaa infiltration occurs. This assumption is applicabla for typical Landfill daaifna «hara tha top layar is a ragatatad topaeil with a shallov vatar tabla or vhara tha top layar is a clay or a loaa. Aftar tha oaar ansvars quastion 4.6, tha program Instructs tha usar to antar info^raation dascribiag tha soil layars by rap«atlng a loop of questions for each layer. Tha loop contains questions 4.7, 4.9, 4.15 and, in so«a cases, 4.22. The first instruction, given here for layer I, is

4.7 EHTZX TSZCZSZSS 0? SOC. LJLTZB. ^ 19 ISCHZS.

If tha oa«r eaters a ralua that is leas than or equal to tare, tha program

4.3 Tszcrnss HOST EE GUAZZZ TEAS zzio. and returns control to question 4.7. After question 4.7 is satisfactorily answered, the program instructs the user to 4.9 QTUL THZ ULTZB. ITPE FOR LATZB. L. When data ara being entered for the first Layar, the program prints tha fol- loving list of possible layar types which is not repeated for tha other Layers. 27 4.10 ETTZa I FOR A. VZXTXCAL PSXCOULTIOH LATE*, 2 TOR A tni.TTp>T DHAI3AGZ LATZB., 3 Foa i nARfi-mt son LATER, 4 FOR A BASTZ LATER, AHD 5 Toi A nmm son. LATER WITH AH dPSEltAJBLZ LJZTE3L

If the user enters « Rsaber other than I through 5 («.f., 6), the program responds

4.11 £ nUPPROPZZAH 7ALOT— TXT AGAIN. and returns control to question 4.9. Several ral*s gor«raiaf th« order of Layer* in th« landfill d«si(B wr« gi^«n in qn*st±on 4.2. If th**« ml** ar« not followed, the program prints an cpproprlAte warning sad return* control to question 4,9 to obtain ea accept- able layer type. The mmlnjs are 4.12 TSZ TOP T^TCT Hil BOT BE A TUIKTT1 SOIL

4.13 LLTtiF.8 A ULZZL4L DIAZBACZ UTU. 01 A TUtim SOIL FOLLOW A LATZLAL TTtATHAffT LATHI.— TXT AfiAZN.

4.14 A *ABgTT» SOS. LAZS MAT VOT BE PLACID OIIZCTLT &2L09 A50TSZ3L +±**m SOU LAZZX.

After an acceptable Layer type Is entered, the program requests the user to 4.13 EK7Z& SOIL I'muiy OF SOIL LAZZZ 1. * Vhen data are being entered for the first layer, the program prints the fol- lowing additional lastractions: 4.16 grm A room a THODCH 23) roz TEETUKZ CJLSS or son. MAICTTAT... **QL£JLZ USU'S WJliJl F01 BOHBOL CORRSSPOHPCTC TO SOC. TTPI.** If .the user enters a ansiber other than 1 through 23 (e.g.*, 26), the program responds 4.17 26 DUFPIOPXZA2Z SOU TZZXTIU TOKBE1—T3T AfiAZI. and retnrns control to question 4.15. Default soil data exist only for soil texture 1 through 21 as given in Table 2. Soil textures 22 and 23 are available to provide the user an oppor- tunity to describe the soil characteristics of some layers mnually vhll* using default soil data for other layers. Therefore, if soil texture types 22 or 23 are specified, the program asks questions 4.18 through 4.22 to obtain the soil characteristics. The appropriate value enst be entered in response to each of the following commands. 23 4.18 ENTER THZ POROSITT OF TEE LATER is VOL/VOL.

4.19 ENTER THE FIELD CAPAdTT OF THE LITER IN VOL/VOL.

4.20 ENTER THE BTLTLNC POINT OF THE LATER IN VOL/70L.

4.21 IS ILK. TEE tumfAtTT.TC COHDUCT1V1TX OF THE LATER Of DTCHES/HR.

4.22 ENTER THE EVAPORATION COEFFICIENT OF THE LITER IN MM/DAT**..5. Tha daiault soil data far soil taxrura typas 1 through 13 ara typical for uacompactad soils vail* dafault soil data for soil taxturt typas 19, 20 sad 21 ara typical Taloas for compacted •"rtlrti^l solid vasts, sad compacted clay barrier soils. Therefore, if soil tazmras 1 through 18 ara spacifisd, tha prograsi prorldas tha osar with aa opportunity to corrtct tha da fault soil data for compaction by aa Icing (ia ?hjf easa for soil layar 2)

4.23 IS SOU LITER 2 COMPACTED? ESTER TES OR BO. " If •>« l«7«r oadar considaration is tha top layar, tha program also prints

4.24 THE VEGETATIVE SOIL LITER IS GENERALLT SOT COoTACTED. If tha layar uadar eonsld«ration bad baan daaifaatad to ba a barrlar soil layar (sithar layar rypa 3 or 5), tha program also prints

4.23 THE KARHm SOIL LITER IS gnffliTTJ COMPACTED. If qnastlon 4.23 is aaavsrad TES, tha hydraollc conductirlry is raducad by a factor of 20, tha porosity sad plant available vatar capacity is radncad by 23 parcant, aad tha craporation coafficiant is raducad to 3.1 am/day * . If NO is ansvarad, tha data from Tabla 2 ars oaad. Aftar quastion 4.23 is aacvarad, tha loop of qnastlons 4.7 through 4.23 is rapaatad for tha raat of tha Lsyars. Aftar data for all layars hava baan spacif lad, tha program chacka tha layar typa of tha bottom layar. If tha bot- tom Isyar is a lataral dralnaga layar aad lass thaa 9 layars hara baan oaad in tha dasign, taa program prorloaa tha oaar vlth aa opporeoaicy. to an tar data for a barrlar layar to ba placad tmdar tha bottom lataral dralnaga layar by asking

4.26 A »*™TT» UTER SHOULD BE USED BELOff THZ BOTTOM LATERAL DRAINAGE LATER.

DO TOP RANT TO ENTER DATA FOR A BARRIER LATER? 1NT1R TES OR SO.

I? SO IS ENTERED, THE MODEL ASSUMES THAT LATERAL DRAINAGE DOES ROT OCCUR FROM THE BOTTOM LATER.

29 If the bottom layer is a lataraj. drainage layer and 9 layers have already been used ia the design, the program responds

4.27 A TUTFWrnt LATER SHOULD HATE BEES SPECIFIED. THE MODEL ASSUMES THAT T.ATWAT- DRAIHACE DOES HOT OCCUR FROM TEE BOTTOM LATER.

A barrier soil layer must be placed below the bottom lateral drainage layers if the program is to estis»ta lateral drainage from the bottom suberrfile. If a barrier soil layer was not used, the program models the lateral drainage layers ia the bottom subprofile as if they were vertical percolation layers. If the user answers TES to question 4.26, control is transferred to ques- tion 4.7 where the loop for entering data for a layer starts. If If0 is answered, the program asks question 4.28 if a synthetic flexibla membrane liner is used ia the design.

4. 28 WHXT nLACnOH OF TEE *gfA ORJLIKS TEXOUOB T yAr< ^5 -HE 0& 9EAI FBAC7XOH 07 TEE nATT.T POTEHTLIL PE1COLATIOV THROUGH TEE SOIL LATgy OCCURS OB TEE CITES OAT? LH'IUL BETWEEB 0 ABD 1. If the Tmloe entered for question 4.28 is le«s than 0 or fr eater ?M^» I, tne program respoods

4.29 ISAfraOrTLXAZE VALDI— HI AOAUT. and question 4.28 is repeated. If an acceptable valoe «ms entered, control for most cases is passed to question 4.30 vtoere the oaer is requested to- describe the vegetative cover. If a membrane Liaar vms not used ia a design and NO «ms answered to question 4.26, control la also passed to question 4.30 for most cases. Control is not passed to qvaatlom 4.30 if the top layer was designated to be a msta layer. Specifying the cs

4.30 SELECT HZ TT7E OP VEtirTATlVE CDTtX.

ut^Lit, VUMBEZ 1 FOK BAKE QUJORD 2 FOl EXCELLEST GRASS 3 FOR GOOD GRASS 4 FOR FADL GRASS 5 FOR POOR GRASS 6 FOR GOOD ROW CROPS 7 FOR FAIR ROW CROPS If the user enters a value that is lass than I or greater than 7 (e.g., 9), the program responds

30 4.31 9, ISAPPaoraiATZ VALUE—TXT AGAUT. and repeats question 4.30. Otherwise, the program warns

4.32 IT TOO 121 USCTC DEFAULT CJMATOLOCIC DATA AND THIS VEGETATION TT7E IS 907 THE <*** USED 15 THE CLJMATOLOCIC DATA INPUT, TOU SHOULD ESTZ& THE Q.TMATOLOCIC TUTA AGAZ5. and passes control to question 4.33.

The program calculates the SCS runoff curve masher based on the vegeta- tion type and the soil texture of the top Layer if one of the default soil textures were used for this layer (soil texture types 1 through 21). The equation used to calculate the curve numbers vas developed for Landfill vith mild surface slopes (2 to 4 percent). The program provides the user vith an opportunity to enter a curve number and override the default value as follovs:

4.33 DO TOU HAST TO EBTSS. A KUMUf F CURVE SUMBQ ASD OVEZ&MDE THE DZJAOLT VALUE? Ifl'llH. TI.S~.OK RO. If HO is answered, control is transferred to subroutine 6» $ZTZ (question 6.1) where the progzssi requests sere iaforaation describing the \in4f^^ site «««i desi«m. If TZS is answmred or if the top Layer has a soil texture ooaber of 22 or 23 sad is not a msta lever, th* program asks the user to

4.34 LH11K. SCS UJSUfF CUI.VE ERIHBZZ (BZTWZZS L5 AIR) 100). Control is then transferred to subroutine 6. SITS (question 6.1).

XASTIAX. SOU DATA (5. MSDA2A.) If the user specified ia response to question 1.3 that the default soil data is not to be used, them the program enters the marmal soil data input subroutine QSPATA). Meay of the questions are the SSSM in the default and —*"*'' soil data subroutiaes. The primary difference is that ia entering «"«**'' soil data, the or*r wst specify miasrical valuaa far soil poroficy, field capaciry, wiltiaf poiat, hydraulic conductivity, sad evaporation coeffi- cient, valla, ia the default soil data subroutine, the user needs to smrely specify a cod* mmber for the soil typ«. The first question is

5.1 DO TDC WANT TO COS2ECT OR CHECT • T3Z EHSTT5C DESTOI AND SOIL DATA? LAT1R TZS 01 SO. If the user responds TZS, the program assumes that soil data have already been entered and control is passed to subroutine 10. SBCHK (question 10.1) vhere

31 th« sell data. 9*7 b« eorr«ct«d. 12 ch« o»«r answers NO, tha program prints a a«saag« and a*k> th« oaar to b«gla building a data fila.

5.2 TOU AXE EtTTEXISC A COMPLETE ZTE¥ HATA SET.

OS I OHLI EBCLISH UNITS 07 FTP FS AHD DATS OTHEEVISZ INDICATED ALL

A VALUE ••tfllAI** BZ SSTZUZ) FOE LLCS CDMULMD ETE5 HESS THZ VALJt IS ZOLO.

TITLE OH LZSZ 1, __ S2TTEZ LOCUIOH OF SOLID «1STZ SITE OH LUTE 2 AND S9TEZ TOBAT'S DATE 01 USE 3. A_ft«r th« o»«r €nt«r» th« titi«, th« prefr^ prlntj information on ch« 1^7*7* la th« Landfill d*«lfa aad r*qu««ts ch« oa«r ta «nt*r tfa* tn«b«r of lay«r». • •

5.3 FOOt TTTCS OF LtTEZS MAT BE OSED 15 TIE DCSXOh VEZTICAZ. PESCOULXIOH, LAIEIAL PTUTTUEE, MttlO. SOIL, ABD BASTE.

LATEXAL DIAISACE IS 90T PE&OTTED ROM A 7EXXICAL PE2COLAIIOH LATEX.. BOTH TESTICAL ABD TViTTFAT- DEAlBACE ARE PEESTTED FROM A LATE&AL DRAIXAGZ LATEX. A *A9gT-FB SOIL LATEX SHOULD BE DESIGNED TO ISHZSn FEXCOLATION. AN DI?E8UEABLZ LI5IX MAT BE USED OH TOP OF AST »Aggrg SOIL LATEX. THE WASTE LATEX SHOULD BE DESICBED TO PEWIT RAPID DBAXSACE THE BASTE LATEX..

HTLES: THE TOP T^m CAHBOT BE A BAXJLXZZ SOIL LATEX. A BAXXZ& SOU T^ryi MAT BOT BE PLACED ADJACEHT TO ABOTHEX »4jy»fg* SOIL T/TW*T OHLT A «A»*T1r» SOIL LATEX OX AHOTHEX LATEXAL mAT^CT LATEX MAT BE PLACED DZXZCZLT BELOB A LATEXAL DXAIHACE LATEX. TOU HAT USE 0? TO 9 y-rrag ABD UP TO 3 BABBIT? SOIL LATEXS.

ESTEX THE TOSSES. OF LATEXS IS TOUK DESIGS. If th« u«r cntars a valo* b«tw««n Z and 9 (•.(., 3). th« pro«r« ruponda 3.4 THE LATEXS AXE BUKBEXED SUCH THAT SOIL LATEX 1 IS THE TOP LATEX ABD SOIL LATEX 3, IS THE BOTTOM LATEX.

32 If the user entered 1, the program responds 5.5 SOn. LATES. 1 IS THE OHLT LATE*. If the user entered a value that is Less than 1 or greater p^r 9, the program responds

5.6 TOP MAT HATE 1 TO 9 LAZEXS. EHTEX THE BUMBO. OF LAIEZS IB TODS. DESICH. and the user must enter the number of Layers again. After -.hi uaer has entered an acceptable number of Layers, the program asks the following question:

5.7 IS THE TOP LATH AS UNVECETATn) &AND 01 (3LA7EL LATEZ? E2TTEZ TES 01 SO. The user should refer to the discussion for question 4.6 to understand the implication of this question. » After the us*r answers question 5.7,.the program instructs the user to eater Information describing the soil Layers by repeating a Loop of questions for each Layer. The Loop contains questions 5.8. 5.10, 5.11. 5.12, 5.13, 5.14, and 5.15. The first instruction, shown here for Layer 1, is 5.8 JLB'liK. THXC0ESS OF SOIL LAIES. ^ DF OKIES. If the user enters a value that is Less tham or efual to zero, the program warns

5.9 THIdHESS MUST BE GSZA7E2 THAI IXXO. and returns control to question 5.8.

After question 5.8 is satisfactorily smswered, the program asks the fol- lowing questions. The program does not chocs the specified numerical values for their appropriateness. 5.10 Eam. TEE POXOSXTT or son. LATH i a • 5.11 EnVJt THE FIELD OLPACITT OF $OEL UIIX i Dl TOL/70L. 5.12 EBTEZ THE WTLTT5C P01BT OF Son, L*TH ± Di TOL/VOL.

5.13 EKTOL THE ETDBAULIC COMDUCT1V11T OF SOU UTEI i IB IBCHES/H&.

5.14 EHTESL THE E7APOBJHION COEmCIIST OF SOn. UJT1 ^ IB OM)/(DAT**0.5). After asking questions 5.10 through 5.U, the program instructs the user to • 33 3 . LS ENTZX THI LATEX TITS FOR LATEX ^.

When data are being eatered for the first layer, the program prints the fol- lowing list of possible layer types. This list is not repeated for the other Layers .

5.16 E5TZX 1 FOR A VEXTICAL PEXCOLATIOIC LATEX, 2 FOR 4 UTTIiT. DRAI3ACE LATER, 3 FOR A BARRIER SOIL LATER, 4 FOR A. BASTE UTB1 AHD J FOE A. TUBTrrre SOIL LATEX HITS

If th« ua«r enters a value other »*^«" 1 throujh 5 (e.j., 7), the progr responds

5.17 ]_ rSVALID VAUZ—TX T AGAIH aad- repeats question 5.15 until aa acceptable response is (lv«a. Serreral roles fo-rerninf the ordering of layers la the i**«<^-*_ii design were jiven la question 2.3. If tne»e roles. are not followed, the program priats aa appropriate ••"'•^t aad retaras" control to question 5.15 to obtain aa acceptable Layer typ«. Hx«

5.18 THI TOP LAIZZ MAT HOT BE A MUTim SOIL LAIOL.

5.19 EITHE& A LATZZAL DRAUUUZ LAIOL OK A RAHRTTH SOIL LATEX tfZST FOLLOW A LATZXAL ORAI5ACE LAIZSL—TXT AGAI5.

5.20 A TURETTTt SOIL LATSL MAT 50T BI PLACET) DIXZCTLI BELOW AflOTSZX BABRI^H SOIL LAZZX.

After question 5.L5 is aaswered, the loop of questions 5.8 through 5.15 la repeated for the reat of thai Layers. After 'data for all layers hare b«ea specified , the program checks the layer type of the bottom layer. If the bot- tom layer ij a lateral draiaage Layer aad lesa than 9 layer* bare beea used ia the desifa, the program proridea the oaer with aa opporcaalty to eater data- for a barrier layer to be placed oader the bottom lateral drainage layer by Asking . •

5.21 A «A»*'rr» LAZZX SHOULD BE USED BELOV TEZ BOTTOM LAT23UL DRAI5AXZ LATEX.

DO TOP HAST TO ESTEX DATA FOR A nASHTFH LATEX? TES OK HO.

I? HO IS EtrrEXZD, TEZ MODEL ASSUMES TEAT DRAINAGE DOES HOT OCCUR FROM TEZ BOTTOM LATEX. If the bottom layer is a lateral drainage layer and 9 layers have already been used in the design, the program responds

5.22 A TURTTTTT? LATER SHOULD BATE BEEN SPECTTTED. TEE MODEL ASSUMES TBAT T^TTTBAT DRAINAGE DOES MOT OCCUR FROH IHZ fluiiuK LATER* A barrier soil layer most be used below the bottom lateral drainage layers if the program is to estimate lateral drainage fro* the bottom subproflle. If a barrier soil layer was not used, the program models the lateral drainage Layers In the bottom subprofile aa if they were vertical percolation layers. If the over answers TES to question 5.21, control is transferred to ques- tion 5.8 where the loop for entering data for a layer starts. If NO Is answered, the program asks question 5.23 If a synthetic flexible membrane liner is used la the design. 5.23 WHAT FRACTION 07 THE AREA DRAISS THROUGH T.TAF< nr TEE MEMBRANE OK WHAT TRACTION 07 THE DA1LT POTENTIAL PEZCOLATION THROUGH THE son. ULTZZ accsis an THE CITES OAT? ENTEJt BETWEEN 0 AND 1. If the valaa entered for question 5.23 is leas than 0 or greater than 1, the program responds

5.24 IHAPPROPXIATZ TALUE—TXT AGAIN. and question 5.23 is repeated. If aa acceptable value was entered or if a aeabrane liner «as not used in the design, question 5.25 is asked next unless the top layer in the design is a waste layer.

5.25 ENTER THE SCS BJNUF? CTRTE NUMBER FOR THE DESIGN TECETATTTE SOIL AND VEGETATIVE CUVUL UNDER ANTECEDENT MOISTURE CONDITION II. (BETWEEN L5 AND 100) The uaer most enter aa appropriate runoff curve msaber since the program does not check the numerical valaa. If the top layer in the design is a waste layer, control is passed to subroutine 7. OPES (question 7.1). Quaation 5.22 is not asked since the uaer will enter a rvincff curve somber in subroutine OPES. Control is paaaed to- subroutine 6. SITE (question 6.1) after aaki^s ques- tion 5.22 or the questions la subroutine OPEN. In subroutine SITE the program requests additional information describing the landfill design.

SITE DESCaiFTION (6. SITE) After the user .has completed soil data input, using either the default or options, the program asks the uaer for additional information on the

35 sit* design, la order to compute estimates of the water budget components In volant units, the program needs the surface area of th« landfill and inquires 6.1 ESTZS. THE TOTAL ARZA OF TEE SURFACE, IH SQUARE FEET. The computation of lateral drainage estimates 1* A faction of tha slope of the surface of the barrier aoil layer. Latarml drainage is also a function of tha ••••-''•"• drainage dlstaaca to eba collactor alone cha surface of tha barriar vil layer. Tbarafora, tha progm aaka for tba slopa and «••*->«»r" dralnaga distaaca at tha baaa of tha bottom lataral dtmlaaga Iayar in aaeh latarml dralnaga subprofila.

6.2 OTTO TSZ SLOPS AI TEZ BASZ OF SOIL UCTL ±, IS FOLCZB7.

6.3 SaiJUL Tgg_MATTMm PFATNiflT DISTA5CZ ALOIC TBZ SLOPE 70 THE COLLICTOl, 15 FLLT.

Thaaa two quaatioaa ara rapaatad for aaeh lataral dralaaga aobprofila. Aftar aaklag for tha alopa and dralaafa dlatanca for aaeh lataral drmiaaga subpro- fila, tha program paaaaa control to qoaation 1.1 if tha dafaalt aoU. data inpot option «aa oaad and to mbroatlaa SDCZI (qnaatlon 10.1) to' ehaek tha soil and daaiga data if tha aanual soil data lapat option vaa oaad.

CEA&ACTZ&I57ICS OF OPSI SITES (7. OPBf) If tha soil data snbrotttiaa dataets that a T«*<<»-*H is to ba stanlatad as baiag opaa (i.a., tha top layar is a «aata layar), tha following quaationa arc aakad:

7.1 LUTM THE SCS BUROFF CSS7E !!CKBZ£ FOR TEZ SOIL TZZTUU ARC 17EXAGE MDISTTJEC COromOB OF TBZ TOP BASTE LAZEZ. 15 AID 100) The oaer also has tha option of specifying tha fraction of tha total potential runoff that actually dralaa from tha surface of tha wuta Iayar. This is especially oaafal when tha top of tha waste call is la a pit without provi- slona for dralaafa. Tha qaeation is 7.2 WHAT fBAfiXZOsT Of TBZ "*TT.T POTZSTIAL XDBOFT DIAUfS UGH TBZ ST3LJACE Of TBE WASTE IAXZM Cfl'lU BJLTUUA 0 ABO 1. Tha uaar input is not cheeked. After this question is answered, control paasea to subroutine 6. SITE (question 6.1) to request additional design information.

MWJUAL CLIMATOLOCIC DATA EXCEPT 1AIBTALL (8. KTBLTR.) After tha uaar manually enters precipitation data asing subroutine MCBAZA, the temperature, solar radiation, winter cover factor, evaporative

36 zone depth and leaf area index data aay be entered manually using this subrou- tine. The program asks

8.1 DO YOU tZAHT TO ESTER OR CORRECT imum CLJ5JA70LOGIC DATA? LJKXER YES OR 50.

If the user answers 50, the program returns control to question 1.1 and assumes that the user will eater these data later or that the user wishes to use the cliaatologic data that was previously entered using either manual or default data input options. The program does not assign default values for these cliaatologic parameters when rainfall data was entered manually; there- fore, the user should enter these data for the **»-*y1»l ran to prevent unpre- dictable results. The user may enter default values for these parameters by using the default cliaatologic data input option, subroutine 2. DCSAlA. and then manually replacing the precipitation data using the manual cliaatologic data input option for rainfall, subroutine 3. MCSAZA. If the user answers TES to question 8.1, the program asks

8.2 SO TOO WAST TO ESTER TEMPERATURE DATA? UTILR, TES OR 50. If the user answers 50, control is passed to question 8.12. If TZS is entered, the program asks

8.3 DO TOU HAST TO miut A DIFTEREST SET OF MDRTHLT TEMPERATURES FOR EACH TEAR?

ENTER TES OR 50.

(IF 50 IS OTTERED, THE PROGRAM WILL USE THE SAKE SET OF MDHTHIT TEMPERATURES FOR EACH . TEAR OF STMTTLATIOH.) If the user enters 50, control is transferred to question 8.10. If TZS is answered ia response to question 8.3, the program asks a loop of questions (8.4 through 8.9) that is repeated for each year for which pre- cipitation data ware entered. The program first prompts 8.4 UIJLR MUM \ ni-v TEMPERATURES FOR 1970. If 1970 is not the first year (i.e., it is not the first tiae through the loop) , the program gives the user an opportunity to use the same value* that vere used during the previous tiae through the loop instead of entering new values. The program asks 8.3 DO TOD HAHT TO OSE THE SAME VALUES AS THE PREVIOUS TEAR? UTI.LK. TZS OR 50.

37 If the user answers TES, the program returns to question 8.4 for the aaxt year of values. If question 8.5 is answered HO or if it is the first rlne through the loop of questions 3.4 through 8.9, the progrsa instructs the user to 8.6 OTZZ. MDHTHLT VALUES 101 IANUAZY THROUGH JUNE 1970 Df DECREES F. EHTZZ ALL 6 VALUES is IHZ SAME LIKE. —— If fewer than 6 values are entered, the *•—<»<»£ values are asanad to be zeros. A/tar tha oaar responds to quast±on 8.6, tha program aaks

8.7 EHTZZ aOKTSLI VALUES 101 JUU TBEOUG& DECZMBO. 1970 19 Twamrg F. 6 VALUES n THE SAKE LISE. """" After tha user responds, tha progrsa lists tha 12 *«luas and than aaks tha user if tha raloas aaad to b« corrected. For exaaole,

8.8 THESE AKZ TSZ XSPTTT TEHFEBA7U&Z VALUES. IAS.-JUHE JULI-DEC. 24.3 68.2 26.7 66.1 31.2 53.9 45-3 49.9 54.2 41.8 67.2 35.0 • 8.9 DO TOtT BAST TO CBA2R3 THET? TES 01 BO. If tha user answers TES, control returns to question 8.6. If tha user answers HO, tha loop is coatpletad and starts again at question 8.4 for tha next year of data. If all years of taatparatara data have been entered, tha progrsa passes control to question 8.12. If tha user entered BO la response to question 8.3, tha progrsa would have responded * 8.10 U'UUL THE tBHTHLT TBffEHZOXZS 15 DEOLZES F. TO BE USD FCSL ALL TEAJS OF SC07LAXI08.

EBTZZ VALUES 701 lAHHAJCT THBOOGB JUHE. E5T23L ALL 6 VALUES Of THE SAME LUTE. After the user responds, tha program prompts the user to

8.11 m'llR MDHTHLT VALUES FOR JULT THROUCB DtCIMBEJL IB DECTFTS F. ESTZK ALL 6 VALUES 15 THE SAME LI5E. Tha program then prints a List of the 12 values as in mesaage 8.8 and ask tha user if they oaed to be corrected (question 8.9). If tha raluas need to be

38 changed, control Is returned to question 8.10; else, control is transferred :o 8.12.

After the temperature values have been entered, the program asks

8.12 DO TOT HAST TO ESTEZ SOLAi RADIATIOH Dill? CHTLK. US OS. 50.

If the us«r answers HO, control Is passed to question 8.20. If TES is entered, the program asks

8.13 DO YOU HAST TO ESTEZ A DHTESEST SET OF SOLAi RADIAHOH VALUES FOR KiHT TEA*? TES OK 50.

If tha u««r esters HO, the profraa will o«« the sane Mt of aonthly solar radiation (insolation) values for each year of slatilatlon «n«j control Is passed to question 8.18 for tills input.

If TZS Is answered ia response to question 8.13, the profrsm asks a loop of questions (8.14 through 8.17 and 8.9} that is repeated for each year which precipitation data ««re entered. The program first prompts

8.14 OTTO tOTTBLI SOXJJL BAOUXIOV 7ALUZS FO& 1970. .. If 1970 Is not the first rear of data,, the program asks question 8.5 to give the user an opportunity to use the same values that were used during the last tlae through the loop instead of entering new values. If the user wishes to os« the saae values, the program returns to question 8.14 for the next year of values. . If the user wishes to enter new values or if it Is the first tlae through the loop of questions 8.14 through 8.17, the program prompts the user to

8.15 OTTO MORTHLI SOXJL2 BaDlATZOH VALUES PDl JASUAKT THBOUGH JTfflZ 1970 E5 LANCLTTS /TUI. OTZ* ALL 6 VALUES 19 TEE SAME LXSE. After the user responds, the program asks

8.16 EBTZ1 tOBTBLX SOLUL UDLUXOtf VALUES POl JT7LX TRB00GB DECEMBER 1970 U LA5CLTTS/HAI. * ESTEK ALL 6 7ALUES IS TEE SAME LINE. After the user responds, the program lists the 12 value* as shown below and then asks question 8.9 to see If the values need to be corrected.

39 8.17 THESE ARE THE IHPUT SOLAS. RADIATXOH 7ALOES. JAH.-JUHE JULT-DEC. 220.0 450.0 250.0 420.0 285.0 395.0 330.0 350.0 420.0 290.0 448.0 230.0

If tha valoas naad to ba changed, tha program returns to qnaatlon 8.15; other- wise, the loop of questions is completed and starts agaia at qua*tion 8.14 for the next year of data. If all years of solar radiation data have «nt«r»d, th« profT««. p««««a eoaerol to -qiMStioa 8.20. If the o»*r «a«w«r«d NO la r*apoa«« to qa«»ticm 8.13, ch« prograa vou_Ld

8.18 Lam TEE iCSTELI SOUS. RIOIATION 74LUES 13 UHGLETS/DAI TO BE USED TOR ALL TEA2S 07 STMinaTIOlf. ENTER VALUES FOR JIHUAXT TBROTTCH JUKE. ESTE& ALL 6 VALUES DT TEE SAHE LI5E. Aftar th« a»«r r%»poad«, th« profra* internet* tte a««r to

8.19 ESTER *u* ' H1-T SOLAR JADLinOH 7AL3O tl LABCLETS/DAI FOR JUU TBBOUGB ESTER ALL 6 VALUES 15 THE SAME LIKE. 7h« profrsB th«n prints « LL«t of tba 12 v*la«« &• La •••safe 8.17 and ukj tha osar U thay aaad to ba eortactad (qoaatlov 1.9). If tha valoa* oaad to ba chaagad, control is ratumad to qaastioa 8. 18; otharvlsa, control is trsas« farrad to qoastloa 8.20. After taa solar radiation vmloas hara baaa aatcrad, tha profraa aslcs

8.20 DO TOU UAHT TO ESTER EVAPORAXT7I Z3«t ESTER TES OR BO. If tha oaar aaflwrs NO, control is trmaafcrrad c* fwaation 8.23. If TES is aatarad, tha profrsB iasrracts tha usar to 8.21 LB'IER THE EVAPORATIVE ZOHE OC771 Of TO BE USED FOR ALL ™*»< OF STMUlATIO*.

CONSERVATIVE VALUES ARE: 4 IH. FOR BAREGROUHD 10 Of. FOR FAIR OLASS 18 15. FOR EXCELL2TT GRASS Uolika tha input for tha othar cllmatoLosic par«sMt«r«. « different v«Iu« for tha rraporativa zona dapth oay oat ba «nt«ra4 for aaca of tha various fairs of siaulatioa. Tha sing la evaporative zoaa depth entered in response to

40 question S.21 is used for each year of simulation. After the user answers gfrj* question, the program responds

8.22 THE EVAPORATIVE ZONE DEPTH IS 10.00. DO TOT WANT TO CHANGE IT? ENTER ISS OR HO.

If the us«r enters TZS, the program repeats question 8.21. If NO is entered, the program passes control to question 8.23.

After the oa«r has entered the evaporative zone depth, the prosran asks

8.23 DO TOU WANT TO ESTER WINTER COVER FACTORS? ENTER TES OR TO.

If the user answers 50, control is passed to question 8.28. If TES is entered, the program asks

8.24 DO TOD HAST TO ESTER A DIFFERENT WINTER COVER FACTOR FOR EACH TEAR? ESTER TES OR 50. If the user enters SO, the program will use the seme winter cover factor for each year of • isolation aad control is passed to question 8.27 for tht> input.

If TES is answered in response to question 8.24, the program asks ques- tions 8.12 and 8.26 for each year which precipitation data were entered. The program first instructs the user to

8.2f ESTER THE WINTER COVER FACTOR FOR. 1970 (BETWEEN 0 AND 1.8). After the user responds, the program lists the value and asks if the value needs to be corrected.

3.26 THE UINTJJt COVER FACTOR PIERED IS 0.70. DO TOU WANT TO CHANGE IT? ESTER TES OR NO. If the user indicates that the value needs to be changed, question 8.22 is repeated; otherwise, question 8.22 is asked to obtain the winter cover factor for the following year of sisnxlation. If all years of data have been entered, the program passes) control to question 8.28. ' If the u«er entered SO is response to question 8.24, the program would have responded

8.27 EH111 T^T WIRIER UUV&R FACTOR TO BE USED FOR ALL TEARS OF STMTTUTIQg. After the user responds, the program, using message 8.27, lists the value and asks the user if the value needs to be corrected. If the value needs to be changed, question 3.27 is repeated; otherwise, control is transferred to ques- tion 8.23.

41 After the winter cover factors have been entered, the program asks

8.28 DO YOU HAHT TO ENTZB. LEA7 AHJ.A IHDEI DATA? ESTER. YES OK HO. If the user enters NO, usual cllaatologic data input Is concluded tod control is passed to question 1.1. If YZS is entered, the profram responds 8.29 13 LEAF AREA TKPTCT.S tfDST IE ENTERED TOR A TZAR Of STMTTLATIOH. yA^r .nTOEX TS CI3MFQ S U) OF *^FE DAIS OF *H* MRI gng VM wji ^ AND THE T.TAT A91TA SEASUXZHEST . TO SIAS7 WITH DAT 1 AND CUD WITH OAT 366.**

DO YOU fZABT TO LflLUL A DHTSBZBT SZT OF LZAJ ARZA I5DICE2 K3R. EACH TEA&? EHTEK. TES OK NO. If the o»er answers NO, the profram will use the save set at l«if area indices for each jear of sianlation and control is passed to question 8.33 for this input. If TZS is answered in response to question 8.29, the profreei asks ques- tion* 8.30, 8.31, 8.32 and 8.9 that are repeated la a loop for each Tear which precipitation data were entered. The profram first prompts

8.30 E8TEZ LEA? AKEA TTTOTCES FOK 1970. If 1970 is aot the first 7«ar of data, the profraei asks question 8.5 to the user an opportunity .to use the sastt lad ices that were ua«d durinf. the last time through the loop instead of entering new values. ' If the' user vishes to •use the sane indices, the profrssi returns to question 8.30 for the next year of values. If the user wishes to eater new values or if it is the first time through the loop of questions 8.30 through 8,32, the program instructs the user to

' 8.31 ESTTJL TOO 7ALOZ3 FZZ LZBZ—TBZ JULXAH DAXZ AND TBZ T>A* *•»> HEA3TJ1ZMZHT FOR DDES 1. The leaf ares, *^*1*^* are aot monthly average values as are the temperature and solar ndlrcioa data; instead^ the user most select 13 dates of the year (including Julian dates 1 and 366) which describe the vegetative growth. The program interpolates the leaf ares, linearly be ewe en the specified dates. The Julian date for index 1 must be 1 and the Julian date for index 13 must be 366. Question 8.31 is repeated until all 13 leaf area indices are entered. At that time, the program prints the leaf area indices (message 8.32) and asks the user (question 8.9) if the values need to be corrected.

42 8.32 THESE ARE THE ESPUT DATES AND LAI VALUES FOR 1970. DAJZ UL1 ——— 1 0.0 31 0.10 66 0.20 99 0.60 130 1.00 160 1.40 190 1.70 222 1.60 255 1.20 280 0.80 210 0.30 340 0.10 366 0.0

If the values need to b« changed, the program returns to question 8.21; other- vise, the loop of questions is completed and starts again at question 8.30 for the next year of indices. If *ll years of data h«re been entered, the aanual cllastologic data input is concluded and control ij p**»«d to qo«stloa 1.1. red NO in r**poo*« to ^o««tloa 8.29, the prograa would ircre r*«pand«d

8.33 QTTOL TEE TTAT tgTA ERDICI5 TO BZ OSO . FOR ALL TZARS OF S MJlUXOil.

and than a*k*d qna^tlon 8.31 until all 13 leaf ar«« laiileea hvre been entered. The prograa voold then Hat the leaf area tad tcee aa la aeaeage 8.32 and a£c if these value* oeed to be corrected. If the «*la*a a«ed to be changed, con- trol la returned to question 8.31; othervtae, cbe "**"J^ ellmatologic data input iJ concluded and control la tranaf erred to eeeation 1.1.

ZDITTSG PaZdPTTJinCK DATA (9. PMCHT) This subroutine allow* the over to edit LLa*a of the precipitation data. The user aay act enter aev years of daca La thu •«»ro«tlae. Thla subroutine Is <*

9.1 DO YOU UAJfT TO ' »•' » 01 CORRECT HZ PUCTTITAITOW 7ALOZS ESTZRZD TZS 01 BO. If the user answers HO, control is passed to sebrowtloe 8. MTRLTS. (ques- tion 8.1). If the user enters TZS, the program prints a list of years for which precipitation data have been entered.

9.2 DATA EZIST FOR £ TEARS; 74 75 76 7? 78

The program then instructs the user to 43 9.3 DTTZ1 TEJUL TO BE CHECKED.

If eha oaar aacars 4 yaar oehar than ehoaa liscad in aaaaag* 9.2 (a.g., 82), eha program raapoads

9.4 TUT* 701 TZJLl 82, All HOT IB THZ DATA FTLI. sod quaacioa 9.3 is rapaaead. If eha uaar ancars * yaar chat is in eha pracipieaeioa daca sac, tha pro- gram rasponds

9.5 IHZ OA£1 TOl 78. 1ZZ:

78 0.01 0.0 0.11 0.0 0.0 0.0 0.02 0.40 1.82 0.0 1 78 0.0 0.0 0.77 0.0 0.0 0.0 0.22 0.01 1.44 0.01 2 78 0.0 0.0 0.01 0.46 4.60 2.13 0.0 0.01 0.06 0.0 3 78 0.70 0.27 0.23 0.30 0.0 0.0 0.0 0.0 0.0 0.02 4 aad so on, cmcll eha 37 !<«•« of praclplcaeion v«lu«s «ra priacad. Tha progr than as its

9.6 DO TOT HAST TO CHASGZ 01 COSX2CT AST OT TEESZ 7ALUZS? TZS 01 HO* If eha usar ancars 10, eha pregrsm paasas concrol to quastion 9.11. If. eha usar aasvars US, eha program IASCTOCCS eha osar co

9.7 ESTZX KUUBEBL 07 LIST. TO BE CHANGED. If eha osar jaacars a aombar ehae- is lass ehan 1 or graaear chaa 37 (!.«., eha e'oeal auabar of ^««« par- yaar) , eha program rasponda

9.8 LI5Z 5UMSOJS MEST USd ROK 1 TO 37. 732 aad rapaaes quaadoa 9.7 If a Tali4 aoBfaar is aasvarad in raapoaaa eo quaseion 9.7, eha program raaponda 9.9 ESTH TEE TEH DATLT PIZCZPTTAIIOB 7ALUES. Tha osar ouse aaear «^T raluaa oa eha sama Una. Tha rulas for aacarlng pra- eipieaeioa d*ca vara dascribad previously in eha pare of ehis saceioa aaciclad "ZULZS". Aftar eha usar ancars eha pracipicacioa raluas, eha program asks

9.10 DO TOT «aHT TO CHAHCE AHOTHE1 LISE 07 TfilS TSAl? EBTE1 T£S 01 SO. If eha usar aasvars TZS, eha program raeuros eo quascion 9.7.

44 If the user enters HO in response to question 9.10, the program asks

9.11 DO TOT HAST TO CTTFrT OR CORRECT ANOTHER TEAR OF PRECIPITATION VALUES? OTTER TES OR HO.

If the user answers TES, control is passed to question 9.3. If NO is entered, the program passes control to subroutine 8. KTRLTR (question 8.1) where data for other filmstologic parameters can be entered. LS prtclpitation daca her* act b««n «at«r*d and th« QJ«r ansvvrs TZS to 9.1, th« program rcrpcndi

9.12 THE DAIJL FILZ COHTA1SS 50 PE£d?HAriCW 7ALDZS. The u««r ouat «nc«r precipitation data either by the •**!"%! or default cliae- tologlc data input option* before the data can be edited. After message 9.12 is printed, control is passed to subroutine 8. iCZLTS. (question 8.1).

son. ASD DESIOT DATA (io. SDCHT) Bhen the user indicates that the manual soil data input option is to be used, the program glres the user the opportunity to edit the sell and design data in this subroutine. The program g*n« the subroutine after the last of the design data is entered manually (i.e., after question 6.3) and also when the user answers TES to question 2.1. The program first lists the design and soil data as follows: 10.1'THE DESIQi ASD SOU. DAXA. A&E: (TEE US? HUifBEl Of EATH LZBE 07 DAZA IS TSE LXBE 5UHBE1.)

TITLE: OEAJS7IL CGKPAZISOH FOl OPEH LARDFTLL

i ' '-•• - STATTT.I, HASUSCTOH 1951-1973

TZIU: AUGUST 31. 1983 f Of LATEZS, t 0? LIHESS, LZNEZ LEAKAGE nUCTTOH, KOH07? PTULCTION FOR OPE5 SITES, ABD C3-II: 3 0 1.000000 0.0 20.000000 4

THXCdESSES s 108.00 12.00 24.00 0.0 0.0 0.0 0.0 0.0 0.0 5

POROSITIES: 0.5000 0.5000 0.3000 0.0 0.0 0.0 0.0 0.0 0.0 6 45 FIELD cAPAcrnES: 0.4500 0.3800 0.4900 0.0 0.0 0.0 0.0 0.0 0.0 7

WTLTISG POISTS: 0.1500 0.1500 O.L500 0.0 0.0 0.0 0.0 0.0 0.0 8

E7APO1ATIOH COETFIdESTS: 3.800 3.300 3.100 0.0 0.0 0.0 0.0 0.0 0.0 9 HimUITLIC CONDUCTIVITIES: 0.14169991 14.1699991 0.00014170 0.0 0.0 10 0.0 0.0 0.0 0.0 11

SDBJACE AK£A: 12000. 12

LATEK TTPES: 423000000 13 LATE2 SLOPES: 0.0 2.00 0.0 0.0 0.6 0.0 0.0 0.0 '0.0 14 LATH. DlAITUEg LZBCTSS: 0.0 2S.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 Tha profraa than aaka 10.2 DO TOU BA5T TO CBANCE AST LISES7 TES 01 80.

If tills Ij th« Jir»t tia« th»t this qa*jtton li ukad «nd th« u»«r «nsv«rs NO (i.e., th« a««r does not ««at to ehang* any of ch« orlfittAl data), th« prograa rctaras eencrol to qa««tlon 1.1. If th« a»«r «a«v«cs HO aad b*d prvrlotuly changed SOOB Ilaa«, ch« profT^ aslu question 10.9. f±r«t da* that tb« o««r aa*w«r» T£S in ra*pon»« to ejoasdoa 10.2, tha profraa raxpoada 10.3 DO TOT BAR TO CH13CI THZ TTTLT? LH'IUL TZS OS, 90. If th* oaar anvwara BO, tha pro»ra» uka qoaacion 10.5. If tha oaar aatars TZS, tha profraa Inatneca tha uaar to

10.4 hJITlR TITLZ 0V LINZ 1, BTTSR LOCAIIOH OT SOLID WASTE SITE OH LINE 2 AND ETCT. TODAI'S DATS 0V LISE 3. and than rapaau quastlon 10.2.

46 If eh* user answers TES in response to question 10.2 and it La aot the first tine that question 10.2 vu asked or if the us«r answers NO to ques- tion 10.3, eha program responds 10.3 sans. THE NTJMBEB. OF THE LINE. After eha user eneers eha noeber of ehe line of daea to be changed, eha pro- gram responds

10.6 ZSTEXTHE DlZA VALUES FOl LINE £. DO SOT U*iiL THE LDTE SUJJBEB,. ~~

Aftar th« u»«r aatars tha* vmlo*«, th« program rataras control to ques- tion 10.2, but eha prrogram first prints aasaagas if tha osar changed Lisas or 12. If tha os&r changed Line 4, tha prog ran vans

10.7 17 IS SZCCtCZHDEB TffAT TOU R£ZST£R ALL SOIL i? TOU WAIT: TO CHANGE THE nnta£& OF LA.TE&S; OTEESUISE, TOO MUST CHABJ3 LUTES 5 THROUCE 11 AAD 13 THROOCT 15* If tha uaar changed Una 13, tha profrasi ««rn«

10.8 TOO MAT ALSO HZD TO CEAHGZ LISTS 4, 14 AJB 15, U. TOU CBASCE THIS LXH2.

If tha o»«r h*« sada aoaw eh*ng*a aad than answers 90 to question 10.2 indicating that all of tha changes h*v« bews aade, tha program asks

• 10.9 DO TOT HAflT TO CEZCI THE DAZJL SZT ACAI5? LNTLH TES OK 80.

If eha user answers TES, control is returned to aessage 10.1. If tha oser answers HO, tha profrssi raroras control to question 1.1.

ODT70T COHT8OL (11. Whan tha user answers 3 or 5 to question 1.1, tha program rmis eha »iaai- Lation and produces output. Tha program requires information on eha Length of simulation aad th« detail of oarput. The program first asks

11.1 E0¥ J1A5T T£A1S 07 OUTPUT DO TOU KAAT? ' (BET9ZZS 2 USD 1 TZA2S MAT BE USED.) If eha user answers 3 to question 1.1, tha program also asks eha next two questions. 11.2 DO TOU ourr DAILT OUTPUT? iSTLH. TES 02 NO. If tha user answers TZS, dally results will be printed for each year. A response of HO suppresses this output. The program than asks

47 ii.3 DO TOT HAST SOTTHLT TOTALS? TZS OK 50.

If tha usar aaswars US, monthly totals of tha vater budget components will be printed for each year. A. response of HO suppresses tfrts output. 12 tha user had entered 5 in response to question I.I, questions 11.2 and 11.3 are act asked since daily and aonthly output ara act available for this ourput option. The program starts the sianlatlon iftar question 11.3. After tha program producaj all of tha requested output, tha program returns control to ques- tlon 1.1.

LOA2X3C raZCIPITATOH DATA TUX. OTT-LI51 MEDU Bulldiaf pracipitatlon data fllaa on-L±na can ba haaea quita axpaaaira, aapaelaUj vhaa data for acraral y«*rs Boat ba aatarad. Thna, It say ba daalrabla to hnlld filaa off-llaa (a.g.f punch carda, aagnatlc tap*, floppy disk, ate.) aad than «ntar tha aatira flla iato tha gTT-* program, lagardlaaa of tha off-Llaa aarfii uaad, aaeh y«ar of data ma»t ba rapraaaatad by 37 racorda, aaeh eonalxtlaf of 12 rarlablaa. Tha first •vazlahla (fotaat 110) ahould eoatala tha yamr of tha data right Juartiflad (a.g., 1976). Tha nazt 10 Talaaa (fosaat F3.2) Miat contain tha dally practpltatlon data. Tha last variabla (format 110) !• tha maabar of tha racard (l.a., 1 to 3T). Oaca tha flla la built, tha u*ar «ay log on to tha VCC syvtax, raad tha flla, and stora it tadar tha data aat naaa TAFE&. • Than, folloving tha eoaeand KCKEEL?, tha uaar can anxvar "I" to quaatlon 1.1, **50M to quaation 1.2, "*TO" to quaatlon 3.1, "SO" to quaation 9.1, aad "TZS" to quaation 8.1. This saquanea vill allow tha uaar to antar cliaatologle data (othar than rainfall) •anually. If it 1* dadrad to chadt tha precipitation data, quaatlon 9.1 aay ba anxvarad «lth a "TIS". A, procadura a^allaz to that daacribad abora for rainfall «ay alao ba osad for othar typ«a of data, although ordinarily thara !• no rnapaning naad siaca othar data filaa ara aBch laaa langthy. Uaar« ~***4»t to lead othar data from off-Uaa should contact Hr. Anthony Glbaen of tha U.S. Ar»y Znglaaar Watamya Sxpariaaat Station for guldaaca. Hr. Glbaon «ay ba raachad by talaphona at (601) 634-3710 fimiMrrmi or 542-3710 (TTS).

SA7IBG PUCXFITAXTOK DA1A FILZS Tha fi-9 program is vrlttan such that precipitation data ara storad p«r- aanantly. Thus, onca a aav pracipitatioa data flla Li eraatad aad antarad it automatically raplacas aay previously storad pracipitatlon data. Tha follow- ing tachaiqua «ay ba osaa to saw old praclpitatlon data filaa bafora antariag nav praclpitation data. ?or exaaple, assuaa that the user has manually entered 20 years of pre- cipitation data for Tickaborg, Mississippi. Also assuae that the rest of the cLlaatologic, soil, and design data have been entered and chat onrpot has been printed. At this point, tha user nay s«v« th« precipitation data stored on tha ilia TAFEA under anothar oama by oaiag the EDIT, SAVE, and END commandj as follovi after the o»er stop* the HELP program and the eovpoter systea respond* 2ZADT.

EDIT TAPE* SATE 7IdS

The o*er nay also perfora the »eme task osing the folloving et

COPT TAPE4 7IdS

The 20 years of precipitation for Ticks burg, Mississippi, are now stored on the persanent file oaaad VTO1S. The oser can now ran the sod el with another set of precipitation data, without loeing data for Ticksbarg. To retrieve the precipitation data file for Ticksbarg (stored ander the file asae of the over aery enter the followinf

EDIT TICTS SATE •• TA?E4

The over 0*7 also retrieve the precipitation data file using the following coaaands:

DELETE TAFE4 SOUICB COPT Tiers TAPS* This will cause the precipitation data for Ticksbarg to replace the existing precipitation data, and the aodel may then be ran using the Ticksbarg precipi- tation. data.

49 SZCTXOV 5

ROGKAM OUIPUi

OTXODOC7ZOH the EZL? program always produces output consisting of the identifying labels and input data (except daily precipitation) supplied by the user, and a summary of the slaolation results. Dally, monthly and yearly output may be obtained at the option of the near. Information presented la this section deecrlbea the output data sufficiently to allow most users to understand and interpret results obtained from typical program mna. More detailed explana- tions are presented in the program documentation (3). Complete input/output listings for thnee example runs are presented in Section 6.

SUWJ4JCT uuirui Basic program output composed of all default and manual input Information «"» tifying labels) except dally precipitation data, and summary results are always reported. Input data have been described in Sections 3 and 4 and will not be discussed further herein since users should have' no dlffi- culty in interpreting this information. Summary output data are described b*low. Example output is presented in Section 6. Occasional reference to Figure 2 may be helpful in understanding some of the terminology used in describing program output. Following the input data summary, the program produces a table of the daily results, a table of the monthly totals and a table of the annual totals for each year of aiamlatlon if these options are used. If a different set of climatologlc data was umed for each year of simulation, these input values other than precipitation data would be printed before the results of each year of siaalatloa. After tarn results for all years are printed, the program pro- duces a summary of the output. The summary includes average monthly totals, average annual totals sad peak dally values for various siaalatlon variables. The program reports average monthly totals for precipitation, runoff, evapotranspiration (total of evaporation from the surface and soil, and plant transpiration), percolation through the base of each subproflle, and lateral drainage from each subproflle. These results are reported in inches. The output values indicate averages of the monthly totals for a particular month of all years of siaalatlon. For example, if 5 years of siaalatlon ware ran, the reported average mthly precipitation total for March would be the aver- age of the 3 monthly totals for March precipitation. 30 The next cable In the summary our put is 4 Hating of the average totals for the siaulation period. Average annual values for precipitation., runoff, evapotranspiration, percolation through the base of each subprofile, and lateral drainage fro* each subprofile are reported In tern of inches, cubic feet and as a percent of the total average *™i«*i precipitation.

la the last summary table, peak dally values for precipitation, runoff, percolation through the base of each sabprofile, and precipitation accumula- tion on the surface la the form of snow are reported la terms of inches and cubic feet. These values represent the *••*-'•"• values that occurred on any day during the simulation period. The table *]•* contains the maximum head on the barrier soil layer of each sabprofile end the ••<«•<»„- ^d mrt^^pm joil moisture content of the evaporative zone. These variables are reported in inches.

The data reported in these summary tables are sufficient for rapidly screen-ing alternative designs and roughly slzlag drainage and leachate collec- tion and treattent systems la most cases. However, more detailed information which shows trends and variability la the results may be obtained by request- Ing annual, monthly or dally output.

AHNUAL, JONTELT ABD nATTT UU1PUT

If the'user requests detailed output, the program trill print annual totals of precipitation, runoff, evapotranspiration, percolation through the base of each sabprofile, and lateral drainage fro* each sabprofile for each year of siaulation. Each of these output variable* are reported in terms of inches, cubic feet and as a percent of the total sntmsl precipitation. Th« program also lists the soil moisture contents smd now accumulations at the start and end of the year in inches and cubic feet. Example annual output is show in Test Cases 1 and 2 of Section 6. If the user requests monthly output, the program produces tables which report monthly totals la inches for precis itatlo*. roooff, evapo transpiration, percolation through the base of each sabprofile, emd lateral drainage from each subprofila for each year of simulative,, mvetaly output is shown in Test Case 2 of Section 6. If dally oatpat Is requested, the program rriats a table containing the Julian date, smd the dally values of precipitation, romoff, evapo transpira- tion, head OB the soil barrier layer at the K*M ef the cover, percolation through the baa* of the cover, total lateral drainage from all subprofiles in the cover, head on the soil barrier layer at the base of the landfill, perco- lation through the base of the landfill, total Lateral drainage from all sub- profiles below the cover and the soil moisture con teat of the evaporative zone. Where applicable, the units of the variables are In Inches, except for the soil moisture content which Is reported ia dls*nsionless fora (volume of water/voloae of soil). The program prints aa asterisk after the Julian date for dates ehon the mean temperatnre is below freezing (32*T) . Example daily output is shown below for the first 10 days of a year of siaulation.

31 HATTu otrn"TTT FOI 74

DAT •UXK 1flJHOFf • ET uuvo. CUVUL CUVLJt BASz DEZP BAS! son. grin PZZC. T»ATTt HZA, D PBLC. OLLDf BAIZZ IX. IB. IB. IV. IB. IB. ur. IB. IB. IB/IS ^^ ^ MH^^^m

1 0.04 0.0 0.083 0.0 0.0 0.0 0.0 0.0 0.0 0.3172 2 0.0 0.0 0.067 0.0 0.0 0.0 0 .0 0.0 0.0 0.3105 3 0.43 0.0 0.139 0.1 0.0028 0.000 0.0 0.0020 0.000 0.3349 4 0.0 0.0 0.021 0.3 0.0007 0.000 0 .0 0.0001 0.000 0.3323 5 0.0 0.0 0.070 0.3 0.0027 0.001 0 .0 0.0026 0.000 0.3253 6 0.04 0.0 0.091 0.2 0.0028 0.001 0 .0 0.0025 0.000 0.3201 7 0.39 0.0 0.131 0.3 0.0040 0.002 0 .0 0.0034 0.000 0.3416 8 0.0 0.0 0.026 0.5 0.0010 0.001 0.0 0.0012 0.000 0.3385 9 0.0 0.0 0.070 0.4 0.0026 0.002 0.0 0.0030 0.000 0.3315 10 0.0 0.0 0.070 0.4 0.0026 0.002 0.0 0.0024 0.000 0.3245

52 SZC7IOH 6

la this section three complete exasples (test cajes) are presented. Test Case 1 repreat.uts a. typical open landfill, Test Caae 2 represents a typical cap or cover, and Test Caae 3 represents a closed landfill composed of the waste/drainage/liner Layers from Test Case 1 and the cover from Test Ca«« 2. ?or each txasplt th* input data arm •aaa.rizftd and to* ca«pl«t* input/output listing is rvpredncad. D«tall«d output without tfa« optional daily and aonthir output is prascntad for last CaM I. Dvtallad output with monthly totals is prm««ntmd for last Caa>« 2 and only summary output is pr*s«ntmd for Taat Cas« 3.

CAST. 1 Test Case 1 represents an open landfill composed of a waste layer, a drainage Layer, and a low-permeability (barrier) soil liner. So synthetic membrane liner was used. The characteristics of a coarse sand (default soil type 1) were used to model the behavior of the waste'layer. Since *h^« soil has a very high hydraulic conductivity (11.93 inches per hour), the net effect is to prevent the waste Layer, as modeled, from Inhibiting drainage. The input data and input/output listing are presented below. Monthly and daily output wire not requested, but •••p™*1 totals wire requested by asking for detailed output. Data for Test Case 1 Location: Sew Orleans, LA Length of "•<«*«i1 record used: 3 years (default data) Vegetative cover: bare ground (i.e. ao vegetation) Evaporative son* depth: 6 laches Fraction of area contributing to runoff: 0.3 SCS runoff curve number: 65 Area of site: 231,000 square feet Number of Layers: 3 Layer 1— Layer type: 4 (waste material) Soil type: 1 (coarse sand, default) Layer thickness: 60 inches Layer 2— Layer type: 2 (Lateral draiaage) Soil type: 1 (coarse sand, default) Slope ac bottom of layer: 22 Drainage length: 25 feet Layer thicimesa: L2 inch** Layer 3— Layer type: 3 (barrier soil with no synthetic eeetbraaa) Soil type: 20 (especially pr«p*r«d Iowp«r»^billt7 b*rrl«r »cil, dafnlt) 24

7ZS7 CISC 2

T*st CAM 2 r«pr«««nt* « typical !»««»» m eor«r (cap) eoHpo«*d of a top Lar«r of soil «upporrlaf a fair *taad of iraaa, a dzainaf* Lay«r, and a low p*r«aabilit7 (barriar) soil T1n*r» Ho synthetic Mabran* «•« o««d. Default data deaeribinc the frovch of the gxaM, leaf area iadex, etc. for the 5enr Orleaaa area were o«ed. The iapat data and lapat/octput liatinf are pre- sented balov. Monthly aad atmnal ootpat were requested. Pata for Test Case 2 Location: Sew Orleans, LA Lenfth of *«-ig^«\l record vsed: 5 year* (default data) Vegetative cover: fair (rasa (default data) Evaporative tone depth: 10 inchea - Area of site: 231,000 square feet Hoaber of layers: 3 Layer 1— Layer type: 1 (vertical percolation) Soil type: 12 (silt/loam, default) Layer thicJmess: 24 inches Layer 2— Layer type: 2 (lateral drainage) Soil type: 1 (coarse sand, default) Slope at bottosi of layer? 31" Drainage length: 175 fast Layer fh-frkness: 12 inches Layer 3— Layer type: 3 (barrier soil with no synthetic aaabrane) Soil type: 20 (especially prepared lov-pera*ability barrier soil, default) Layer thidoass: '24

54 TZST CIS! 3

Test Case 3 represents a closed Landfill consisting of th« cover (cap) used in Test CUM 2 end the waste Layer, lower drainage Layer, and \JS*T used in Teat Case 1. Ho synthetic aeabrane vaa osed in either the cover or the Liner. The input data and input/ output listing are presented belov. Only ii i Binary output veva recjuested» Data for Teat Case 3 Location: Sew Orleans, LA. Length of rainfall record used: 5 years (default data) 7efetative cover: fair grass (default data) Svaporative zooe depth: 10 inchet Area of site: 231,000 aquare feet Htaber of Layers: 6 Layer 1— Layer type: 1 (rertical p«rcolation) Soil Cjp«: 12 (silt/loam, default) Layer rhirkneaa; 24 inchea Layer 2— • Layer type: 2 (lateral draiaafe) Soil cyp«: 1 (eoara* saad, default) Slope at botto« of layer: 32 Drainage length: 17 3 fe«t Layer thiekneaa: L2 inchea

Layer 3— Layer type: 3 Cbarriar sell with no synthetic «embrane) Soil type: 20 (especially prepared lov-peraeability barriar soil, default) Layer thickness: 24 laches Layer 4 — Layer type: 4 (mate emterial) Soil type: 1 (coarse sand, default) Layer Thickness; 60 Lay«r 5— Layer typa: 2 (lateral drainage) Soil type: 1 (coarse saad, default) Slope at bottom of Layer: 22 Drainage Length: IS feet Layer thickness: 12 inches Layer 6— Layer type: 3 Cbarriar soil with oo synthetic Mnbrana) Soil type: 20 (especially prepared lov-peraeability barrier soil, default) Layer thickness: 24 inches

55 laouryOutput Llsrlng for T««t Cas« 1

EHSOLOCIC EViLniTIOH OF UHBFILL PEBJOBHAJCX HZLP 7DLSIOH 1 ykirim BT PAUL I. SGHBOEDDL AOCOST, 1983

GT THZ 9ATO, USOOK.CZS EHC2JEnLISG QLOU? LkBORATOKI STlTIOBf P.O. BOX 621 HS 29130

USZ&'S O7ZIX A71XUBLZ UPOH UQQZST TQi. COBST7LX4JZOI CDHT1CT XDIHOlS AT (601) 634-3709 A (601) 634-3nO

1.1 00 TDU UABT TO if«Tg OIL CUTTI D4tL OB. TO CBTAI5 OOT7UI?

C2TTZ& 1 FOR CLJJUTOLOCIC I5?UI, 2 FOE SOU OE DKSIOf DllA. ZMTUT, 3 TO BOB TBl SCflJUTIDM AID OBTld EETAILZD OOT?UT, 4 TO STOf THE HLOOUK, AID 3 TO arF T11* SlMfflJlIIOII AID OBTAI5 OSLT SZttdAJS UUTfUX<

1.2 DO ion WAST TO nsi DETADLT CLTMATOLOCIC QA.TA? nma. TES CB. so.

its 2.1 DO TDU WANT A LIST OF DEFAULT CITIES? ENTER IS OR HO.

3ES

DEFAULT DATA ARE PROVIDED ONLT FOR THE FOLLOWING CITIES AND STATES

ILUSOIS NEVADA, RHODE ISLAND ANNE TIE CHICAGO ELI PROVIDENCE BETHEL E. ST. LOUIS LAS VEGAS SOOTH CAROLINA FAIRBANKS INDIANA ins? HAMPSHIRE CHARLESTON ARIZONA INDIANAPOLIS CONCORD SOUTH DAJDTA FLAGSTAFF IO«A NASHUA RAPID CITT P50EN3 DES M01HES HEW JERSET TENHESSEE TUCSOK __ EDISOH mOIVILLE DODGE CITT SEABROOZ SASH7ILLE LITTLE ROCX TOPEIA HEW MESCP CALUOSSIA KEBIDCri ALBUqCJElQUE B2CWHS7ILLZ FUSNO LEUHCTOH BEtf JBOSt LOS ANGELES LOUISIANA CEBTXAL EA2T EL PASO SACZAME2ZTO HSACA SAH DIEGO SEW (XLZAHS MEW TORI CITT SAH ABTOHIO SAUTA MA2.IA SHUT7TPOH SCHE5ECTADT UTAH •COLORADO ' S^ACUSE CBHB CTTT DEMVER ADCBSTA MCSLTB. CAROLHIA SAT.T T^r^ CITT G&AtfD JUHCTIOH BAHGOR JiaFTBSBORQ • 7E2MOST CONNECTION CAjuJul SCKZH QAXDTA BOSLIHGTOiT BRIDGEPORT POttTLAHD BISHARCX MOHTPELIER HARTFORD HASSACHUS ETTS OBIP^ RUTLAND SEW HATEN BOSTON CUCDKATI TT&GUITIA FLORIDA PLAINFIELD CLEVELAND LTHCHBURC JACKSONVILLE WORCESTER COLHOBS 50RJOLC WASEX5GION ORLANCO £• LANS IS C OCJLHOMA PULLMAN TAT SAULI STE, OCJLBOHA CUT SEATTLE M2IHESOTA TULSA W. PALS BEACH ST. CLOUD OREGOH WISCONSIN GEORGIA ASTOKIA MADISON ATLANTA COLUMBIA. tfTdffllG WATZIHSTILLX MONTANA ' PORTLAND CHETENNE HAWAII GLASGOW PENHSTLVANIA LANDER HONDLOU7 GU1T FALLS PHILAIZLPBIA PUERTO RICO IDASO NEBRASKA PITTSBURGH SAN JUAN BOISE GRAND ISLAND NORTH OMAHA

2.2 ENTER KAMf OF STATE OF INTEREST

LOUISIANA

57 2.4 nrrza SAME or crrr or nrrzazsr

5B7 ORLEANS

2.6 SELECT TEE TTPE OF VEGETATIVE CUVUL

UTIU FUHBE1 1 701. BA1E QtOUSD 2 701 EXdLLCrr OULSS 3 FOR GOOD OASS 4 FOl FAH, OLASS 3 FOl P001 OASS 5 TOIL GOOD 109 dOPS 7 FOl Fill IOB OLOF5 1

2.8 U TOU A1Z OSI9C DEFAULT SOIL DtXJL ABC THIS 72GRAIZOH TT?E IS ROT THE SAME AS USZD 13 TBE DEFAULT SOU T^TA ZBFUT, TOTT SHOULD UUJL THE SOIL «*** A^'n' 01 O3UECT THE SCS KDTIOF? CU1VC 5QAE1..

2.9 m'LJt TEE E7AP01AZ1VE 2DBE UEPTfi- 131 DCZZS. • CUtlSE17ATiVE VALUES AXZ: 4 Z5. FOl BAttQtODBD 10 IB. FOl FAUL OASS 18 13. FOl EICELLEBT OASS

1.1 DO TOU BAST TO BTTE1 01 CHECK DATA 01 TO QBTAXH OUTFUT?

LNTZl 1 FOl CLOUTOLOCie IBFDT, 2 FOl SOIL 01 UESTOi DATA ZBFUT, ___ 3 TO ^TT^ THE SUfDLASOV AID (TB^ATH QJJJ^J^JP OUT!FUT» 4 TO STOP HZ npOtAK, AID ___ 5 TO BE TSE SZffiLAZXCfl AVD OBTAIB OHLT STIMMJUT OUTFUT.

1.3 DO TOU BAST TO USE DEFAULT SOIL DATA? E2TIUL YES 01 SO.

ITS

58 USE ONLT ENGLISH DNITS OF INCHES ABC 04.15 UNLESS OTTmWISE INDICATED

ILL QUESTIONS**************************** A VALUE **MBST»* BE ENTERED FOR FACH COMMAND E7EX WHEN THE VALUE IS ZERO. i«a«««*a*«a mm*mA*mm****m*m**Mmm**m*mm**m*inimm*i

4.1 EHTZR TITLE ON LdE L, ENTER LOCATION 0? SOLID WA5TI SITE ON LX5E 2, AND ENTER TODAT'S DATE ON LIKE 3.

TEST CASE L NEW Q&LEA&S, LOCTSIA5A AI7GSST 26, 19S3

4.2 r:d T7?ES OF LATTHS HAI BE OS ED IS THE DESIQi: 7ERTICAL PEZCOLAIIDN, TATTPAT, naATVA/j^ jutim SOU, AHB HASTE.

LATE2AL TIP-THAE* is 3DT PBW 1 rUI) FBO1 A VEZTZCAL PSl,CnUTIDl LAT21. ____ BOTH 7E2TICAL AND tATrgAT- DRAdAGZ A»* PEECTTED FRCM A IATESAL DfijLLJIAGE LATES.. A BAS&IEB.' SOU LATER SHOULD BE DESK3TED TO IBEIBIT PEZCOLATIOH. AN IKFE2MIASLZ LINZ2. MAT BE DSED ON TOP OF ANT *AB*rrg SOIL LATES.. THE WASTE LATE& SHOULD BE DESIGNED TO PEBMTT RA?ID DRAIHAGE HLOH THE UASTE LAXEft.

RULES:

THE TOP LATEZ CASSQT BE A BAtrm SOIL LATE*. ____ 4 HABBTTB son. LATE* MAT BT BE PLACED ADJACENT TO ASOTHZJL 3A22IZ2. son. LLZZX. ONLT A «ABBfT» son. LATES. OK AHOTSQ. LATE8AL D^LDUGE LATEX. MAT BE PLACED DIUCILT BE10W A MT^*^- ""AT?tAflg LATES.. TOU HAT OSE 7? TO 9 LATEIS AND UP TO 3 BASXXZS. SOIL LATE2S.

ENTE8. THE NUMBER. OF LATERS Iff TO OR DESIOT. 3 4.3 THE UTE2S ARE NUKBERZD SUCH THAT SOIL LATER 1 IS THE TOP LATER AND SOIL LATER 3 IS THE BOTTOM LATER. 09

OH

*OH 10 531 1ZUQ IOZI3T2RDO Z IZZTl TLOS SI CZ't

T •z izzn nos 10 zinmi nos TTTMI rr* z •z inn 101 aci izxrx m nun «'•* rr •SZHDC G z urn nos 10 sszuuuu. HID :*t

OS

ion mrnirrn n izzn nos I&IITZSSZA SEI ^Z'T

•OB 10 S21 TTTT.ffi? T izzn nos si cr*t

««"S£LL nos ox

"1T1UJ.TH 1ZOS 10 5STD HIUIZL 101 (CZ B900IEX I) 1Z8RQI T G1KZ 9T*9 •i izzn nos 10 ziozox nos

sr nos maaTV T 101 J OHT -nzn usta T 101 t 'izzn nos mun. T 101 c ZUTETId 1TUI? 1 T 101 Z BDLTT1CCTCU TT3I2&A T 101 T 1Z1S2 01 't •T izzn 101 Z2ii izzn ZEI izisa 6**

09 •S2SDHI si i izzn nos 10 SSZIODXEX on •OH 10 szi TZAT15 10 ORTS OZZTZZ9ZARD BT IZZn 201 ZEI SI 9*7 4.7 nrrsa TECTSZSS or son LATZS. 3 a INCHZS. 24

4.9 ETTSL THZ LATZ2, TT?Z FOR, LATZS. 3. 3

4.IS ZHTZX SOIL TZZTURZ OF SOU LAIZB. 3. 20

7.1 ESTSJL TEE SCS RUHOT7 CURVE HDMBZX. FOR. THZ SOIL 1U.TURZ ARC A7Z2ACZ iCISTUKZ CORDmOS 07 IHZ TOP WASTE UTI3L. (3EIWI2S L5 AflD LOO)

65 7.2 WHXI rLicnoir or THZ MTT.T POTZKTIAL jamorr DEATHS raoM THZ SUBJACZ OT THE WA5TZ UTZB.? UTliL BZTVZZS 0 ABD L.

.8 6.1 ZSTZ& THZ TOTAL 1XZA 07 THZ SJKIACZ, LI 9QCAZZ RZ7.

131000

6.2 UITJLJL THZ SL07I AT THZ BASZ OF SOU LAIZ1 2. Ol POLCZHT.

6.3 STTZ2 THZ MATTVTTM DRATTTAffl!; DLSTA5CZ AUXC TSZ SLOP1 TO THE COLLECTOR., IS FZZT.

L.I DO TOT HAHT TO ESTZZ OR <^*f* DAlA Oft TO OKUS OUlfUi!

EHTZZ 1 70ft GLIMATOLOCIC UTTOT, 2 FOl SOU Ot DESIOr TUTA I5PTTT, 3 TO ROT THZ STMTTU1TOH A5D OBTAIS DCTAJlia OtlPUL, 4 TO STOP THZ P&OGIA&, AND 5 TO ROT THZ SIMULATION AHD OBTAI5 OOLT SOtOUJS OUT7UT.

6L 11.1 HOW MAST TZAJLS OF OUTPUT 00 YOU WAST? (BETWESH 2 A5D 5 TEARS MAT BE USED.) 3

11.2 00 TOU BAST DAH.T OUTPUT? TZS 01 so.

HO

11.3 DO TOU HABT MHTHLI TOTALS? LH'JJJL TZS 01, BO.

TZST CAST 1 SZ7 OKLZABS, LOPI5TA1U AUCUST 26, 1983.

BAZZ aoon

UASTZ urn. THianress ____ 60.00 ISCBZS E7APORATTOH COmTdZHT 3.00 POBOSITT 0.3310 70L/VOL vrrtn CA?CITT 0.1740 VOL/TOL BTLTI3C POUT 0.1070 TOL/70L HTDRADLIC 11.9499998 DOZS/HR

62 LAY33. 2

DRAOAGZ LATZB, SLOPE 2.00 DRAISACZ LZ5GTH THioanss _____ 12.00 IS.'HZS EVAPORATION COZTTICIZST 3.300 MM/DAI*«0.3 PORflSITT 0.3310 70L/70L FIZZj CAPACITY 0.1740 TOL/701 WTLTUfG POUT 0.1070 TOL/VOL E5TECTT7E HTDRAOL1C COKDDCTmTT LI. 94 99998 Z3CHES/HR

U.TZS 3

SOIL ULI32. 24.00 3.100 P010SXTT 0.3200 7DL/VOL FIZLD CXgACITT 0.4300 70L/70L VTLTINC POCTT 3.600 TOL/VOL aiuKACLXC 0.00014200 OCHZS/HR

(ZNZHAL STMIITA7ION DATA

SCS UIBOfT CUJLVE 5TOCEZ 63.00 TOTAL ASZA OF CD V Lit 231000. Sq. ETAPpIAXXTEZpaZ DEPTH 4 00 PUTIBTIAL maurr FBACTIOH 0 300000 OFECTT7E E7APOSATTOS COETTIC 3 300 UPPEZ LZMZT TEG. ST01ACZ 1 4040 I9CHZS IB1TLAL TEG. STOKAGZ 0.3620 ULiiLS

CLIMATOLOGIC DATA FOR RE? OSLZAHS LOOTSIANA 1AN/JUL FZ3/ADG HARySEP APR/OCT MAI/SCV JTO/T5EC

33.30 35.00 60.28 67.71 73.331.04 1 83.37 81.6676.39 68.55 61.3535.62 r HEARS SOLAR RADlATIOlf, LAN<7LZTS PER DAT

JAH/JUL FEB/AUG BAR/ SEP APR/OCT SAI/HOV JUH/DEC

226.64 266.52 321.36 381.00 431.47 439.23 456.86 424.98 372.14 312.50 262.03 234.27

DATE LA! 1 0.0 44 •o.o 74 0.0 105 0.0 135 0.0 165 0.0 19* 0.0 226 0.0 256 0.0 286 0.0 317 0.0 347 • o.o 366 0.0

BARE QLOUBD

WJJ1BJL COVER FACTOR - 0.0

ABHOAL TOTALS FOR 74

(T3CHES) (CU. FT.) PERCSST

PRECIPITAIIOH 72.79 1401194. 100.0

64 RUNC77 0.372 7153. 0.51

E7APOTBANSPI2ATION 17.187 330844. 23.61

PERCOLATION ntcM SASI 07 LANDFILL 1.5299 29450. 2.10

DRAISAflZ 7RCM BASE 07 LAND7TLL 53.621 1032197. 73.67

' SOn. HATZS. AT START 07 TZAR 23.19 446484. 73.67

SOn. WATZZ AT EJD 07 TZAR 23.27 443002.

SNOW WATZSL AT START 07 TZAR 0.0 0.

S509 VATZ3L AT DID 07 TZAR 0.0 0.

ANNEAL KATZR 3UCGZT BALA5CZ 0.00 33. 0.00 ***************************** *****a***m*************t

i*m****** **********»**-*-*-*

AMfTlAL TOTALS FOR 73 CLICHES) (CU. TT.) PZXCZ3T

L549610. 100.00

RmrOT7 2.175 41872. 2.70

381196. 24.60

PZRCOLATIOir FKCK SASZ 07 LANDFILL 1.5465 '29770. 1.92

DRAI3ACZ FBCM SASZ 07 LLSDPTLL 56.052 1078996. 69.63

SOn. WATSR AT START 07 TZAR 23.27 448002.

65 SOU UAIZ2 AT EHD OP TZAi 24.19 465752.

STIOW 7AXZ2 AT STABI 0? TZAR 0.0 0. SNOW BAOTL AT BTO OF TTAR 0.0 0.

AWHIAL *ASZJL BTJDCZT BAULSCZ 0.0 27. 0.00

««*«••••*•** *•*••***• <•««*<«<•<«************** *****************************

A5HUAL TOTALS PO& 76 (I3CHZS) <;cn. FT.) rarsr: ?iICI7ITAriOH 47.36 911673. .100,0 KOTO IT 0.0 0. 0.0

E7APOTSAVS?ISJLnai 13.500 229884*. 28.51

POCOULZIOH nats. BXSZ or UHDITLL 1.4087 27U7. 2.97 WAr*4*?! f**5M BA5Z <7F T^Jtro f T^ 33.022 633672. 69.73 son. HAIH. AI SUB or rtAA 24.19 463732. S02. SATZX il EBD OF TZAR 23.62 434732.

SVOV SAT23L AT STA2T 07 TZA1 0.0 0. STIOV HATZ2 AT END OF TZAft o.o • 0.

AHJTTAL ^TSR WDCTT BALA*C* 0.00 19. 0.00

66 ****** *****************fir*iiii ***************** a **m ******** *****m

TOTALS FOR 77 (OCHZS) (CT. FT.) rzjtu^i *

PX2CXPTTATIOH 72.81 1401378. 100.0 jnnuor? 0.627 12078. 0.36 fi»V A*U 4>«wU1 d c ^*LATI OS 18.^12 364038. 23.97

PQCOLATICN FaCM 3A5I 07 LUTCFTU. 1.3334 29337. 2.11

DRAZXACr FROM SASZ 07 lANDITlL 30.636 974736. 69.33

SOU WATZR A7 STAST 07 TZAJL 13.62 434732.

SOIL WATI3. AT BTD 07 T£A2 24.72 473837.

S9CV ffATTB AT STAKT 07 TIA2. 0.0 0.

SNOW 5AT33. AT ESD 07 TZAZ 0.0 0.

A5NQAL. tfATO SUDGZT 2ALASCZ 0.00 23. 0.00

I******************************************************************

AHTOAL TOTALS FOR 78 (laCHES) (CU. FT.) rescsc

76.83 1479348. 100. a

67 RUBCF7 1.332 29492. 1.99

S7APC72ANS?I3LAnON . 16.446 316394. 21.40

PERCOLATION T5JX. BASI OF LAHDFILL 1.4951 28781. 1.93 DRAIHA£E FXOM BASI OF LAHDFILL ' 38.741 1130766. 76.44

SOIL U4IZ& AX STAET OF TEAS. 24.72 473837.

SOU WATZS. AT CO OF TZAJL 23.33 449339. Saw «AIZ? *r STAJC OF TtAJL . 0.0 0.

S509 VATS AZ QO OF TEA2L 0.0 0.

AiranAL ffATSL BUiX«£.r SALARCZ 0.00 32. 0.00

AVT2A£Z fiORTBLI TOTALS F01 74 THEOUGS 78

IAS/JTTL FQ/AOG HAZ/SZP AF&/OCT MAT/TfOV JOT/O EC

?RZCZFITATZOH (T9CZZS) 6.34 4 3.66 4.37 4.33 7.01 3.93 6.38 9.34 3.91 3.16 7.12 3.37

SLU1TOF? (I3CEES) 0.060 0-.'023 0.047 0.033 0.163 0.0 0.012 0.133 0.088 0.0 0.339 0.000 1.098 0.730 1.062 0.873 1.393 2.188 (LEtCHZS) 2.690 2.699 1.603 0.377 1.180 0.870

68 noH FROM SASZ 0.1324. o.na? 0.1223 0.1216 0.1237 0.1236 OT UL1DFTLL (I3CHZS) 0.1288 0.1339 0.1201 0.1197 0.1228 0.1331

DRATSAGZ FROM SASZ OF 5.313 3.302 3.010 3.407 5.003 3.332 (I3CHES) 4.157 6.611 4.360 2.277 4.683 4.921

********** ************ ****************************************** ******•,

*

A7Z2ACZ ASHUAL TOTAL FOR 74 TBBOTGB 78

CI5CHZS) CCU. FT.) ^£RUT4T

PR2CIPITATXOH 70.06 1348681. 100.0

RTOOFT 0.941 18119. 1.34

E7APOT3ANS?IRATIOS 17.170 330513. 24.31

PERCOLATION FROM BASZ OF U5DFILL 1.5031 28935. 2.15

3RAI7HX3 F?C« BASI T UU*flTTLL 50.^14 970473. 71.96

69 KZ1S1S iiCJDCTI 01 10 finsn 01 JTZHKUS

1ITHHI& TOD QTZJO OPT JBOZITXIIRZS IEI fSB OK f orr mnoou m toxs 01 » «HVW MW4V Y^^PVM^9V (* ^V^W ^HW P% V ^ TTfQ DinO W TXOS 1OI Z *UJJQ D15C10JTJCTD 101 T '1"MT'" Krrxao 01 10 T^TC y«nr> 10 raja 01 urn QQI oc 1*1

oioro (TOA/TOl) GZTB TIOS "5SA RDKZfiZR esrro (10A/10A) HTfB HOS "S2A WOKIl'TH

O'O O'O AOKS

TTLiCDm JD 2?TI 80 OV5£

TTTJimri jo .ZSTS WU Z7TCT1Q

THJOBT1 JO ZSTB RDU BOZZT1031U

0-010*91 we cu 'as) 81 E200EE1 IUTQ laout/Outaut Lisrlag for T«at Case 2

HHSOLOGIC E7ALDAnON OF LANDFILL PESFOHMA3CZ ra.P VERSIOS L

WRXTTSS SI

PAUL 1. SCSROEDER AUGUST, 1923

OF 731 RZSOCRCSS Eyciara.rHC caoc? ET STJLTIOH P.O. BOX 631 , HS 391 so

osa's cnzse ATAIIAJLZ OFOM FOR COHSULZ1ZION ODBTAjCT AOaatS AT (601) 634-3709 OR (601) 634-3710

i.l 00 73U VAtfT TO QffZZ 01 .CHECK DATA 01 70 CitAlS OUTPUT? ELNT3L 1 FOR CJHATO LOGIC 15?UT, 2 FOR SOIL OR OESIOI DATA IHPT7T, 3 TO RUN THI SI2H7L4IIOH AND 08TAI3 OKTAZLD OCTTrTT, 4 TO STOP T3Z PROGRAM, AHD 5 TO LOT THE SIKDLATIOH AAD OBTA2I OAT STMUII OUTPUT.

1.2 00 TOC WANT TO USE DEFAULT CXJ2IATOLOCIC QllA? EttTEB. TSS UR MO.

71 2.1 DO TOU HAST A LIST 07 DEFAULT CITIES? ESTER YES o& so. HO 2.2 ESTER SAKE or STATE or INTEREST

LOUISIANA

2.4 ENTER HAKE OT CZTT 07 INTEREST

ORLEANS

2.6 SELECT THZ TTPS 07 VEGETATIVE CUVEJL NUMBER i TOR *Agy GBOUBO 2 FOR ZXCZLLSTT 3 701 GOOD OA53 4 roi 7ia OULSS 5 701 POOl OUSS 6 70K GOOD 10V 7 70& 7AI& ROW dOPS

2.8 IF TOU AZ2 USISC D018LT SOIL DATA ASS 7KZ5 TT?1 IS SOT THZ SAME AS USZD 15 T2C OC7A0LT SOH. DATA I77T7T, TOU SHOULD STTIZ THE SOU IU7A AOLDT OR G3U2C7 ISZ SCS RUH077 CUR7E MUHBEZ.

2.9 U'UJL THE E7APORAJI72 ZOHE DEPTH 19 CONSERVATIVE TAL7ES Ail: 4 Of. TOR BAJLZOLOCTO 10 IS. TOR TAH OLA3S 18 9. TOR. BCZLLO7 GRJLSS

10

1.1 DO TOU WA5T TO ESTER OR HTTrT DA.IA OR TO OBTAI9 UUlfUi.'

E!ITER 1 TOR CLUOXOLOCIC ET7UT, 2 TOR SOIL OR DESIGSI DATA OPTTr, ____ 3 TO RUN THE SIMULATION ABD OBTAIN DETAILED UITIFUI, 4 TO STOP THE PROGRAM, AND ____ 2 TO 3DN T^E ST&JLATXON ASD OBTAIN ONLI

72 1.3 DO TOT ffANT TO USE DEFAULT SOIL DAlA? ESTER TES OR NO.

TZS

USZ OSLI E3GLISH UNITS OF CK3ZS ASD DAIS UHLZSS OTHERWISE CTOICATID

«•<••• * A 7ALDZ **3DST** BE E5TERZD FOR EACH COHHAND E7ZH WHEN THE 7AL7I IS ZZ20.

4.1 ESTZZ TTTLE-OH LI3I 1. EJT23L LOCATION OF SOUS KASTZ SITZ OH LIXI 2. ASD ESTZZ TOUT'S DATE OH LI5I 3.

TEST CASE 2 SEW OHT."A.XS , LOTHSIAIU AUGUST 26, I9i3

4.2 FOU1 TT?ES OF LATE2S HAT BE USED IH TSZ DESIC2I: VUCIICAL PESCOULTIOa, LAIZLAI. DLAIBACE, ^agre-a SOU, AND UASTZ.

LAIZZAL DRAOACZ IS SOT PnttdUD FaOK A 7E2TIGLL PE2COLAnOH LAIZ3L. 1CTH TZmCAL tJSD LAXZ2AL DULE3ACZ A2£ FZS2HTTZD FSOf A USZSAL DRAXSAJZ LATtt. SOIL T^TCT SBDCLD BZ DESIGNED TO I5EI2II PE2COLATTOH. MAT BZ USED OH TOP OF AST yAjreTP* SOIL LAIZZ. THE KASTZ LATE2. SHOULD BZ DESISTED TO PONTT RAPID DKAIHACZ F1CM THE VA57Z LATZSL.

2ULZS: THZ TOP LAIEZ CAHNOT BZ A Rmtftt SOIL LATES. ___ A BApgr"* SOIL LAIE2. MAT SOT BE PLACED ADJACENT TO ANOTHER SOIL LATEJL.

• 73 OHLT A BARRIER SOIL LATER OR ASUTHH LATERAL QRAI2IACE LATZR HAl 3E PLACED D1RZCTLT RFLOtf A LATERAL DRAI3ACE LATER. TOO MAT USE UP TO 9 LATZRS AHO UP TO 3 BARRIZR SOU LATZRS.

ENTER T2E 2TCHBER OF LATEBS 15 TDQR OESI0.

3 4.3 TSE UT£RS AiZ HQOERZD SHCE THAT son LATER I is raz TOP LATIR son. LATER 3 is THE BOTTOM LATER.

4.6 is THE TOP LATZR AS UHTEOTATZD SAND OR OATEL LATER? EUTER TES OR SO. so

4.7 ENTER THICBrESS OF SOIL LATER 1 IN I0CBES. 24

4.9 ESTER TSE LATER TT7E ?OR LAZZR I.

4.10 ESTER I TOR A VERTICAL PERCOLATTOH LATER, 2 FOR A LATERAL T»ATVA

I 4. 13 ZHTZR Son. TEXTTIRZ OF SOU LATER 1.

4.16 ESTER A TOOIR (1 TSROCffl 23) FOR T&JSURZ CLASS OF SOIL MATERIAL. **OBCX lisa's amx FOR soon. CORRZSPOKDIBG TO son. TTK.**

4.23 IS Son. TATEi I OUPACTZD? ENTER TES OR BO.

4.24 THE 7EGZTATT7E SOIL LATER IS (ZNERALLT SOT COMPACTED.

HO

74 4.7 ESTER THIOCTESS OF SOIL LATER 2 IN ETCHES. 12 4.9 ESTER THE LATER TT?E FOR LATER 2. 2 4.L5 ESTER son. rm-uitz OF son. LATER 2. i 4.23 12 SOIL LATER 2 COMPACTED? ENTER US OR SO.

4.7 ESTER THXCEIESS OF SOIL LATER 3 IX DICZZS, 24

4.9 E3TZZ 7EZ UIZ& TT?I FOR UIZR 3. 3 • 4.L2 otzz son, rmujg or son. T^T™ 3. 20

4.30 SELECT T3Z TIPS OF TECCZAXZTE COVUl. 2TTZSL ^H322. I FOR ^»T 510GND 2 FOR EZCZLLS37 CRASS 3 FOR GOOD GRASS 4 FOR FAIR CRASS 5 FOR POOR CRASS . « FOR COCO ROV CROPS 7 FOR FADL ROV CROPS

4.32 g TOO ARZ USiaC DEFAULT CLU4ATOLOGIC DATA AMB THIS 7ECETATIOB TT71 IS SOT THE SAHZ US ID Of THE CLIMATOLOGtC DATA 137TJT, TOO SHOULD ESTBL THE CLIKATOLOGIC DATA AOAI5.

4.33 DO TOU UAHT TO CSTZ2 A iUHOFT CHRTI 5QMBEZ AMD 07ZRRIDE THE DEFAULT 7ALUE? SSTER TES OR HO.

SO 73 6.1 E3TTEB, IHZ TOTAL ABZA 0? TSZ SUSFACZ, IS SQUASI FZZT.

221000

6.2 ZHTZB. TSZ SLOPS AX TSZ BASZ 0? SOU LAIZSL 2. IB PZSCZST.

6.3 BTTZ5. TSZ MAZUfflH D1AIHACZ DISTASCZ ALOTG TSZ SLOTS TO T2Z COLLICTOl, 15 JZZT.

175

1.1 DO T017 TAR TO QTTEZ 01 nTTTT OATA OK TO OSTAIS UULfU'i?

1 ?01, CLTHATOLOCIC 15PUT, 2 TOl SOIL 01 DBXOI DATA rSPTJlT ____ 3 TO tOH TSZ •STMOLATTQg AHD OBTAIH DETAILS) OUTPUT, 4 TO STOP TSZ P10CKAM, AID ____ 3 TO EUH TSZ SHHflJLTIOH ABD OBTADI OMLT STTMMAgT OUTPUT.

11.1 HOW MAin: TSA2S OF OUTPUT DO TOU WAST7 (3ET..TZ3 2 AHD 5 TZA2S HA! SZ USZD.) 5

11.2 DO TOU HAST n*TT.T UUIPUi? milk TZS 01 no. so 11.3 00 TOU SAIT MOHTSLT TOTALS? MITM TZS 0& •)*

TZS

inn TIST CASE 2 •TEW ORLEANS, LOUISIANA AUGUST 26, 1983

7AISL QLASS

LAYS 1

TZZTICAL UIO. THXO3ZS3 24.00 E7APOKATXGB 3.000 «/IJAT»*0.3 roaosrn 0.3330 7DL/VOL 0.4210 70L/70L VTL7ZHC POIBT 0.2220 TOL/70L HTDRAULIC 0.33000004 nrcszsm

SLOPS 3.00 173.0

I7AF01AIIOH 3.300 M!/DAI**0.3 0.3310 VOL/TOL 7TELD CAPAdTT 0.1740 VOL/7OL 0.1070 70L/70L IU'?lLCJTiV£ HDRADLIC COHDOCITTTTI 11.9499998 INCHES /HR

77 LATO. 3

SOIL THXQQZSS 24.00 DICEES E7APORAXTOH COEF7ICIEBT 3.100 MM/DAT**0.5 POSDSITT 0.2200 701/701 7IZLD CAPACTTT 0.4500 70L/70L WTLTgC POCTT ______3.WO 70L/70L 23TSCTI7Z ffUJRAULIC CUHDUCIIVLLI 0.00014200 I5CHES/H2

earn AT STMTTT.ATIOII DATA

SCS UIBUff UUVE STSfBOL 81.2S TOTAL mi or com. 231000. SO,. IT gVAPOXATTTI ZOVZ DKPTH ______10.00 UTSCTITl E7AP01AIIU8 COfJff ItilHl 5.000 TKC. STOIACZ 5.3500 3CHES IBIILAL 7X6. 3.2150

CLI!lArOLOGlC 701 OXXJLAHS LOTJISIABA

TSCPQULZU8£S • OEQLZZS 7A^9L2SHZXT

JAH/JTTL MAfc/SZP AP1/OCT HAI/H07

33.30 60.28 67,71 75.31 81.04 83.37 76. 3» 64.95 61.35 55.62

SSAHS SOU* 1ADLATIOV, LAHGLZTS POL DAJ

JAH/JPL fO/ADC BA1/SZ* AP&/OCT HAI/BOV JOT/PEC.

236.64 264.32 321.36 381.00 431.47 459.23 456.86 424.98 372.14 312.50 262.03 234.27

DA1Z LAI 1 0.0 U 0.0 74 0.61

78 103 0.99 135 0.99 165 0.99 196 0.99 226 0.99 236 0.89 286 0.65 317 0.32 347 0.16 366 0.0 FAIZ QLkSS

UL1LUL C07ZS. FACTOE. » 0.60

MJB1HIT TOTALS 701 74

JA5/JUL FEB/AUG MAi/SE? APB./OCT MAT/NOV JOT/DEC

PRECIPITATION (INCHES) 8.46 5.53 6.64 5.52 9.84 3.83 5.66 6.70 7.58 2.26 5.88 4.89

R.050F? CiaCHES) 1.903 2.111 1.534 1.088 1.508 0.023 0.003 0.135 0.809 0.003 0.345 0.642

CVAPOTSAETS7T1AXIOB 2.603 2.297 2.809 4.196 5.118 4.556 (HCHES) s.328 5.602 4.891 1.730 3.323 2.497 raLCOLJLTTOT fSOM BASZ 0.1050 0.1801 O.U97 0.1620 0.1572 0.1518 Or COTES. (INCHES) 0.1385 0.1299 0.1306 0.1375 0.1231 0.1611

DRJLESAGS FSQM BA5E OF 0.590 2.239 1.439 1.953 1.677 1.408 COVER (INCHES) 0.634 0.406 0.783 0.543 0.425 1.863

79 AimnAL TOTALS FOR 74

(LHCHIS) (CU. FT.) PSRCDT

FRZCIPTTATXOB 72.79 1401194. 100.0 iUTNOIF 10.131 193030. 13.92 I7ATCTRASSFIRAT10H 44.950 865292. 61.75 PZRCOLAIXOT FROM BASZ OF COVZR 1.7283 33270. 2.37

DRAJSACZ FROd SASZ OF COVER 13.966 268840. 19.19

SOU UATZR AT START OF TZAR 22.00 423442. SOIL UATZR AT QTO OF TEAR 24.01 462181.

SHOW PATCT AT START OF TZAR 0.0 0.

SHOW UATZR AT SO OF TZJJL 0.0 0.

ASSUAL WATZR BTOCET BALA9CZ 0.00 23. 0.00

TOTALS FOR 75

80 TB

•196586

O8'll •868SIZ OCC**1

00*001 '0196*51 OS'Ot BOXXYXI2X3TH

cu -as) ( I) ICM rmoi Tfosirr

MMM

UO'T Ct8'l 106'0 W1 SIff'Z 689'Z (SIKDfil) Z3AOO 886'1 069*0 IIO'T ffZt'l 611*0 805'T iD ISTTI HOTU

iZ9T'0 0 6C5TO 6*1Z*0 10 uri-o *Z*1'0 ZC5TO B5Z1'0 OC5T*0

0*9*Z Z16*l 9Z6*C (S2E3KI) 911*5 CSL*: 6ETZ

120*0 086** 680*0 8H'C SSC'T 551*1 095*0 931*0 6CO*0 (snoa)

18*C 5C*11 00** TT01 ST*8 8ZT1 C0*8 69*9 2C*5 ?9'C S6'Z (S3H3KI)

33Q/tmr AOK/IYK IDO/'SJV GS/TTO OOY/SiJ PESC3LATXOH FROM BASE OF GOTO 1.9313 37178. 2.40

DRATHAGE FROM BASZ OF COVER 18.159 349561. 22.56

SOU KAISL AZ STA2I 07 HAIL 24.01 462181.

SOU g*Tgg AT DO 07 TEA* 24.06 463198.

SNOW BUZZ AZ SZAJET 07 TEAX 0.0 0.

SHOW WATBl AT DID 07 TTA8 0.0 0.

AHHUAL V2ATDL BUBGZ7 SALAACZ 0.00 29. 0.00

tORTHLT TOTALS fOl

JA5/JUL FQ/ADC MAJL'SO Aft/OCT MA.T/5QV JUN/DEC

PUCX7IZAZX01 (IXZZS] 2.61 3.85 3.04 0.21 5.58 3.36 5.67 1.69 1.37 5.01 5.80 8.79

(IBCEZS) 0.107 0.573 0.0 0.0 0.074 C.COO 0.0 0.028 0.0 0.415 0.712 2.150

EVAPOTSANSPISAIIOT 2.090 2.260 2.397 1.423 4.862 2.389 (X3CEES) 5.171 2.260 1.302 2.191 2.738 2.535

82 OH FROM EASE 0.1436 0.1383 0.1379 0.1325 0.1246 0.1406 OF COTZB. (HOES) 0.1197 0.1309 0.0393 0.0722 0.1253 0.1974

DBAISACE FROM BASE OT 0.821 1.366 0.674 0.302 0.274 0.234 COVES (INCHES) 0.195 0.164 0.010 0.054 0.685 2.388

******* ********** ************************ *************** ***** **********

ASWXAL TOTALS TOR 76 CLMCHJLS) (CU. FT.) PTP.CSTT

PRECIPITATION 47.36 911673. 100.0

SEND FT 4.059 78129. 8.57

EVAPOTBAH S P I3ATT OS 32.220 620229. 68.03

PrXCOLATXOH FROM BASZ 07 COVH 1.5532 29900. 3.28

ORAXHACE PlflK BASZ OF COVZZ 7.165 137924. 15.13

SOU BA2Z& AX STAKT OT TZAl 24.06 463198.

SOIL 3ATZZ AI BTO Of TEA* 26.42 508669.

SNOW WATES AT STAET OF TZAZ 0.0 0.

SNOW f*ATE2 AT EOT OF TTAi 0.0 0.

ANNUAL VATS2 BUDGET SAUL5CE 0.00 20. 0.00 »*****•*•****

83 ********************

MOHTHLI TOTALS TOR 77

JA5/JUL ro/AUC MAR/SZP APR/OCT MAT/KOV JTTN/PEC

FRZCXPITAIIOT (ISCHZS) 3.31 3.08 3.34 6.80 1.87 2.46 2.91 16.02 13.44 4.47 7.89 3.02

RUHOIT (ISCHZS) 0.281 0.183 0.106 1.803 0.033 0.0- 0.0 2.947 6.382 0.396 0.600 0.690

2.439 1.'923 3.473 3.180 2.272 2.323 CUCHZS) 2.772 6.309 3.045 3.304 3.130 2.428

P2SCOZA7ZOV notf BASZ 0.2362 0.1734 0.1604 0.1386 0.1479 0.1363 "or cova CXBCHES) 0.1493 0.1379 0.2400 0.1354 o.'i362 O

ORAI5ACE T&OK SA5Z OF 2.779 2.132 1.813 1.025 1.122 0.378 COVER (ISCHZS) 0.120 0.794 2.767 2.327 1.761 2.334

****************************************************************************

AHOTAL TOTALS TOR 77

34 (, .LNUttiS ; (CU. FT.) f IXUiTTi

P2ZCIPTTATXON 72.81 1401378. 100.0

RUNOFP 13.623 262249. 18.71

E7APOTTUHSFTJLAIIOH 3S.800 746894 . 33.29

PZKCOLATIGH PROM BASE OP COTES 2.0497 39437. 2.82

DRAIHACZ FROM BASZ OP- COTES 19. 3n 372891. 26.61 son sxns AT srjug OP TXAZ 26.42 308669.

Son BATH AT EOT Of T£AZ 23.39 488730.

S5CV VAIOL AT START OP TSA1 ' 0.0 0.

SNOW WAT2B. AT ESD OP "**** 0.0 0.

ASNUAL SATIS FCDGrT BALABCZ 0.00 27. 0.00

tCRTSLT TOTALS FOR 78

JA5/JTJL Pn/ADC MAZ/SZP APR/OCT KAI/TOV JUN/BEC

PXICIPITAIION (IBCHZS) 13.37 2.18 3.29 3.44 9.71 7.83 10.32 14.70 2.98 0.0 4.67 4.36

83 ROTOFF (ISCHZS) 3.843 0.468 0.113 0.625 3.193 0.801 1.635 4.073 0.008 0.0 0.913 0.823

E7APOTBANSPIRAnOT 2.565 2.289 3.036 2.744 5.010 4.544 (IBCHZS) 6.719 5.871 3.769 0.898 0.973 2.473

PZXCDLAXIOT FROM BASZ 0.2095 0.2058 0.1616 0.1419 0.1497 0.1388 OF COVZR (X8CHZS) 0.1492 0.1644 0.1796 0.1449 0.1324 0.1505

DlUTTUfiE FROM RASZ OF 2.555 2.445 1.851 0.888 1.131 0.504 COVER (LNCH1S) 1.637 1.753 2.183 0.949 0.324 1.335

AIOUAL TOTALS FOR 78 (TBCHZS) (CD. FT.) . PDLCZHT

PRZCXFTTAIXOH 76.85 1479348. 100.00

RUBOFF 18.495 356035. 24.07

E7APOTJURSPZ1AXXOB 40.889 787113. 53.21

FERCOULrXOH FROM SXSZ OF CUVEJL 1.9283 37120. 2.51

DRAZSAXZ FROM &4SZ OF W^SR 17.575 338324. 22.87

SOU HAT23L XI START OF TZAR 25.39 488730.

SOU flATZR AT END OF TZAR 23.35 449458.

86 SHOW WAIE2 AX SIAJEZ OF 0.0 0.

SNCW KATES. AT END OF TZAi 0.0 0.

AHHUAL ttASB, BCDCZT BALANCE 0.00 28. 0.00

•***

AVERAGE MOBTELI TOTALS FO* 74 TBROUCS 78

JAH/JOL ra/ADG MA2/SEP APX/OCT MAI/SOV JT3N/DEC MMMB^MMMM

PtECIPITATIOM (I3CHZ5) 6.54 3.66 4.37 4.55 7.01 5.95 6.58 9.34 5.91 3.16 7.-12 5.37

1HNOF? CINCE£S) 1.6J5 0.712 0.467 0.958 1.193 0.436 0,437 2*064 1.498 0.332 1.510 0.868

E7AJOT3ANSPTJLAXXOV 2.368 2*168 3.124 3.060 4.476 4.129 (ZKSZS) 3.246 5.145 .3.826 2.007 2.561 2.469

PE&COZATIDV ntOf BASK 0.1695 0.1647 0. 1526 0.1435 0.1433 0.1444 OF COVER (XKHZS) 0.1566 0.1556 0.1587 0.1371 0.1405 u. id/ 8

OKAINAGE FSOf BASE OF 1.651 1.796 1.440 1.036 0.979 0.905 C07E& (I2XZES) 1.055 1.138 1.482 0.955 1.008 1.803

87 t*************************************************************!,!,**,

ATDLAGZ ASHUAL TOTALS FOE. 74 TBBOOCS 78

OBOES) ccn. rr.) PDLulWT

raiCIPTTAIIOir 70.06 1348681. 100.00

RXJH077 12.128 233460. 17.31.

gVAPOTBAITS7TEATIOH 40.577 781099. 57.92

FERCOLATIOH ?*OH TU5T 07 CUVUL 1.8382 35385. 2.62

nBAT»A(T» njOM BASZ 07 GOTO 15.247 293508. 21.76

FEAT DHL! 7AL02S FOt 74 THSOTCH 78 (Hens) (CU. IT.) mCIPITAXIO. 8.52 164010.0

HDH077 4.818 92753.7 FZZCOLAXTOH I10M BASZ 07 GOTO. 0.0122 234.6

DRAXRAGZ rSOH BASZ 07 (JU^U 0T144 2772.9

HZAD 0V BASZ 07 COVZZ 36.0

SHOW HATES. 0.0 0.0

88 MAXIMUM TIC. SOIL WATSB. (VOL/VOL) 0.5330

TOG. SOIL HATER (VOL/VOL) 0.2220

I.I 00 TOO KANT TO ESTER OR l^TTfT DATA 01 TO OBTAIN ODT?UT?

ENTER 1 FOR CLSATOLOGIC INPUT, 2 FOR SOU OR DESIGS DATA IRFUT, 3 TO ROT THZ SDlDlJLTiaH 1SD OBTAI5 DETAILZD ODT?UT, 4 TO STOP THt PS.OGSUH, AND ____ 5 TO EDH THZ STHULATIOIf AHD OBTAIN OHLT SHMMART (JUT?UT.

1.4 QTTZR SDHEZL? TO RZZUH PROGRAM OR OTZK LOGOF7 TO LOGOTF COMPUTIR STSTEI

89 Inwit/Ourput Listing for Test Ca«« 3

KTT/ROLOGIC E7AT.TTATIOH OF LANDFILL PZRFORMANCZ HTT.P VERSION 1 WRITTEN BT PAUL R. SCEROEDER AUGUST, 1983

07 THZ VAIZR RESOURCES EJGIHURISG GROUP OT7IROIWESTAL ULBORAIOR7 USAZ BA7ZBZA7S Q7ERIHEHT STATIOV P.O. BOX 631 TXCrSBURG, MS 39180

USER'S GUIDE A7AHJL2LZ UPOH IZQUUT F01 COVSULTATIOB C08TACT ADTHOIS Al (601) 634-3709 OR (601) 634-3710

1.1 DO TOU BAST TO UI12JL OR t^frr Q^IA OR TO OBTAIN OUTPUT?

QTTXR 1 FOR CLIMAJOLOCIC I5FUT, 2 FOR son. oi DESior QUA, IBPUT, ___ 3 TO KUB THZ S20LAZXOV ABD OBTJLDJ DETA2J3) (JU'lPU'l, 4 TO STOP TSZ PROOLAK, AID 3 TO EI3 THZ SH07LAIZ09 ABD OBTAIH ORLT SUMHAJCT OUTPUT.

1.2 00 TOU VAST TO USE DE7AI7LT O.IMATOLOCIC DATA? EKTZR T£S OR HO.

TZS

90 T6

ITVKKQS 1TMO KIY1SO OKT HOUTUWIS ZEI fflffi 01 S OKY 'HTIDOli ZEI dOlS 01 * m LUJO turiao osv HOXITHKIS ZEI SHE 01 c 'mac TUB ssmc HO nos ioi z HOi T

£IT1K> 01 10 YXTQ 232ED 10 TCIJH 01 1HVH 001 00 T'T

01 SSTC uanzss 101 *c BT SiT»to ZITi 1M *C 01 QBOOBZVT8 IQi *C ?

KI Eiaa uaz L&IITBOJT^S zsi cua 6'Z

i^mco K> Krrrr TZTQ-TIOS ZEI TCLIS cinoES nca. TTVG TIOS iiirviaa ZEI si azsn r? ZKVS ZEI IDS si * TITC TIOS H£ITi3a StdSQ ZST 201 B.

A01 CYJ lOi I uoc aos aoos IM 9 srre IOM iai s . • SSTO UTi 101 V __ ssrp goes 102 c SSTO 1ESTS3S 104 Z T SSSKTIS

TTIACP ZAIIT1Z52A iO Sail ZEI 13Z12S 9'Z

SNTZT&O

10 1112 10 ZHTK

THTIS1QOT

1S3S32KI ID ZIY1S 10 ZRVH THIHH Z*Z

OK

*0fi 10 SZI iinraa 10 isn v isra noi oc rz 1.3 PO TOT ffAHT TO USE DEFAULT SOIL DA2A.? ESTES. TES OS. HO.

TES

USE OHLT EHC.ISH LIB ITS OF IBCHES ABD DATS UHLESS OTEZJHISE OtDICAJZD

ALL

A 7ALUE •*MiJ5I«'« BE iHIULEC F01 LACS COtffiUKD TOES THE VALUE IS ZEXfi.

4.1 ESTE1 TTTLX OK LIBZ L. ESTE& LOCAXTOV 07 SOLID HAST1 SHE OH LIKE 2, ABD ESTEZ TOOAT'S DAZE OH LI5E 3.

TEST CASE 3 . NEW 02LEASS, LOUISIAHA. AUGUST 26, 1983 "

4.2 FOTJ1 TT?ES OF LAIESS HAT BX USED Dl TZZ DOIOI: 7E2ZICAL FE2COLAXIOH, T-ATM AT. DLLEHACX, •A»«<>T» SOU. ARO UASTI.

DRADUCX IS HOT *'BMI ^fED FIOM A a>>^ [rAl FDCQLAZXOH LATEi. BOTH VEXriCAL AJD T ^«<^»AT DIAlXAfiE AU PLULLlllD FlflH A UZE1AL son. T^T" sioou ix DEsiora TO mnrr mcounov. AJI mPEHMZASLZ Lim-MAT BZ USED OH TO? OF ATT BAttlZl SOIL LAZE1. THE BASTE LATE1 SBOULD BZ DESICBED TO FTXMTT UJH) DLAHACE F&OH THE QASTE LAIE&.

RULES: :HE TOP LATE* CAHHOT BE A BAITRTTI son. LATEZ. __ A *Ag»-m» SOIL LAZEB, MAX HOT BE PLACED ADJACENT TO AHOTHEI Son.

92 ONLT A BARRIER SOU LATER OR ANOTHER LATERAL DRAINAGE LATER MAT BE PLACID DIRECTLT BELOW A LATERAL DRAINAGE LATER. TOU MAT USE OP TO 9 LATERS AND UP TO 3 BARRIER SOIL LATERS.

ENTER THE NUMBER OF LATERS 15 TOUR DESIGH.

6 4.3 THE LATERS ARE NUMBERED SUCH THAT son, LATER i is THZ TOP LATH ' . AND SOIL LATER 6 IS TEE BOTTOM LATER.

4.6 IS THE TOP LATER AH UKVLUgATED SAHD OR GRAVEL LATER? TES OR NO.

NO

4.7 ESTER THICETESS 07 SOU LATER 1 IS ISCHES. 24

4.9 rTET THE LATER TT7E -FOR LATEX 1.

4.10 ENTER 1 FOR A VERTICAL -PERCOLATION LATER, 2 TOR A LATERAL DKAXXfcCZ LATER, 3 FOR A »AMTT» SOIL LATER, 4 FOR A SASTI LATER. ABD 3 FOR A »ACTTT» SOU LATER VTZH AN IMPERMEABLE LJ2TER.

4.15 ENTER SOIL TEXTURE OF SOIL LATER 1.

4.16 ENTER A NUMBER (1 THROUGH 23) FOR TENURE CLASS OF SOIL HATERIAL.

**« "•'•' USER'S GUIDE FOR BOMBER CORRESPONDS TO SOIL TTPE.**

• 12 '

4.23 13 SOn. LATER 1 COMPACTED? ENTER TES OR NO.

4.24 THE VEGETATIVE SOIL LATER IS CENERALLT NOT COMPACTED.

NO

4.7 ENTER THJCICHESS OF SOIL LATER 2 IS ISCHES. 12

93 4.9 EHTEB. THE UTE1 TIPS FOR LtZEl 2.

2

4. 15 EXES* SOIL ILCU8.E (7 SOIL UIEi 2. 1

4.23 IS SOU ULIEE. 2 COMPACTED? ESTER, US OK BO.

HO

4.7 EHIES. THICDTESS OF SOU UTSH 3 IN QfCHZS. 24

4.9 ESTES. TEE UTEX TTPE FOB. UTUL 3.

3 4. if ijizk son. TF-iTiivy: or son. IAIEI -3. 20 4.7 Eirm THICBfESS OF SOU UTH 4 Of QCHES. 60

4.9 SHIES. THE U.IZX TT7E FOE. U.ZES. 4. ' 4

4. LS E27IE& SOU TUT'JkS OF SOU UTH 4. 1 4.23 is son. una. 4 COKBLCTZD? E2I7E& I2S CE BO.

90 4.7 ETrrn inicnress OF son. u.nz 5 IH ISCHZS. 12 4.9 EBTE& THE UIEL I7PE FOK LLIE2 5. 2 4. LS E2HE2. SOU. TETOQLE OF SOU UYE& 5. 1

4.23 IS SOU. U.TE& 5 COHPACTED? EHTE& TES OK HO.

94 HO

4.7 ESTER TEXOQTESS OF SOIL LATER 6 IS INCHES. 24

4.9 ESTER THE LATER TTPE FOR LATER 6.

3

4.L5 ESTER SOU. TEZTURE 07 SOU LAIER 6. 20 4.33 DO TOU EAST TO ESTER A RUNOFF CURVE SUMBER AMD OVERRIDE THE DEFAULT VALUE? ENTER TES 01 HO.

SO

6.1 ESTER THE TOTAL AREA, 07 THE STJS7ACE, IB SQHA2E FEET. 231000

6.2 EHTZ& THE SLOPE AX THE BASE 07 SOIL LAZEZ 2. IV FEBCEST.

6.3 EBTZSL THE MATTMTO DEAIBACE DLSTAHCE ALOBC THE SLOP! TQ THE COLLECTOR, IS FEET.

173 6.2 ESTE& THE SLOFE AZ THE BA5E OF SOIL LATE& 5, IS ?E2CEXT.

6.3 EBTEZ TnHAZZKDK OKAISACZ DISTANCE ALONG THE SLOFE TO THE COTT.lfTUI., d FEET.

1.1 DO TOU HAHT TO EHTE2 OB. CHECT DATA. OR TO OBTAIS OUTPUT?

ESTER 1 FOR CLP1ATOLOCIC ntTUT, 2 FOR SOIL OR DESIGH DAZA IH7UT, ___ 3 TO RUN THE SOflJLATIOH AND OBTAIN DETAILED OUTPUT, 4 TO STOP THE PROGRAM. ASD ____ 5 TO RUN THE SIKULATIOH AND OBTAIN ONLT SUMMARY OUTPUT.

95 11.1 HOW MAST TZA&S OF OUT?UT DO TOU HAST? (BETWEEN 2 AHD 5 TSASS MAI BE USED.) 5

7SS7 CASE 3 SZtf OR1EAHS, LOUISXAKA AUGUST 26, 1983

FAZE GStASS

LAIZ& 1

V££TTCAL PZXCOULTXOV ^LTZZ THICZBZSS • 24.00 E7AP01AIXOW COETTZCZZR » 5.000 ttl/BAX**0.5 FOIOSZTT • 0.5350 TOWOL FHUOLFACITT - - 0.4210 70L/701 7XLTQB FODR • 0.2220 70L/VOL UTKCTIVE SZDtAOLZC CUHUULTIV1II - 0.33000004 DICHES/HX. XJLYS 2

DRAXXtGE ULTER SLOFI 3.00 DRJLDIAGZ LCBGTS 173.0 FTO THICKNESS 12.00 E7JLPORA7XOH COETTTdZST 3.300 POIOSXTT 0.3510 7DL/70L 7HLD (UPACm 0.1740 70L/V01 VTLIT5C POI5T ____ 0.1070 7DL/VOL VL HT3RAULIC CONDOCTTVm 11.9499998 ISCSZS/Hi

ULTZ2 3

son THXCDZSS 24.00 cocrrEcnrrr 3.100 Mtl/tUJ-*0.5 0.3200 TOL/VOL 0.4300 70L/70L WILTIBC ponrr 3.600 TOL/70I. 0.00014200 I5CHZ2/H2

LLTE& 4

HAST! LLTOL 60.00 ETAFOtATXOV COLFFICTPIT 3.300 M!/TkT**0.3 POtOSXTT 0.3310 7DL/70L HCJ OJACITT 0.1740 VOL/VOL ffn^TBC POZST 0.1070 70L/VOL LFIEX.T1VL 11.9499998

97 LATE! 5

DRAdACE SLOFE 2.00 PEiCHTI DRAdAGE 22.00 nrr TSXCDTZSS 12.00 Z9CZZS EVAPORATXOH m «••-•• 3.300 MH/TJAI**0.3 POIOSXTT 0.3310 VOL/70L 0.1740 70L/70L 7HTXBG P013T 0.1070 70L/70L STSRADLXC 11.9499998 IBCEZS/1

son. mm 7BZCOZSS 24.00 C7AP01AZIQ1 C027FICZZBT 3.100 POK0SZTI 0.2200 VOL/70L nZUClfACZTT 0.4500 70L/70L FOIST 0.3600 TOL/V01 HYDRAULIC 0.00014200 IBCHZS/1

CZNZL4L SCOTLiTIOH D4ZA

SCS KUBUFf CD&VZ HUMBH. 81.28 TOTAL AXZA Of GDVU 231000. SQ. rr ZOHZ Dlfll __ 10.00 EVAPORATIOH CDETFT 5.000 STORACI 5.3500 3.2150

CLXMA70LOGXC DATA FOK HEW ORLZAHS LOUIS USA

HEA5 TEKPESAIURES, DECREES FAHZEBBZZT

98 JAN/JTJL FQ/ADG MARKET JUN/DEC

53.30 35,00 60.28 67.71 75.381.04 1 83.37 81.66 76.39 68.95 61.35 55.62 MONTHLY MSAHS SOULZ RADIATION, LASCLETS POL OAT \ JAH/JPL ro/APC MAR/ SO IP^/OCT MAI/BOV JTJH/PEC

236.64 268.52 321.36 381.00 431.47 459.23 456.86 424.98 372.14 312.50 262.03 234.27

LZJLT AJtZX DOS TABLE

DAT! L4I 1 0.0 , 44 0.0 74 0.61 105 0.99 125 0.99 165 0.99 196 0.99 226 0.99 256 0.89 286 a. 65 317 0.32 347 0.16 366 0.0

FAIR OULSS wnrra COVE* FACTOR • 0.60 • .

AVERAGE (OHTHLI TOTALS FQK 74 THROUGH 78

JAH/JTJL FEB/ADC MA&/SCT AP8./OCT MAI/TTQV JUS/PEC

PRECIPITATION CISCHZS) 6.54 3.66 4.37 4.55 7.05.95 1 6.58 9.84 5.91 3.165.3 7.17 2

99 RDBOTF (I3CHZS) 1.680 0.651 0.467 0.958 1.193 0.436 0.457 2.065 1.500 0.332 1.510 0.868

I7APOTRA5S?ISAnOH 2.367 2.174 3.123 3.060 4.476 4.129 CIBCHZS) 5.246 5.146 3.828 2.007 2.561 2.469

FOCOULHOV FROM RASZ 0.1686 0.1625 0.1533 0.1436 0.1434 0.1467 OF COVER (ISCHZS) O.L545 0.1550 0.1598 0.1360 0.1407 0.1669

FROM RASZ 0.1445 0.1418 0.1471 0.1376 0.1377 0.1382 OF UHDFTL1 T*TO) 0.1392 0.1408 0.1417 0.1287 0.1337 0.1537

DRAX2ULCZ FROM BASZ OF 1.642 1.768 1.474 1.053 0.988 0.901 COVER

OKJLI2UCZ FROM BASZ OF 0.021 0.024 0.008 0.006 0.006 0.008 LAHDFTLL (INCHES) 0.014 0.014 0.018 0.010 0.006 0.011

•»<•**«<• »*«***«»a»»i

A7ZXAGE ACTUAL TOTALS F31 74 THROUGH 78

CplCHZS^ (01. FT.) FEXCETT

?R£CIPTTAI1OT 70.06 1348681 . 100.00

SDH07Y 12.115 233208. 17.29

E7APOTBABS7X2AXXOR 40.585 781255. 57.93

100 TIOH FROM BASZ OF C07OL 1.8311 35248 2.61

H FROM BASE OF ULHDFILL 1.6848 32433 2.40

DRAZJUU3 FROM BASZ OF COVES. 13.239 293733 21.78

ORU2UCZ FROM BASZ OF U5DFTLL 0.146 2807. 0.21

PEAK IUTT.T VALUES FOR 74 I'ltUUU '78

•• coens) (CU. FT.)

FR2CZPI7ATIOK 8.32 164010.0

RDHOF7 4.818 92750.3

PERCOLATION FROM BASE OF COVES. 0.0120 230.1

FERCOLAnOH FRGEI «ACT OF LA5DFTLL 0.0082 158.0

DRAdAGZ FROM BASE OF CD7E1 0.141 2716.1

DBAT?T*<7 FROM LLSI 07 UODFILL 0.003 58.5

SCAD OH 1AS1 OF GOTO 33.8

BZAD OH BASI OF LAV01TLL .0.1

SH09 «ATBL 0.0 0.0

MATTvnM TIC. SOIL «ATZR (VOL/VOL) 0.5350

JCJTEMDM VEC. SOIL BATZR (70I./VOL) 0.2220

>*»*n*»*<«-)HHK»1

101 I.I DO TDU HAHT TO UliJJL OX OTTCr DA2A OR TO OBTAI3 UU1PUT?

ET3R 1 FOR CLUOIOLOGIC ETPUT, 2 FOR SOIL OR DESIG5 DATA. IHPUT, ___ 3 TO SDK THE STMUIATZOH ABD OBTAHf DEULTLD OUTPUT, 4 TO STOP THZ PROG21K, AND ____ 5 TO BDH THZ STHUUkSTOH AND QBTAIH OHLI SDMMXRT OUTPUT •

1.4 EST3R HUSEELP TO UZUB P&OO1M OR LOGOFF TO LOGOFF COKFUTZR STS'IEH

102 1. P«rrl«r, E. 1.. and 1. C. Gibeon. Hydrologic Simulation on Solid Waste Disposal Sites. EPA-SV-868, U.S. Environmental Protection Agency, Cincin- nati, OH, 1980. Ill pp. 2. Scaroeder, P. R,, and A. C. Gib son. Supporting Documentation for the Bydrologic Simulation Modal for Estimating Percolation at Solid Waate Dis- posal Site* (HSSWDS). Draft Report, U.S. Environmental Protection Agency, Cincinnati, OH, 1982. L53 pp.

, 7. J. , Jr., Iditor. CXZAMS, A Field Scale Model for o«— «»•! Run- off and Erosion from Agricultural Management System*. Tola. I, II, and III. Draft Copy, USBA-SZA, AJL, Con*, lea. lapore 24. 1980. 643 pp. USD*., Soil Conaarration Service* Rational Engineering Handbook, S«c- tlon 4, Bydrology. U.S. GoreraBaat Printing Office, Washington, C.C.j 1972. Schroeder, P. 1., A. C. dbaon. and X. D. Smolen. Hydrologlc Evaluation of Landfill Performance CUL?) Model: Volume II. Documentation for •ion 1. Draft Report, Municipal Environmental Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, 1983. Lutton, R. J., 6. L. Ragan, and L. V. Jones. Design and Construction of Covers for Solid Qaate Landfills. PB 80-100381,.SPA-600/2-79-165, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1979. 7. England, C. B. Lead Capability: A Hydrologlc Response Unit in Agricul- tural Watersheds. A1S 41-172, Agricultural Rasearch Service, USDA, 1970. 8. Breaxeala, E., and 7. T/Mcfleorge. A NOT Tecanic for Determining Wilting Percentage of Soil. Soli Science, Vol. 68, pp. 371-374, 1949. 9. Li, E. A. A Model to Define Hydrologic Response Units Based on Character- istics of the Soil-Vegetative Complex Within a Drainage Basin. M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1973. 124 pp.

103 APPSHDU A

STZPS TO LOG OB ASD OTT ICC

HELP program is maintained on eh* lational Coaputar Canear (5CC)* E5M Coaputer Srstea. la order to TOO. H&? on this syttaa, the u»«r aust contact national Technical Information Services QJTXS) to open aa account , be assigned a user identification nuaber and password, and obtain peralsaion to use tha irlaesharlag option (ISO) . Tha individual to contact at BTZS ia Hz. Vallay • ?iaeh. Mr. ?inch may b« raaehad by talaphona at (703) 447-4807. Onca taeaa arraagaatants hara b««a mada, tha o««r thonld contact Mr. Anthony Ciiaon of cha U.S. Army Eaclaeor Qaeanrmya Exp«r1ii«nt Station to hf*m taa **if program aarahliahad on tha aaal gnad account. Mr. Clbaon may o« raachad by talaphona at (6on 634-3710 (coaiMrclal) or 542-3710 (ITS). Stap—by—atap procadnraa to log on and off tha ICC Syvtaai ara praaantad balov. To log on: 1. Tom. o& tha data tarmlaal. 2. Dial tha approprlata talaphona soabar (Iran in Aap«adlz B. 3. Put tha talaphona haadla in tha haadaat muff (or dapraaa tha tala- phona data button). 4. Tha coaputar «y«taa will than raspoad if tha oaar did not uaa tha toll-frM talaphcM onab«r (1-800-334-1079) aa follow.: VLZiSl £LPi TOOL '''•"»*'• AT QUTILP' ' typ«^ *«•<• terminal H^rrl fl^r (aea araaadlx B) For axavpla. A-

* ?0 obtain coat information for tha NCC Coaputar $7*taa, saa Appendix C. ** If the BAUD rate for the oaer'a coaputer terminal i« 1200, the coaputar sy*taa will type a T^r** of raadoa characters. Toe user should enter tha appropriate terminal identifier and continue. * To correct typing errors, uae the backspace key for character deletion or praaa tha B&EAX key for liae deletion.

104 3. The computer system vlll then respond: -3625-M4-PL2ASE LOG IS . The user should type:

If the user used the toll-free number (1-800-334-L079) , tae "ser •hould press the SJLLUitS k«y «• »oon ai th« eovpucaz syieaa ij

5A-. Th« eovpoear «yic«m vlll ehca respond: zzrna ISM ?oi ISM USI 701 S722SI 7h« oj«r should th«n crp«: IBM (&*cuxa) Tha eoapucar syscaa vlll eh«a r*spead: o««r should than pr*«s ch« ZZTUBK key. 6. 7b« eospucar system vlll eh«n respond: I2U3 15 OS LIHZ The user should type: ISO (1ZTUZV) 7. The computer systssi vlll ehan respond: ornz LOCGV The user sboulo sype: LOCOH CU3U1U) 8. The coejpucer system vlll then respond: .ILJ567NA DTTE1 ITSE2 ID - The user should type: __ User Identification/password (ZZTCTK) 9. The computer system vlll then respond: ffl'IUt FTHA.S O - The user should type:

10. The computer system vlll then respond: UADT The user should type: •imnri ? (UTUJUO The profrsm vlll start functioning according to the instructions is Chapter 4 of the User's Guide.

*** H5SV is the utilization identifier and P is the mode character for the facility iapact monitor analysis system (FIHAS).

10S 11. Wh«n eh« profra» If finished, tb* u»«r sboold cyp«: LOGOT7 (IZTU2K)

106 APPEJDIZ B

BCC AfCISS HUMBOS AHD TEESIHAL IDEHTXTIIBS

Tha folioviag Use contain* ,purr«nc HCC accass mabars for 300 or 1200 BAUD racas. Taaaa nuabar* ara to b« us«d co accasa tha ISO computer ia 2asa4.rch Triangla Park, 5C. A usar should loc»t« hi< cirr of in.c«r*st on Hit and <*1*\ ch« approprlat* nuab«r for acc**i eo ISO. D»«rs who fall co flad chair dry of inc«r**c on th« Use should A-(*I eha'toll fr*« numb«r 800-334-1079 for caa 300 or 1200 HHD nea.

I1BLZ B-l. 1CCISS TZLIFSOHI HT3MBE2S CITT STATE PBOHZ HUMBZZI ASHXS7OT 205/236-2655 mTTVTHCTAM 203/942-4141 205/882-3003 MOT. HE 205/343-8414 auarwjnrK T 205/265-4570 TUSCALOOSA 205/345-1420

THOEZm ULLZOHi. 602/254-5811 A2IZOHA 602/790-0764

ST. smra 1KXAHSAS 301/782-3210 EOT SPUHCS 501-321-9741 JOKZSB010 501/932-6886 LITTLZ KOCZ 501/666-6886 SPU3OALZ 501/756-2201

rAT I' tUBM I A 818/308-1800 AB7IOCE CALJJOETLA 413/778-3420 CALUODTLi. 818/308-1800 CAZJ70IHIA 805/323-8366 BZ7OLET TAT rgnBMT^ 812, '729-9002 BT72AAHK CALZFORHIA 818/841-7890 BCSLINGAMZ 413/952-4757 CANOGA PABZ 818/789-9002 CEZCO 916/893-1876 COHOSA OLXTOBHIA 714/371-2291

107 TABLE B-L.

CUT STATE PHONE NUHBZ2J DA.VTS/VOODLAHD CALUOB2TIA, 916/733-3722 DUMPED BAIL 714/594-4567 EL SECUHDO CALUOSHUL 213/640-1281 ESCOHDIDO CALITOSZTIA 619/480-0881 Eomm CALITOtHIA 707/443-3281 415/490-7366 TSZSSO CALUOBTLA 209/442-4328 HAZVAZD ClLUOnriA 415/785-3431 LAHCAST3L CALUD15IA 805/945-7841 LOHG BEACH f*AT I ttlUM 1'A 213/435-0900 LOS AHGELZS CALUOBHIA 213/626-2400 LOS ASGELZS GLLI70X5IA. 213/623-8500 LOS ANCZLZS CALUOWTLA 213/629-3001 MAB 7757^ CALXFOB5XA 213/821-2257 MABfHA DEL STY CALUOETtA 213/821-2257 HXSSIOH KILLS 818/789-9002 CALITOETLA 209/377-5602 5TO ___ 1 MDUBTAIS VLEV .rAT. 408/980-6100 SAPA GAL 707/257-2656 HEUJMC BLLCS CALUOHIA 714/966-0313 HOirrHKTDCE CALUDETIA 818/789-9002 HOEHALJ: CALUOKTIA 213/435-0900 CALUOBILi. 415/836-8700 PALS S7USGS CALUOI5IA. 619/320-0772 PALO ALTO CALUDE5IA 415/966-8550 PASADE2U CALUOEOA. 818/308-1800 PLSASABT HILL CALUOETIA. 415/798-2093 PLEASAfiTOH C1LI70SSIA 415/462-8900 RAHCHO BEZSAIDO CALUOX5IA. 619/485-1990 KZDDI5G CALZ70KH1A 916/223-0449 SI7QSZDC/COLTOH CALXTOBTLA 714/370-1200 SAOLAKESTO OAT 1 Vt\Ufl 1 A 916/448-4300 CALZ700IA 404/443-4333 714/498-9504 SAB DUCO CALTFOBTIA. 619/296-3370 SAH niBCZSCO ffAT. 415/974-1300 SAff njUKZSCO /•AT 4L5/543-0691 SA> josz/cnmnvo CALUOBH1A, 408/980-8100 SAS LOUIS OBISPO 805/546-8541 SAH PIDKO 213/435-0900 SAHTA AHA CALUOB5IA. 714/966-0313 805/963-9241 CALUOH5IA 805/963-9251 SAHTA CZDZ CALffOKJTIA. 408/475-0981 SAflTA MDITICA CALJ70E5IA 213/306-4728 T^ SOSA. 707/575-6180 CALUOBTL4 818/789-9002

108 TABLE B-I. (CONTINUED)

CTTT STATE PHONE NTJME^T^ CALITORHIA 209/467-0601 THOUSAND OAKS CAT.ITORglA 805/496-3473 7ALLEJO CAZJ70R5IA 707/557-0333 7AH HUTS CAZJ70RVIA 818/789-9002 7ESTURA/01HARD ^^^laTyORflTA 805/436-4311 7TSTA CJULXTODTXAi 619/727-6011 HALSTJT CREET CAL70RHIA 415/932-0116 VEST COVTBA CAL^ORSTA 818/331-3954 VEST CQVTHA 818/9L5-5702

COLORADO SPilaCS COLORADO 303/590-1003 DENVER COLORADO 303/830-9210 GREELET COLORADO 303/356-0425 PUEBLO COLORADO 303/543-3313 SLOOmTELD COHBECTXCT7T 203/242-7140 BRDGEPORT COHHECTXCUT 203/367-6021 DANBURT COBHECTXCUT 203/797-9539 DARHS CQKZTEC7 1CCT 203/965-0000 gAlfl'Hlllh CQBBECnCUT 203/242-7140 COBHECZICDT 203/235-5180 NEW RATES CORHECnCOT 203/773-0032 HE? LOHDOH CONNECTICUT 203/444-1709 STAFFORD CONNECTICUT 203/965-0000 HAIERBURI CONNECTICUT 203/755-5994 WESTPORT CONNECTICUT 203/226-5250

VAS2I3CTON D.C. 703/691-S200 VASTTTHCTQg D.C. - 703/691-8390

DOVER DELARARE 302/678-0449 DELAWARE 302/429-0112

BOCA RAXOH FLORIDA 305/395-7330 DATTOSA BEACE FLORIDA 904/255-4783 FORT !OERS FLORIDA. 813/936-4221 FT. EXZRCZ FLORIDA 305/466-0661 FT. UTOEXDAU FLORIDA 305/463-0882 SA1HESVILL2 FLORIDA 904/376-0939 JACXSOZT7TLLZ FLOR2XA 904/721-3100 FLORIDA 813/688-5776 MELBOURNE FLORIDA 305/676-4336 MERRITT ISL£ FLORIDA 305/459-0671 KTAMT FLORIDA 305/624-7900 OCALA FLORIDA 904/351-0070 QSLA8DO FLORIDA 305/841-0020 PEHSACOLA FLORIDA 904/477-3344 SAJULSQTA FLORIDA 813/365-3526

109 TABLE B-l. (CuHTinuto)

CTTT STATE 7HOHZ TOMBZSS SA&ASOTA FLORIDA 813/365-6980 ST. PETERSBURG FLORIDA 813/441-9671 ST. PETERSBURG FLORIDA 813/44>L533 TlTT AgAggTT FLORIDA 904/878-6929 TAMPA FLORIDA 813/977-2400 TAMPA FLORIDA 813/932-7070 9. PALM BEACH FLORIDA 305/471-9310

ATHZSS GEORGIA 404/546-0167 i— T AMTA /UO1lCjliJ

HONOLULU HAHAII 808/528-4450

BOISE IDAHO 208/343-0404 IDAHO FALLS IDAHO 208/523-2964 POCAZELLO IDAHO 208/233-2501

AURORA HLIS01S 312/859-1143 BELLEVTLLE niiHois 618/233-2230 CHAMPAIGN nuorois 217/356-7552 CHICAGO ILLiaOLS 312/922-4601 rgicjrtn ILLINOIS 312/922-6571 DECAIUR nidois 217/422-0612 FOREST PART, ILLTNOLS 312/771-9667 FREEPORT HLIBOI5 815/233-5585. grinr ELLY5/"UHEAIOB HXI50I5 312/790-4400 JOLTTT ILL2IOIS 815/727-1019 UJZ ZURICH XLLXffOIS 312/438-3771 L^A^MMk 1 V I^MM£ ILLIVOIS 312/362-0820 PEORIA ILL30I3 309/637-5961 ROCZ ISLABD ILL2IOIS 309/794-0731 BDCT70RD ILLOOIS 815/398-6090 SPUHGZTZLD ILLIBOIS 217/753-7905 ST. CHARLES ILLINOIS 312/859-1143 URBABA HLIHOLS 217/356-7552

E7ASSTTLLE ISDIAHA 812/464-8181 ^^T _ N^^^^l^M ISDIAHA 219/423-9686 HZGHLABD ISDIAHA 219/838-6353 dDIANAPOLIS D3DIA5A 317/257-3461

110 TAKTT B—1. (OuHTJ_BU£Jj)

cm STATZ PHONE tTCHBDLS TTVt HUH Twnx>»4 317/457-7257 LATATZI^TZ IBDIARA 317/742-0189 MAilCB DDZASA 317/662-0091 KDZrCXZ/ABDESSOH IHDIAEA 317/288-2477 SODTS B2!D TWBTAWA 219/234-5005 TZ2Z2 HADTZ Tjtp TAW A 812/232-3605

ODAl EAPIDS IOWA 3-19/363-7514 DCS SDIHZS IOWA 515/277-7752 DU3UQUI IOWA 319/556-8263 IOWA cirr IOWA 319/354-7371 WABCgATT-nPW IOWA 515/753-0667 sioux cm IOBA 712/152-1681 tZAZZBLOO IOWA 319/233-9227

LAHKaiCZ CABSAS 9137749-0271 LZAVQQIOXXB IA5SA5 913/682-2660 UA5EATTZS KAVSAJ 913/776-5189 SAT.T3TA L45SA4 913/823-7186 S2AHHZE MI5SIOH CAHSA5 913/384-1344 TOPEIA CAHSA3 913/233-1682 glCHTTA CAB&A5 316/263-1241

BOOLTSG C2ZZH 502/782-0436 LEI2JCTOH 606/233-3463 Lotnsvmz 502/499-7110

ATTTA»PgT> LOUIS LOA 318/443-9544 HA'fnii BCUGrZ LOC13LUU 504/291-2650 LATAZZTTZ LOffU LUU 318/237-9500 T Afg rgABT 1T< LOOI2LUU 318/436-1633 LOCISLUU 318/322-4109 NIW OBL£ABS LOCISIAXA 504/524-4371 UXI5UIA 318/688-5840

AUAUJUf 207/782-4101 LZffTSTOH 207/782-4101 207/774-2654 301/272-3800 BAL7I2DU MAZTLUD 301/547-8100 MAZZIA0 301/293-1072 EACO5TOWH HAETIJJD 301/293-1072 lOCTTTLLI HAEZLA8D 301/770-1680

AI7L£30EO 617/226-4471

111 TAnLZ B— 1. (CQN7TSUED)

CTTT STATE PEONE NUMBERS BOSTOH M A« Arrays fc,!'!,^ 617/292-1900 BSOCZTOH MASSACHUSETTS 617/584-4873 MASSACHUSETTS 413/442-6965 SPUHGTTZLD MASSACHUSETTS 413/781-4830 TAflHTOI MASSACHUSETTS 617/522-7799 WOBUU • 617/935-2057 MASSACHUSETTS 617/791-9000

ASH ARB01 MICZIGAH 313/662-8282 BATTLE OLEET HICHICAH 616/962-1851 CADILLAC MICHIGAH 616/775-3429 DETROIT MinrrraH 313/963-3388 DETROIT MICE GAB 313/963-8880 DETROIT MICHIGAS 313/963-2353 FLIST MinrrcAH 313/732-7303 G8AHD EAPIDS 616/459-2304 JACX50H 517/787-9461 FAT A1A200 MICEICAI 616/388-2130 LAffSIBC 517/484-6602 MA5ISTZZ HICEIGAJ 616/723-6573 • MICHIGAI 517/631-4721 MICCGAV 616/725-8136 PLTMCUTH MICHIGAI 313/459-8900 POST HUBflH MICZIGAI 313/985-6005 MICEICAI - 517/753-9921 SOUTHFTZLD MICZICAI 313/569-8350 ST. JOSEPH MiancAi 616/429-0813 TBAVESSE CITT MICHIGAI 616/946-307.6

MAHIATO 507/625-9481 MUIBEAPC 612/339-5200 MTWfPAPnT TJB 612/339-2415 507/282-3741

JAO30B MISSUS on 601/355-9741 JACBOH MISSLUim 601/944-0860 MISSISXITn 601/693-8216 PASCACOCLA MISSISSITfl 601/769-4502 PASCACOULA Mississipri 601/769-4673 7ICXSBUBC MISS us zm 601/634-4670

BEHXZETOH MISSOOU 314/731-2304 COLUMBIA __ MISSOUU 314/875-1290 JUTESSCB CITT MISSOUU 314/634-3273 JOPLX5 MISSOUU 417/782-3037 CAHSAS CITT MISSOUU 913/384-1544 80LLA MISSOUU 314/364-3486

112 TABLE B-l. (CONTINUED)

CTTT STATS PHONE NUMBERS SPiUGSTEUJ MISSOURI 417/831-5044 ST. JOSEPE MISSOURI 816/232-1897 BOZEMAH MOBTAKA 406/586-7638 All Hi MQBTAHA 406/494-6615 tar AT TATTg MOBTAHA 406/727-0100 Kzssonu, BOHTABA 406/728-2415

LI3C01S IE31ASXA 402/475-8659 OMAHA IEUASXA 402/397-0414

US VEGAS IEVADA 702/293-0300 SENO/CASSCN CITT IEVAOA 702/885-8411

MA?< yxvrm vra BAM^^imjf 603/623-0409 HASZBA IE? HAMPSHUZ 603/882-0435 SALZK IE? HAMPSEX2Z 603/893-6200

AOHTIC CUT •IE? JESSET 609/345-6888 CSCRU HZ^I> IE? JEKSET 609/665-5600 EAXOBTOQH IE? JE2SET 201/542-2180 £H«*L£WOGD Qi i ts a IE? JESSET 20 1 /8 *} A^ Q ^^ Q JESSET cm IE? JESSEX 201/432-4907 LT3DHDSST IE? JESSET 201/460-0100 LTHDHUSST IE? JESSET 201/460-0180 MOOXZSTOBB IE? JESSET 609/665-5600 MOKSISTOWH IE? JESSET 201/539-1222 HEWA2X/T3HTOH IE? JESSZT 201/483-5937 IE?AZX/T]SiaH IE? JESSET 201/483-4878 p^yygA^iy IE? JESSET 609/665-5600 9T5/"ATAWAT IE? JESSET 201/981-19Co PU5CETOT IE? JESSET 609/452-1018 inXiEUOOD IE? JESSET 201/445-8346 UAZHE IE? JESSET 201/785-4480

AL2UQUEZQCE IE? MEXICO 505/242-8344 us aajczs HE? MEXICO 505/524-1944 SABTA Tt HE? MEXICO 505/988-5953

ALSAST IE? TOST 518/458-8300 SISGEAMTai HE? TORX 607/772-1153 BU77ALO HE? TOST 716/845-6610 C08HT5G HE? TOSX 607/962-4481 PTMTBA HE? TORX 607/737-9010 d^fljT3 r JJJLfl HE? TOSX 516/485-7422 HD8TT3GTON IE? TOSX 516/420-1221 ITZACA IE? TORX 607/257-6601

113 TARI E B-L. (.CUHTIHUZD)

CITT STATZ PHONE NUMBERS MTT.vrr? y HE? TOU 516/420-1221 SBTEOLA HE? TOU 516/294-3120 HE? TOU HE? TOU 212/269-6985 HE? TOU HE? TOU 212/785-5400 HE? TOU HE? TOU 212/689-8850 HE? TOU HE? TOU 212/509-5400 HIACA2A FALLS HE? TOU 716/283-2561 POCGZKEZPSIZ HE? TOU 914/473-0401 SOCEZSTE& HE?- TOU 716/244-8000 STSACUSZ HE? TOU 315/437-7111 UTICA HE? TOU 315/735-2291 WHHS FLAIHS HE? TOU 914/684-6075 HOKH CAXOLIBA 704/253-3873 CEAJELOm HOOT CABOLdA 704/376-2545 HOOT CAKOLnZA 704/376-2544 DTCHAM H08ZH rA»nr rp^ 919/549-8952 FATEITE7ILLZ HOOT CAHflT.THA 919/323-4202 G2EEHSV>aO * m^H'^H CAXOLdA 919/273-0332 GSEESVTLL2 HOOT CA20L3A 919/758-7854 Eta poor HOOT ''rW'l.T'1* 919/882-6858 1ALEIGB KUHTiy CAJL0LDiA 919/829-0536 M i LtfTHCTfni yijUjij CAJtOLXHA 919/343-0770 W LHSTOH— SALEH HOOT CABflTiTHA 919/761-1103

BIS21A2C HO2ZE DACOTA 701/223-9422 FA2CO HOX2B PAf^^A 701/280-3000 GSABD FOUS HOOT DACOTA ' 701/772-7162 !£CSOT HOOT DACOTA 701/852-6871

AOOB OHIO 216/535-1861 OHIO 513/449-2100 CLT77LA5D OHIO 216/781-7050 OHIO 614/221-1862 DAXTOV OHIO 513/223-3847 UHA OHIO 419/224-2998 HABS7IZLD OHIO 419/526-6067 OHIO 513/644-0096 TOLEDO OHIO 419/255-7790 QAKREff OHIO 216/394-6529 TOUHCSTOVBI OHIO 216/744-5326

AEDMOU OKLAHOMA 405/223-1552 EHTD OKLAHOMA 405/233-7903 LAHTOH OKLAHOMA 405/355-0745 OKLAHOMA CUT OKLAHOMA 405/947-6387 TOLSA OKLAHOMA 918/582-4433

114 TABLE B-I. (CONTDTUSD)

cm STATS PBOHE NUMB ESS OXZCOH 503/435-0027 HEDFOBD 02£COH 503/773-1257 POBTLAND OUCOH 503/226-0627 SALEM OBZCGB 503/399-14

DGflHTHGTOH PZBHSTL7A5IA 215/873-0300 on PZBBSTL7AKIA 814/456-8501 GSZEHS3UXC PgHHSTL7AHIA 412/837-3800 BAgBTgRTTBe 717/763-6481 me OP PRUSSIA PBgSTL7AHlA 2L5/337-9900 UPCASTS! PZS5STL7AHIA 717/397-7731 SB? CASTLE PZ5RSTL7AHIA 412/652-4223 P1SBSTL7AHIA 215/561-6120 PITTSBURGH PSBHSTL7A5IA 412/765-1320 PISHSIL7AKIA 215/372-4473 SCSAHTQS PZHHSTL7AVXA 717/346-4516 STATE COLLZCZ PIBBSTL7A5IA 814/237-6408 7ALLET POKE PUBb IL7AHIA 215/666-9190 3TLES PIHKSTL7AffIA 717/822-1272 TOBT PBOSTL7AHIA 717/846-3900 PUUl'U 1ICO 809/833-4*33 POBCZ pumu iico 809/840-9110 JTTAJ RICO 809/792-5900 ITTWPOB: 1SCDE ISLAND 401/847-0502 PH07TDERCZ BEODE ISLASD 401/273-0200 WDONSOOCT: SEODE ISLAND 401/765-2400 CEAZLZSTOB SOUTH CAiOLDU, 803/577-2179 COLUMBIA SOUTH CAJL013A 803/254-7563 SOUTH <"Attfr^]y^ 803/271-9213 S?A2XAHBU1C SOUTH CAJLOLIBA 803/582-7924

SAP3 CITT SOUTH DACOTA 605/341-5337 SIOUT SOUTH DAKOTA 605/335-0780

CHA7TAHOOGA 615/265-1020 JAOS01 901/423-0075 EJOTTTLLZ TZSHZSSEZ 615/690-1543 MEMPHIS 'UJUmSEZ 901/529-0183 NASH7TLLZ TEBBZSSEZ 615/367-93&2 615/482-9080

T£ZAS 806/383-0304 AHSTTN TTTAg 512/444-3280 BATTOVB THAS 713/427-5856

115 TAHT.T B—1. (CUHT1NU10)

STATE PHONE NUMBERS BiQWHSVILLE 512/541-2251 MOAH/COLLECE STA. TEXAS 409/770-0184 COSFUS CHRIST! 512/883-8050 DALLAS 214/638-8888 rr., BDPB • 817/877-3630 HODSTQH 713/556-6700 817/634-2810 LOHCTTZff TZZAS 214/236-4041 806/762-0136 512/631-0020 1CDLAHD 915/683-5645 .409/724-0726 ODESSA 915/563-3745 SAB AB70HIO 512/225-8002 214/592-1372 QACO 817/752-1642 WICEHA 7ALLS 817/761-13 L5

OGD0 UTAH 801/627-2022 UTAH 801/375-0645 UJZ dTT UTAH 801/364-0780

BUBLIHCTOH 802/658-2123 MJH'IPTfTiTTl 802/223-3519

rgATTjfi i IAU i i.T.r VHCCTIA 804/971-1001 7ATB7AZ THCCTIA 703/691-8200 TTBGUL4. 703/691-8390 LTSCHBOUC 804/528-1903 t£DLOTSIA5 804/744-4860 5EHPOB 5ZBS T3CIBIA 804/596-7608 804/855-7751 TDtCIBLA 804/862-4700 VHCIB1A 804/74&-4860 JftA 703/344-2762 TUdSTTA 804/872-9592

BASH2WTOH 206/825-7720 OLTMPIA 206/438-2772 1ICHLABD 509/375-3367 SZAZTLZ -i "" 206/285-0109 SPOIA5I HASHUJCTOT 509/747-4105 TACHMA UASHdCTQH 206/272-1503 7AHCUUVUL 206/693-0371 509/453-1591

2HA2LESIOH WEST 304/345-9575

116 TABLE 1-1. (CONCLDDEP)

CTTT STATE PHONE NUMBERS WEST 304/525-4406 MOBGAHTOTO VEST 304/292-2175 PABXZBSBUXG WEST 304/428-8511

A7P1ZTOT VTSCCBSIS 414/722-5580 CTTTH HAT wiscoHsn 414/432-3064 Li OLOSSE BTSCOHSd 608/785-1450 MADISOT wiscoHsnr 608/221-4211 MAD ISO* BTSCOHSIB 608/221-0891 414/785-1614 KZESAE BTSCOKSDT 414/722-5580 OSBZOSH WISCOTSIS 414/235-1082 RACINE WISCOSS1B 414/632-3006 WIST BESD wiscoNSnr 414/334-1240

C1S7OL WTOMISC 307/235-0164

BCC Tha BCC tantfnal ideatifiara (Table B-2) ar« that Identify terminal «peeda, carriage—return delay tiaes, aad cod«a to BCC. If yon ar« la doubt aa to which BCC terminal identifier to ue, contact Anthony Gibaon at (601) 634-3710 (7TS 542-3710) or the BCC H«er Support Service at 800-334-2405.

117 TABT.E S-2. BT TTKMTKAL MAET AHD MODEL

n>* ID* ADDS El«ccr±c 580, 620. 680, 880, 980 Andarson Jacobaon 300, 1200 C 330 * 830, 832 A 300 A 630 E Basal elaa 860 A 1200, 2000 A A-j-m Axbor TaxvlaaJLj Ecvlaer -Packard Dasiga ni, 200 A 2615, 2616, 262Z Saria*, B«aaiTa M^-J.M! Elaccroaicj 263Z Sanaa, 264Z Mini Baa I, 2, A A Sanaa, 722Q*f Sop«r Baa 2, 3 1-211, M-301, 1-211 Modal B Ban sjataa IBM Dacaapaad 40/2 2741 P t D A latardaea DP 6 Caroual 300 E CoBpucar Darlcaa lacotatm 1030 Z S?D 10/20, 20/20, 900 A 1132. 1201, 1202. 1203 Infeean Vlacar 1204, 1205, 1206 A in ' A 200, 300 A 3501 A«cl*cop« A Conrac Laar Slaflar 401. 480 7700. ADM-I, ADB-2, Control D*ea AfiH-3. ASH-31 LogAbaz laforaaelqua 71' »3^ Gnpocar Traaacairar LZ180 I LXlOlOf A Exactrporr C MI DEC 2400 I GT40, LA34, UL36. LJLJ8, MagadatA A LAI20 , LS120f, 7T05, Maaorax A 7T50, TT100. TT132 A 1240 G BO. 1500, 2000, 2100, 2500 A 260 E Dacaooiat 796 A 1100, 3000, 3300 A Dalea Data 8525 A 5000. 5100. 5200 A Oaeal 4000 A 33, 209. 300 A

* Tba symbol t raprasascj a carriaga racuzn. f Dunag log la, ancar Coacrol R iaaadiaealy bafora cypisf TOUT oaar

118 TABLS B-2. (CONCLUDB)

TSOCKAL 7SQOAL Perida-Elser 1200, L250 720, 725, 733, 735 Research 743, 745, 763, 765,. TTlj. Teleray 3300. 3311, 3712 820+ Baythecn T«zu Scientific PTS-100 Eac&lkm 10 A S lager 30 DP-30 C

Sy»t 100. 110, 212, 213 E 1440 200 D 310, 311 C 1612+ 125r 126, 225, 315, 316 Tec 325, 350f, 420, 425+, 430, 400 S«rl*s, 1440 440W, 444+, 470+, 550+, 1100+ A 4012. 4012. 4014, 4023 Laboratories 4022 220 OB A

33, 35 1600. 1620 A 38 I«rox 43 BC100, BC200 A

* Tb« synbol I r«prM«nt3 a carriag* return. + During log in, enter Control i 1meri-lately before typing your o*er

119 APPSDIX C COST UULTSIS 70S. THZ H1XXOHAL C08FT7IZ1 OSTZS,

1. Costs associated with ass of the Bationsl Computer System (HCC) tiaeshar- iag operation (TSO) msy b« categorized as storage charges, central ce putsr procssslag costs, input/output costs sad connection costs. 2. 7b* public ""1 STB) * S423.00/or TO • Task Control Block (hours) 522 • System issource Block (hours) I/O » Terminal Input/Output Unit Cost • $0.74/1000 Lias* Connection JJnlc Cost • $6.00/or

abor% costs ar* curraat as of October 1983 sad arc subject to chsaf*.

120 COHTSTTS Foreword, ...... ibccract

*bl«»

...... z 1. Prunria Idaarlft radtm ...... 1 2. Zasls««rlnf Doca»«ncac±au ...... 3 3. ?rofz«m Doca*aaea.clott ...... 36 4. Syrca Docaaancadott ...... 58 5 . Op«raclaf Doeoacataeiaa ...... 62

69

A.. HELP Source Profta LlJClag ...... 71s) 3. Profraa T«rlAbl«« ...... 204 > C. Orianlz^rm of eh* BEL? So«Ul ...... 132 ^ D. CoBp*rl40ii with iMtiiSJ of DLUSTIL Sod*l ......

rll V oume

ABST3ACT The Zydroiogle Svaluation of Landfill Performance (HELP) program was developed to facilitate rapid, economical estimation of tha amounts of surfact runoff, subsurface drainage, and leachate that may b« exp«cted to rasult from the op«ration of a wide variety of poasibit landfill dasigas. Th« program aodals tha affacts of hydrologic procasscs including pracipitatiou, surfact storage, runoff, infiltration, p«rcoLation, crapotranspiration, soil atoisrart storage, and Lateral drainage asing a qoasi-roD^iiaMnsional approach. In this document, the theories ya4 assoaptions upon wnich tha SSL? aodel is based, the solution techniques employed, and the internal logic of the computer prograa are presented and discussed in detail. this repot-: uas sobmltted la partial fulflllaant of Interagency Igreement Number 1D-96-F-2-A140 b«c«a«n tha U.S. Esvlron«antal Protection Agency and the U.S. any Engineer Waterways !xp«rim«nt Station. This report covers a pariod from April L982 to Aagust 1983, and work was .completed as of August 1983. i end th« U.S. Department of Agriculture C2ZAKS Sydrologic aodel. Th« aodai eomputas runoff by th« Soil Conservation Service roaoff « aumber a«taod. Evapotranspiration is computed by 4 nodlfied ?*nman acthod d«v»lap«d by Sltehl* and adapted for llirltln^ toil noLstur* in ch« aanaars of Shanhoiti and SAXCOU. P«reoLatlon is d«t*rmla»d by applying Darcy'i lav for aararat*d flow «lta aodlflcatloa* £or T»*aturat«d conditions. Latarml dralnaf* *~* coa- patad analytically from 4 Unaarl tad Bou«*ln««q •quation «tlch !_• carr»ct*d to agr*a with asaarlcal solution* of ta« Boossln*sq aquation for th« rmng« of daslgn specifications us«d la hazardoos msta la-ndflUi. Th« aodal os«s cliaa coloflc and daslgn input data in tn« fora of dally rainfall, man aonthly teap«ratar«*, o*an aonthly solar radiation, l«af arma ladicas, soil charactar- Lstlca, and dasign specifications to perform a sequential dally analysis to dctarsln* runoff, crapotranspiration, percolation, and lataral dr»inaj« for the Landfill (cap, uasts cell, leachata collection system, and liner) and ta obtain dally, aonthly, and ammsl wmtar budgets. SECTTOH 1

PSOOUtt

TITLE Hydrologic Evaluation of Landfill Performance Model

P&QffiAtt COX 2ZAMZ

EZL?

Pan! i. Schroedex, Anthony C. Cibson, aad Michael 0. Settles

U.S. Army Engineer Veterumys Irperlaeat Station (VIS)

August 1982 upaA.ii Hoae Version So.; 1

SOUBCZ UHCII4CZ X2K 360/370 aad OC ficteaded FOmuui 17

A7AIU2ILIT; A complete progr^ listing is prorlded ia Appendix A. Source cards aad magnetic tape are available from the Office of Data Base Service, Rational Technical Information Service (YTTS). The program is addressable on the U.S. Zar-lrotmenta-L Protection Agency National Coaputer Center system. Computer accounts for the system are available through 5TIS.

Bydralogic Evaluation of Landfill Performance (HELP) nodal is a quasi- rao—dimensional, deterministic, co«puter~besed imter budget model. The aode! urns developed and adapted from the U.S. EavlronMntal Protection Agency HSSVDS

1 The definition sketch of A typical closed landfill profile is shown in Figure 1. The sketch shows six Layers— three in the cover or cap «nd three in the vaste, drain, cod \ !"••«• system. Tvo sub-profiles or adding units for vater routing ar« shown. a subprofila consists of *M layers between (and inclodiagj the landfill surface and the bottom of the cop barrier soil layer , between che boerom of a barrier soil Layer and the bottom of she next lover barrier soil layer, or becveen the bottom of the lovest barrier soil layer and the bottom of the lovest soil layer considered. In the sketch, the top sub- profile contain* the layers of the coyer, aad the bottom subprofila is composed of the vasts, drain, aad liner system at the base of the 1«"" . Four types of layers are shova in the sketch: vertical percolation., lateral drainage, "vasta, aad barrier. Vertical percolation layer* (e.g., Layer 1 on Figure 1) art assumed to hare great enough hydraulic conductivity that vertical flow in the downward direction (i.e., percolation) is not significantly restricted. Lateral drainage is not permitted, but water can move upward aad be lost to evapotran- spiration, depending open the specified depth of the evaporative zone. Per- colation is modeled as being independent of the depth of vater saturated soil (i.e. , the head) above the layer. Layers designed to support vegetation should generally be d^lr****** as vertical percolation layers. Lateral drainage Layers are assumed to have hydraulic conductivity enough that Little resistance to flov is offered. The hydgMtig conductivity of drainage layers should be greater than or equal to the hydraulic conducriv- icy of the overlying Layer. Vertical flov is modeled in the same manner as for a vertical percolation Layer; hovever, lateral outflow is allowed. This lateral drainage is considered to be a function of the slope of the bottom of the layer, the "••-'*"• horizontal distance that vater must traverse to drain from the layer, and the .depth of vater saturated soil above the top of the underlying barrier soil layer. (Hote: a lateral drainage layer may be under- lain by only another lateral drainage layer or a barrier soil layer.) The •lope at the bottom of the Layer may vary from 0 to 10 percent, aad the maximum drainage distance may range becveen 22 and 200 feet. Layers 2 and 5 on Figure 1 are lateral drainage Layers. Barrier soil Layers serve the purpose of restricting vertical flov. laus. such layers •t"*-H have hydraulic conductivity substantially lover than for vertical percolation, lateral drainage, or vaste Layers. The program T•*••<*• the direction of flov la barrier soil layers to dovnvard. Thus, aay vater moving lose a barrier Layer vill eventually percolate through. Perco- lation is modeled as a function of the depth of vater sacurated soil (head) above the base of the layer. The program recognizes two ~yp*s of barrier layers; those composed of soil alone aad those composed of soil overlain by an impermeable synthetic membrane. In the latter case, the user must specify some membrane leakage fraction. This factor may be thought of simply as the frac- tion (range 0 to 1) of the -•«"'.—- daily potential percolation (i.e.. the per- colation that vould occur in the absence of the eeal,irine) through the layer that is expected to actually occur on a day vith the membrane in place and with, the same head on the barrier layer. The net effect of s?acifyiag the presence of a membrane is to reduce the effective .hydraulic conductivity of. the layer. SZCTXOB 2

DOCQHZSTASTOH

ivi DESOIPTION The Hydrologic Evaluation of Landfill Performance (HZL?) model «as devel- oped to help hazardous waste Landfill designers and evaluators estiaate the magnitudes of components of the inter budget and the height of water saturated soil above barrier soil layers. This quasi-rwo-diamnsional, deterministic computer-based vater bod get model was developed and adapted fro* the U.S. Envi- ronmental Protection Agency Hydrologic Sisolation Model for Estimating Perco- lation at Solid Uasta Disposal Sites: CHSSBDS) (1.2) and the U.S. Dep«rment of Acricolrure Chealcal loneff and Iroslon from Afrlcnltnral Manafeaent Sfs- teas (OLZAMS) aydrolofic eodel (3). The HZL? aodel performs a sequential daily analysis to determine rvwff, rrapotranspiration, percolation, and lateral draiaaje for the Landfill (c«p, vast* cell, leacaate collection system, and liner) and obtain dally, monthly, and annual veter bodgets. The aedel do«s not account for -»^»?al inflow and surface The HZL? aodel requires cliaatolojic data, soil characteristics, and design specifications to perfota the analysis, diaa to logic input data con- sist of daily precipitation values,. Bean oonthly teaperaturus. Bean aonthly solar radiation values, leaf area indices, evaporative sone depth, and winter cover factors. Soil characteristics .include porosity, field capacity, viltlag point, hydraulic conductivity, wter transmlssivicy evaporation coefficient and Soil Conservation Service (SCS) runoff curve ooaber for antecedent BOis« tar* condition II. Design specifications consist of the naaber of layers and their descriptions Including type, thldoaesa. slope, and mflausj Lateral dis- tance to a drain, if applicable, and whether synthetic Bembranes are to be xsed in the cover and/or liner. The BEL? eodel emintaias five years of default cHjMVtoLoglc data for 102 cities throughout the United States. Any of seven default options for vegetation may be specified. The Bedel also stores default soil oharmcterlstics for 21 soil types for o»e vben aeasurssMnts or site specific estismtee are not available. The Bodel is ordinarily used in the conversational mode. This enables users to, interact directly with the program and receive output through the teralnal iaosediately. Use of the sodel does not require prior experience with computer programming; though, some experience vould assist the user in logging on the computer system and manipulating data files. The model can also be run la the batch mode; however, this requires more computer programming experience and extreme care in preparation of input data files. The program does not model aging of the membrane. Layers 3 and 6 shovn on Figure i are barrier layers.

Water movement through a wast* layer is modeled in the same manner as for a vertical percolation layer. However, identifying a Layer as a waste layer indicates to the program which Layers should be considered part of the l-ndf •?*-1 cap or cover (see Figure 1}, and which layer should be considered as part of the liner /drainage system. Layer 4 shown on Figure 1 is a waste layer. If the topmost layer of a 1mdf*f 11 profile is identified as a wast* Layer, the program assumes that the landfill is open. In this case, the user oust specify an SCS runoff curve somber and the fraction (a factor that may vary from 0 to i) of the potential surface runoff thas is actually collected and removed from the !«*"*?•* 11 surface.

METHOD 0? SOLCTXQH gvrp model was 'developed to estimate daily water movement on the sur- face and through the i*~*tm. - Precipitation is partitioned into runoff, evapotranspiration, percolation, and subsurface lateral drainage to •«•«**«•'* « continuous water balance. The ***** model computes runoff by the Soil Conser- vation Service (SCS) runoff curve asmber method (4> and percolation by Oarcy's Law for saturated flow (3) with modifications for unsaturated conditions. Lateral drainage is computed analytically from a Linearised Bousslnesq equa- tion, corrected to agree with mnMrlral solutions of the non-linearised Boussinesq equation for the range of design specifications used in hazardous vasts lfn'f'i^? (6). Iff ape transpiration is determined by a modified Penman method developed by 2itchi* (7) and adapted for limiting soil BBS is curt condi- tions in che manner of Shanholtz et al. (8) and Sazton et al. (9). Solution •rlaciples are described in detail below. Mathematical modeling may deal with deterministic and stochastic vari- ables, a stochastic variable is one whose properties are governed by purely random-time ••••«•• and sequential relations as well as functional relations with other hydrologic variables), a deterministic variable is one whose tem- poral and spatial properties are Imown; i.e., It is assumed that the behavior of such a variable is definite and its characteristics can be predicted. The HTT-> model is deterministic la concept insofar as the model treats all vari- ables ***** g*»^<* *»i»ri~m*tf]pm K being definitely blown, ^l^**«ngk often with empirical relationship*. However, the results of 20 years of simulation should not be considered as simulation through a 20-year period since the effects of aging of the l«*Hf*'M are not modeled. The simulation results should H» -i«ed to demonstrate the probabilities of various outcomes for the given character- istics of the i*«H*-m Runoff During a given rainfall, water falling on a waste disposal site is con- tinually intercepted bv trees, plants, root surfaces, etc. However, infiltra- tion and evapotranspiration also occur simultaneously throughout the period. Once rain begins to fall n4 the initial requirements of infiltration are UJ VEGETATIVE LAYER

fSc a. O 2 (2) LATERAL DRAINAGE LAYER LATERAL DRAINAGE w -—————————______(FROM COVER) e e £ L. SLOPE 0. £ 0 BARRIER SOIL LAYER u PERCOLATION (FROM BA5E OF COVER)

© WASTE LAYER

e a. 03 LATCAAC ORAIMAGE 3 LATERAL DRAINAGE LAYER tf) (FROM BASE OF LANDFILL}

BARRIER SOIL LAYER MAXIMUM OfUUNAOC OlSTAMCS

FCTCOLAT10H (FROM BASE OF LANDFILL]

Fi^ur* I. Typical hazardous Landfill profll*.

3 .>,

Plffura 2. nmoff.

F - Actual ntaatioa aztar runoff rca.ru, - P' - Q Subaticatiag for F,

Pf - T (3) wh«r« ?' Is th« acraal ni«»f»ll «h«n initiil abstraction do«a oot occur. fulfilled, natural depressions collect tha excess rain to fora small puddles. In addition, a film of water begins to build ap on peraeable aad lap«raaabla surfaces within tha waste disposal site. This stored water collects in small rivulets and is hence conveyed into ««ai' channels, aad, thus, surface ranoff is produced.

SCS curve number technique presented la Section 4 of tha Rational Engineer ing Handbook (4) wa selected to modal tha ranoff process because (1C): • a. It is a wall established reliable procedure, b. I: is computationally efficient.

c. Tha required input is generally available; aad d. Various soil types, land use aad management practices can be con- veniently handled. The procedures were developed from observed ranoff-rainfall relationships for "Large storms on imill watersheds, as presented la the following paragraphs (4). irrf.* ^a\s plotted as a function, of rainfall on artti»at±c jraph pap«r equal scales, yialdiai a earvm chat becoews as-y«p«atlc to a str»ijht llae trlth a 45* slop* at hi^b rainfall as sho«a la Flgur* 2. The equation of the straight line porxlon of the ranoff curvm, assisalnf no ialtlal abstraction or lag barman tba dams *«n runoff aad rainfall starts, is q - P' - s1 CD where

Q • actual runoff, laches ?' • aaziaum potential runoff or actual rainfall after ranoff starts, iachas

S* • po csntlal •—^—~ retention by any maans after runoff starts.

S' is a coofttmot for a particular stozs bacausa it ts tbm urfmm r«tantion that can oeeor «ad«r «*tg^^ conditions of ««tar shad charactarlstics aad rain- fall latansiry If tbm stona coo/daues iadafinltaly. Tha relation bmevamn pre- ci pi cation, ranoff, aad retention (the difference betv««a the rainfall aad runoff) at any point on tarn runoff curve urns found to be f-f- •1 Ks i-J

O Ul If Initial abstraction w»re considered, the runoff curve would be trans- lated to the rijht, as shown la Figure 1, by th* aaovmt of precipitation which occurred prior to the start of runoff. This amount of precipitation Is th« initial abstraction. Therefore, to fora th* relationship with initial abstraction analogous to Equation 3, th* initial abstraction would b« sub- tracted £ro« th* precipitation..

P' - P - I. (4)

P - I - 0 0 Equation 3 becomes • y . x ... T ? - i C5) where ? • actual rainfall, inches I • initial abstraction* iaea*s In th* SCS d*riTation (4) , th* retention parameter, S' , la Equation 5 •ij terae^. S, but both parameters are equal.

S - S'

• * Equation 6 has b*«n corrected fro« th* SCS d«rivation (4) . and ronoff data fro* a larje aa*b«r of seall experimental water- sheds cooirlcall? indicated that (4)

I • 0.2S (7)

Substituting Equations 6 and 7 iato Equation 5 and solriof for Q,

(P * 0.8S)

P«rformiasj polyuoBial dirlsion on Equation 8 and dividiaf both sides of th* equation by S,

(9)

Equation 9 is the nermalizad runoff-rainfall relationship for any S and is plotted in Figure 3. The potential «-•»-'•"- retention parameter •*Tl'fHgt initial abstraction, S, was transformed iato runoff curve auab«rs, Ct, to aaJca iat*rpolatia|, , and weightinj operations acre nearly linear, as follows: wnare D^ • depth to bottom of segaeat j, inches VD • vegetative or evaporative dapth, inches

Therefore, tha weighting factor* for segments 1, 2, 3, 4, 2, 6, aad 7 are 0.111, 0.397, 0.254, 0.127, 0.063. 0.032, sad 0.016, respective^. The ******** value of S, S , is tha vaJ.ua of S at tha lowest soil aoij- ture content which corraapondsw antecedent aoistur* condition I (AMC-Z) in tha SCS method (4). S is ralatad to tha curve nmbar for AMC-Z, Of-, a* folio**: " l

for * mt«rah«d ij d«ta^dji«d for (AHC-C) in tn« SCS ••chod «ad eh« eorrv ou«b

2 3 CS, - -L6.91 * 1.34a«3II) - O.Oi379(GTII) * 0.0001177(CftI) (16) th« proc«dur»< OMd in th« KEJ «od«l to d«t«rmln« daily rtm- off, th« approach ij:

a. Kaevlaf dT- for tha «ita, eovpat* d_ and S aaing Equation* 16 and 13, r*sp«ctlr«l7. b. Covpata tha daily dapth

for T. « 32 or SNO^i • "0

- 32) for tt >32 aad S501-l >0.06(Tt - 32) (17)

for Tt >32 and SSOt-l iQ.MCT^ - 32) 12 valsia of S, iachaa

SK • sell vacar contaat la Cha vagacaciva or avaporacira zona, lachaa UL • uppar liaitt of soil watar storaga and daflaad aa cha storaga capacity at saturation, lacba« 7? • vilziag polar of cha soil or cha lovaac naeurally occur;lag soil vacar contaat, iachaa Slaca soil vacar la nee diattibutad uaiforaly throughout cha soil proflla aad tinea ci« soil molseora aaar ch« «urfaea iafiaaacaj iafileraclon »ort strongly thaa chat locacad als«vti«r«. eha rmtanclon paramacar should b« d«pca- Tha soil profila of cha TafacaelT* or «raporadv« dapth Is, thar»- dlrldad laso a«ras ««f»*nr«. Tha f*i*ir*»~* of cha cop s«caaas lj sac eo aqual oaa-chirrjalxch of cha rhlrVnaaa of cha T*facae±ra or vraperad-r* dapch

S • S (13) vhara factor for safswnt J sail watar concant of sagxasc j, lachaa *J f saturated capacity of sagatant j, ^tvh^" 'J vilciaf polac of sagxtant J, lachaa PJ

Iha vaighdaf factors dacraaaa with cha dapch of cha safaanc la accordanca with cha following ao.uacioa from cha QtFAMS davalopaaac (3):

W. • L.OL59 - a CU)

11 daily roaoff , Q^ , Jj ecaputad frooi Iquatlcn 8 usiaj tha oat raisfa iacias, ?,, vhara *

(19) Iharaiora, tha oat daily infiltration is co«putad aa follows: •\ . \ ni • pi - Q! (20) vbara DT • iafiltration on day i, iacbaa !vm DO transpiration •rapetranspiration fro* a landfill eovar is a function of tha arailabla, tha r«ft cation, tha soil vatar traasvissirity, and tha soil w contaat. Tha potantial «mpo transpiration is eoxpatad by a aodifiad ? •athod'd«Talop«d by Zitehla (7) aad oaad ia

Zo. " (A. •• 1 i vhara E • potantial cr«potranspiration on day i, iaebas) °t . ' A.. • alopa of aatnration vapor prassura ciurva on day i H. • aat solar radiation on day i, laaflays G • psTchroaMtric constant t^tlcfa is IHIJSMI! to raajaia constant at 0.68

«, is coatpQtad with tha follcwlaf aquation: (21.233 - 3304/Tt.3304/Tt.) (22) vnara IX. - a«aa taaa»«raaira ia *T on day i. I. Is coaawtad by tha folloviaf •quatlonr

Cl - f "t ' 3a.3 vhara L • albado for solar radiation, ahieh Is aaaoaad to raailn constant at 0.23 i. • solar radiation on day 1, laaflsy*

U Flgur* 4. betveea SCS corre amber aad infiltration rat* for T»rlous vegetative covers

t of en d«y i, iaeh«« dx? i, *?

SHO t of at «ad of day i-L, iaeh l-l

- ESSt for T^ <32 sao. for T >32 «nd (18)

L - ESSt for Tt >32 and wh«r« actual pr«ci?itation on day 1, laches

CSS. • surface water rraporation on day 1. laches where IS, • actual soil evaporation on day i, laches E?. • actual plant traaapiratlon on day i. inches apdel eoatpvtee soUL evaporation and plant transpiration separately. potential soil evaporation through tha sorfaea ia predicted by the f equation when evaporation Ls not Halted by tranaadjaion of water to

-0.4 LLJ C29)

IS • potential soil evaporation on day i, iachaa

Lil. • laaf ar«a lad era, on day i, of actively traajpiriaf plants --'——J on a scale of 0 to 3 DozlAf tha aoacrovlaf or dorvaat Hrlod, the UU, ^idi is b«««d aa th« laaf araa of actiraly traaapirias; plaata, veuld bo> «qoal to «aro. Bowrrar, tha acraal «latar eovar «v«id act b* bax'afruuud aa a LJLI iada aa o««d is Eoua-tion 29 laplia*. Taij iaatf or aotaast v«f«tatir« eawr «ould radoca tha haatlaf of taa soil sorfaca ia cte aaaa avaaar aa actlmly traa«p±rinf plaatj and, taorafora, wuld alallarly radaea tha potaatial aoil «r«poration. Tha potantial aoil craporation for viatax cawmr li umyucad aa follow: -0.4 BCT ......

vhara WC? • win tar cover factor • 0 for barafrooad aad for row cropa • 1.3 for am • 1.2 for a avod • 0.4 for a fair • 0.3 for a Soil crapontlaa ocean ia r«o ataffaa. Sue* ••* eraporaetoa ij trollad only by tha anarfy •railaola, vhlla stafa ew avmaoratioa ia Ualead alao'by vatar traaavljaioa taroaaft ea« soil. la stafa on*. ESI. - E3 (3D

16 Daily aean temperature* and solar radiation Taluaa art interpolated fm aean acnthly temperature* aad •oiar radiation value* by fitting the acatilT valaaa to a slapla hazaonic curve visa aa annual period using Fourier analy- (12). The fora of th« equation is

2r< 0 J U 3 7< -7** W ^ ' M*B'lar^- ' M C24)

7 • interpolated value of day i 7 • average rmroal value A • coefficient of the coaina tai 5 • coefficient of tae sian tars HO • aamber of days la 4 fficiaata of the equation are con^vted aa follows: *12* / \ 2 x^ . 12T Ch • 0.3) 1 *•« "h V . u }

> • TT > Tw .la iiiS——liii (:s)

b The dally potential empotraaap ire tire, denead aa calenlated la Equa- tion 21 is eacerted first on enter available on tba surface, either snow or precipitation. If adequate enter ia present on jhe snrface to aatiafy the L, leitn* is not tak*n *ren\ the Mil colasB for ompotmnapiration. Any IA nsjnnev of thn anrface enter is exerted on the soil colonn ia the forms of Mil evaporation aad plant tmnapimtlon eaea above rrenrinf. That portion of th* potential ovaporatiTe dennad that la oat by evaporation of surface Miatnm, 133, A* flvnm for day i by [ for E *S»0. , * nZ °i °1 l"1 l (27)

* Ef • 0 for T <32 (28) ESI, for ESLTt

for ESl^ a a aad ESS, * ES2, «E (33) )-.' i i ot 33^ SOT ESII E Ol i i ot

E - LS^ for Bllt »U aad ESS. * ES2, »I *i i i ,t Tia potaatial plaat traaapiratloa ts eoapatad aa follow*:

(36) vfeara E? potaatlal plaat traaapiratloa oa day i, iaehaa

actual plaat traaapiratloa i* •erul to tha potaatial plaat traaipiratloa axeapt «baa lialtad by low Mil aoljtara or vhaa tha dally total of tha «ur- faaa •raoeratloa. Mil orapwratlaa, and1 plaat traaapiratioa •xeavdo tha daily potaatial a-rapi craaapirattoa*. P. for E?. * MS. * E3, «E

I - S3S for O * ESS. ES. o. o. vh«r« EFT), la ch« aetoal plcac traa«pirmtloa d«Had la laca«« OB iay i. Th« actual «r

- (4 C38) «b«r« EF, !• taa actaal plamt traaaeiratloa la lacha« oa day i. If O. aa coavatadSy Zqnatloa 38 la Laaa thaa aim, it it oat to «|nal saro; aai if iraatar thaa E?D , it ia aat to •^oal CFD.. Caa soil aaiacnra. field capacity aad wtltinf point vmloaa oaad ia E^uation^S ara dapta waif b tad aa follow*:

(J) (39a) j-l

18 vtere £21, • stafe mm evaporation from soil on day i, inches. A Stafa one evaporation occurs vhea the total-to—date of the soil evaporation less the infiltration ij Lasa thaa the upper Liait for stag* on* evapora- tion. B. -la* Liait represents the quantity of water ch*t caa b« readily tranj< ait ted to th» «riac*. The total of eoil evaporation Less infiltration, 15 IT, ij computed a* follow*:

•here ZS. • soil evaporation on day It, aj caopoted in Elation 33, iacfaej m • La>t i«7 efeen ES1T equalled z*ro tie opp«r Halt of ru«e on* ev«poratioraporatlonn iiaa iaeae«iaehe*,. 77, ila (3)

42 9 |f (a§ - 3)°' L/I3.A (33) •hare a • soil trmaswijaivlrv pevnaataz for evaporation fiv«a ia table 6, . " .m/day ^ When E31T, ij fmatar thaa the upper Halt for aeaaeolatad stafe on* soil evaporatl5n (TD, ia inches* rtaf* on* evaporation stops aad stafe cue evapo- ration starts. Stafe two evaporation froa the soil is computed by Equation 34 (3). ; . I i /* i /•» i / (34)

ES2. • SXJ«« tvo soil evaporation for day i, iaca«* t. • 4*f9 daca rtaf* on* evaporation ended * Siae* th* daily total of soil craperation, *arfa«a evaporation, aad plant traaapiratlom easnot exe**d cb* dally potential cvmpetranopiration, eh* daily •oil evaporation, ij o:

*T

*•

tm 770* >

3? *TT"»

ti a*ra»»>I aeay f amain aoj

(Da

;o »aos »4.

C12)

(OPT - 0?T) cri - c-z) km 7 £ J-l

C39c) wh*ra J r»f«r» to ta« mab«r of a Mfwat cad 7(j)'ij ta« wi actor oa«d la Equation 13 aad computed la Equation 14. Laaf ar*a ladle«« oa«d la ca« tBd«l &r« ryptc*! v«laa« for « vlcheat »«r«r» dry p«rtod« duriaf ta« growth SAAMU. d« aedal aj*« indict* far calre««a datM threofaout ca« 7m*r to eovpota amir* racu of »r«4 lad«x u f to a) - —^ ; « , (40) vbera DLAl(m to a) • ta« dally rats of caaaf« la taa typical laaf araa iad«x b«r*a«a day • aad day a UXCa) • typical la«f «TM lada an day a • dally, laaf &r«a Ia41e«r ar« eaipvtad as follow*:

or ouit *o for » < OLITS «ad «h«r« LjLl, • i«af ar«a Indrc covpatad for day 1 DLAI. » dally nta of ehaaf* la cat L*af ar«a ladct for day 1 u es pot«d la E^vaeloa 40 for 1 b«c**«& m and a CXTT3 • critical soil mtar caatnt b«lov wfelca plaat grotrth !• * topped dva to laad«qoata sell «atar • 9V * 0.1CTC - W) (4Z) Ezavpla: Ctr«a tha follovlac typical UI TaloM. a UI o« day 109 of 1.60. aad a soil mtar eontaat fraatar taaa taa critical soil water coa- u tor plaat Data 30 1.0 100 1.7 120 1.3 140 2.8 LAI oa day 110 15, . - iafiltracion durla« day i-L, lach*j • —i PS. . • percolation aad dr&laaf* fro* Landfill doriaf day i-L, iach«a EC, . • crapotraarpiratian dnrlac day l-l, lacaa* Sell mtar if diatrifcited aaonc *• ""7 M •*"-* laymr* and la the *«f«tatlT« or er*por*tlT« xo«a. The aed«I CTMU a^aaaca aad Ur«ri la aa •quivtloat anaar, aad couldcra ci« Landfill aa b«laf covpoa«d of a Tfn^^iiM of scvta a*faaat« aad i aiTlnna of dzt*«a xpaauta ($«r«n la th* or cr&poratlT* plu on* for «*ca addlci0ual Layvr b«lov odal ialtlaily dl*trite«a« ca« sell mtar aa foLLovi for a landfill co«po*«d of ai

«tu) - SM^CD * 1/2 fat^U) - a^CD • R1.l (i) (*««)

01. (1) • lafiltratiaa during iay 1, Of. from I^oatl0B 20, 01. (2) • dralaaf* oat of Meant I aad lato *«f*aat 2 <*«"•* «t day 1, lacfa*?

day l-l. C*t_L. 01. , (2) • dralaaf* oat of maant 1 aad lato M«wat 2 durlaf day l-l. l-l * _ u _ "

For aefaeat J; j • 2 to t » 1/2

For aefaemt 7 * 1/2 |w._,(7) - «,_, - er. ,(7) (7)l For sefaeat 3 (oerrler) • FC(8) . (46d)

21 Tha apdal tjanaaa that tha *eil asiacar* storage or coattat ef . aazriar alwaya ramaiaa at field capacity but tr«acs tha Layar aa baiaj saturated for parcolation.

Xf tar distributing tha vatar froa tha top to tha- bottom, tha aodal ehacks tha «araa tafaaata abora tha barrlar aoll to iaaura that tha «oil aoiarora storaca of aach aafaaat doaa act axe aad tha aataratad capacity or porosity. If it doaa, tha rtorafa ij act aajoal to tha aacaratad capacity aad tha azt ij addad to tha •oil aoiattra storafa of tha aafmat diractly abora. Any atoraf* ia tha top aagaaat ia addad to tha aarfaca nmoff. Tartliril ^artlral flow aabavdal immaa that tha aoll profila coaaiJtj of crata aafaaata that ara aovofaaaeoa vith raapact to hydranUc eonductiTlcy, total poroaicy, and fiald capacity. Iha aoil profila ia brokaa lato aa aaay aa thraa aobprofilaa or andallnj eaita. Bia top aobprofila ij aoapmad of tha afaantj of tha araporatlTa aooa, aa diacoaaad prariooaly ia tha aactiona ff aad aoil aolatara a«ara«a, plaa oaa aaavant for aach aoil Layar aa tha araparat£ra aoaa aad tha top barrlar aoil layar, and ana aafaaat for tha top barrlar aoil layar. Iha aacowd oabprofila eoaaiata of oaa aapH&t for aach aoil layar batvaam tha top barrlar aoll Lryar aad tha aacoad barrlar aoil layar plaa oaa aafaaat for tha aacoad barriar aoil layar. Iha third aub- proflla ia coaymaii of oaa aaraaat. for aach layar balov tha aaeend barrlar sell layar. Tfca Tvrdcal flow oabaodal alaalataa rartlcal «atar roatlaf aad parco- Latioa throofh tha top oabprofila or aari«1,1tn aalt bafora rapaatlaf tha procaaa for tha aacoad aad third oabprofilaa. Tha rata of flow dowavard oat of aach aafaaat la aaooaad to follow Oarey's

,Tk (*7)

abara ^ • rata af flow, iaaaWday k • Ity4ramlia ooaaarelrlvf. iacfaaa/dar

1 • lamitl la taa dlraatloa of flow. Traa outflow ia aaoaaai froa aach aa^uaat abova tha barrlar aoil layar aad, tharafora, . • dh/dl • 1 aaa ^ • k (%9) aooaaptloa ia raaaooabla aa loaf a* tha hydraulic coaaactirltiaa of tha its abora tha barrlar aoil layar ara iiailar or iacraaaa vlth iacranl.ni daptha of tha aafaaata. 22 I. • inflow ca t during praaaat *•'

0^ • outflow f s«fant doriaf prrrtoru ti stap, inchaa O • outflow fr t daring praaaat *tap, inchaa Equation 32 say rwrittan la t o£ aoil Ucnr* aad draiaa«« rata« aa follow*:

ootflov draia*f« uaw, Ot(J » 1) , of laelod* « taza for «r«potrma«pirmtl0tt. Tharftforv, tha ia stor&f* Li «rlet«a u

laL.(J) • eaaafa la viator* atonfa la a* • ^

nc« fr «t«s t,

OT • tla« S3

ULt(J)/2 (334)

C33b)

33b ba ambaxiaitad lato I^macion 31 to aalva for

UL. (36)

tla« ntny fro* tha top t to th« bott it, «t di« bortoa of iafiltratlon th« SCS ruauff •B^udoa prorld«« tte laflov to tha tap •«nt, cad «a ori Mtiamta of drs£a«f« from dM bortav ••gaant of tha profile tf to obtain a •oi«tar« bclmco ia tb« bottom Mfiaat of •aaprofil*. Ilia percolation from tha barriar soil lar«r of ova sobprofila U oaad aa eha dralaaf* let; ^u oaxt •abprofila. Baenaa drmiaaf* lato « sa«- aant la dapaadaat only oa tha aafaaat *bcr«, a Mfaant «ay racaiT* oor* 24 hydraulic conductivity usad ia Zquatious 47 aad 49 ij a function of soil aoi_srar» and rarlaa fro* raro to the saturated hydraulic conductivity value, it . Ti« vsisatu rated hydraulic conductivity, k , ij defined by the falioviaj i <-.•••!• function of soil aoiscor*: U

k^ - k^ (SH1 - MDC)/(TJI - HOC) (30) vhaxa MDC • rfnlaBai sell vatar content, vol/vol, for drainage to occur ceil vktar eoataac for dr&iatf* to occur it ta« fi«ld capaciry far all soils b«lov ca« «r«porac±T« d«ptix aad for all saads and frvr«lj ia th« rrapontiT* sea*. Tor afrtcal rural soils aad clays ia ta« rrmporatiT* xoa«. fflC ij s«c to aqoal th* field capacity wb«a ta« profil* ts dryiAf cad to y*atarday's soil wmtar contaat but aot (T*atar taaa ca« fiald capacity tiia profile U mttlaf. loutiag of SB Is tar • frasi ••fasmt to scfvut is aecas^Lishad by a storac* rovtlas; procadar* covpntad at ta« sdd-poiat of tba tlM iatarral. Sid-poiat rovclas; mj salactad to obtala am accorat* aad af flclaat siaolatioa of siaul- nf aad oatfoi&f dr&laaf« procaa««a. SM •id'poiat rovtiof pro- c«dur« taada to prorida r*Lat±r«ly saeota, fradoal cbs&f«« taat aetaal flow proca«a>. This procsrfnx* aroida tha aor* abropt chanfaa that rtsul fro* applyiaf tha full sanunt of solstar* to a M««sBt at tba b«flaBlac of tha tia* »tap. tha procaaa is smooth ad furtnar by oaia« tiaa stapa that arm s bo rear than tha parlod of iataraat. Sld-point storag* rovtiaf proca«dj aa follow. Tha drmlaaf* r*ca fr: satjaaat J caa b« vrit

* ~ • ^ (21) L« (J * !•) • dralnaga rate frosi sigaant J during tlaa step i.

SM.Cj) • soil sjoiatBTSj entaat of sajaiiit J at «id-poiat of tha • —-•—— lCsssa> i * — -»- — —

This dralnag* race cam ba coapwtad ffroa tha equation of continuity.

2 2 wharv • ehaaga in aols-mre storage in sagaant bae»aau aid-poiatJ of prvrioua aad areaent tiaa stepe, iacrtee I. • inflov to sagaant daring prcrloua Uaa step, inchaa vfaara diaaaaionlaaa dralaabla porsairy tiaa, day» fra-ritatlfmal head, iachaa affaetiT« M*earatad Lataral hydraulic conductiTity , iaeh«a/day Lataral position ia taa 41r«ct±on of dral&af*, inch** slop* r«charfa flax parp^adlcalir to lataral flov,

neharfa flax 1* •qaal to tte iafilcrmtlott nta !««• th« potran«pir«- nta. Tor la tha Lataral draln*t«

(61)

2Ltj a«aaBptla« U jn«tlfi«d if tha reaf is Mlactad cl«ntiy abort ao that taarv U llctla ehaaf« ia Vith ta« 60 rvdnca^a to

7 • rMrkn««a of wear profile a« x, iacfaa« • h - «z boundary condition* ar« a - 0 ac z - Of (63*) • 0 at z • L (63b)

Equation 62 mm (6) to tte folloviac fora:

qui

26 aolscor* chan is caa hold. II eh* aoijcur* conctac of & s«(manc ij pWan ie» cssii poroaisy, eh« cxcuc aoljcur* Is tddad eo eh* sa^aae *bcv« i:. In g**j way, e&a «oijcur« coucanea of s«|aaaea *r« cor?«cead by backing up vacar from boccam eo cop. 12 th« «ncir» proflla b«eem«« «»cur*c«d. «sy •eijcsrm «e ci« «urf»c« Is add«d eo eh« nmoff for eha day. Afs«r ea« aoijcar* eoatase of «*ca s«pMne ij corr«ce«d for czeua v«ear caecnc, ca« eoc*l hsjui or rh^rirna«« of ea« «ae«r eola^ la. ea« grofil* 1* by co«p*rlaf Mf»«nc aeijcurc eaaecae* vish eh«ir carrwpctidlaf :au Tb« a«*d co«pct»clon b«f±u *e ea« boeco* of ch« prefil*. To col (TS) I

a

•J2^

TS (J} • ehlclaaaa of caa aat^ame j , iacfaaa fro* aber« ta« barriar Mil Lcyvr, a» of eb« MOTrofil*. Shaa « ••(a«nc, m. chat !• ooe tataraead la «ac0«&ear*d «teil« HT!A« vy eaa •obprofil*, 78 li ••c equal eo eaa acoaAlaead haad, . . Th« p«re«lael0a ehroagh a baxrlar soil layvr !• alae eaiputad Darey'« Lav «a f±T«n ia I^uacloa 47

dl

TSC&^L) • eaictaaa* of eha barrlar »oil laymr, iacha< Tbar^forv,

Q?OC • percolation rmea ehroofh eha barrlar soil layer, iacaaa/day

Tha laearal dralnaf* sobao^al ia baa«d on eaa Booaaiaaaq «^uac!0n may b« vrleeaa aa (60) vfeera 0.16 C2 '

Taerefore, eae fiaal form of Equation 64 Ls

? (0.310 * 0.00203 .(»car" •.) (7Q)

Liakaga Between 7«rtieal and Lateral flow Submodels Two aaauapelona art oeed to link eaa vertical sad Lateral flow submodels: i) Tae ateadyatata •Benmyr-fne. eaac cnanf* la head is not a function of 2) Taec eaa dralaafe *»«* eada»eed ac C!M vid-Toiac of eaa elaa intar- rml ij affacdT* chxe«fte«e ea« C±M iactrrml. Tor th»«« a««aBpeiaM to bold, eto esvpacAeloaal daa laearni vut b« dancly aaall M eh«r« ij Uetl* cajaf« la boat. 1 •!?•!•< eh« aAcaieod« .of ia head vlea daw (Jh/>t) iaer»a««a wiea iaerttaaiaf haad, a« ahovn la 3. caa caapmraftotMl da* st«p la cha modal Ij ««e eo provide aesape- abla accaracy for aoae of Cba iTpai'tad ralaaa of aaad. Taa accaracy of a*cl- aaelac p«rcolac±oa U aoe Tary »aaaiciT« eo caa tlxa of tlaa scap b«eaaa« caa p«reolaelon raeaa ac h eha lov«r haada. laaraiora, aeeaecaala elaa scape for Laearal dralaaaa ara al*« aeeapcabla for pareoLacioa. Aa ehovm la 7lfora 3. fovz aajual da* aeapa par day yield acceptable accaracy far haada leaa enaa 30 lacaaa. Ilia aacood ••panirlna. eaac caa dralaafa race ac eaa aldpelac of eaa cia* acap Is applicable caroafhavc caa daw aeap, ia alee depend en e oa «alecela« a elaa aeap eaac ia n*ft*l^n*ly aamll. Aa ihimn ia 7ifora 6t agnMneariey Is aoc a problaai ateam caa daw sea* ia laaa eaaa ooe day.

rate from cam bottom of eaa profile mmac be equal eo the of Laceral flow and verdxal pareaLatiom. Tie CM flow mbmn.ULi ara aligned by aa iteraeive procedara eaac worka aa followe: I) Aa a priori eaclaaea of eaa drainage rate from eaa bottom profile Mfmene Ls obtained; om caa first iceraeion eaiJ is eaeimaeed eo be eae dralaafa race from caa pravioua eime step. 2) A asije&re balaace Ls caa^utad for eacb profile se«

28 vhere 7 • thiaimeaa of MB tar profile above barrier sell at creat, ischea 7 • average thickaesa of water profile above barrier soil layer b«r»eea z * 0 tad r • L, inch** QUL" • Lateral draiaafe rate, iacheaVday Latarml hydraulic cooaoetirity of a •altUayartd mbprofiie pate d ej follow! :

(63)

1) • thlckn««« of Mtarmted Mil in Muscat J, • a • OOM«X of s«fMBt dlrtetly abere b*rrt«r Mil ir of Mf«est coatilflrtnt tb* nrfaea of tte a»»r*ted sell or top of tha v^tar profile ia tte Mil •obprofila Skmfss (6) B>cd fire feet, a correction factor tema dorvloMa to adj«at I^oatloo 64 to afr*« with aoaeri- cal solatlova of ta« levaalaaa^ e^oadoa (I^oatlom 64). Vitb tha correctlou factor, Iqoatlon 64 aay bs vrlttaa aa K tf (7 *»t) QUI • — - ——— .2 ———— (66) t*

• •fear* • 0.310 * 0.3020S«L (67) aad dljtaaca, iACbea Tba varlabla, 7 , ij tmkaova dnrlaf tha siaolatlov; tharefore, a relationship b«t«a«a 7 aad 7° «aa dcr«loo«d of tha following fora:

70

27 .07 k(.*4 • 34O In/day -15 ku««* 3.4 In/day L • 'SOOIn slop** .03

3 4 8 9 10 II 12 13 14 15 16 17 18 19 2O DAYS

i. E-I.-I of •onllnaarlly U 4r«l»B. cnrv««. g F-t

a If

if 1!!!! raluaa may b« quica diffiraat from tccul dally Taluas. Hav«r«r, zavpvii+d. and »crsal acncaly cad anmial cocalj of caa daily rrapocraarpiracion should b«

Tia rardcal vacar roudaf. parcoladou, cad lacaral draiaafa lubaodalj conraln sarraral aaauapciona. Draiaabla voluaa of vacar ia soil cm ba dafiaad by «n aadaaea o! fiald capadcy cad toeal poroaicy. Draiaabla soil vacar, caac la axcaaa of fiald capacity, dralaa fraaly caroufh caa Mil prof 11* AC 4 raca dafiaad by Darcy'a Lor vica a hydraulic fradiant aqual co oa« and a hydraulic ceaducdTicy caac i« 4 faactlna of soil aai«cura eoaea&e. 7b« tm*»c- aracad ^''r"1^'' condacdriry i« asciaad ea b« a ^<*-*-T roaedoa oi soil acij- raxa b«ev««a COCA! poroaicy and •^"•>»» seoraf* capacity far draiaas*. 3«caua« Darcy's Lav if miiaail, eaar« can b« oo dira«t eiuna«lj co quickly rouca vacar rmrrically froai ea« cvrfaca to ca« vmtar cabla. Bacar ia cxcaas of ta« total poroaiey of a saapflnt i« aasnai I u b«louf eo eaa s*f»aac abor*. ttrcaaa vacar froai ea« top saa^ant! ii addad co caa auriaca rttnolf for taa ^t** scap. '7arrical roudat, Lataral dzmlaafv, and p«realatle« earouch a barriar aeil Lay«r OCCBT ae a oa±foTK ra*a earoofB caa data acap. lajual aawoasa of infilsradaa aad «Tapoeraaapiradoa oceor ia aaca daa> a cap wieaia a day. Tba laearal draiaafa and rardeal pcreeladott ara aaacaaad eo b« ac acaady«caca, i.a., h«ad ia couacaac dorlaf a daa acap. Taa aoprnrlmarlon to caa Bouaaiaaaq •qnadoa da*r«lop«d by Slcacjs («) for caa nafa of daai^ ap«cificadona for landfills ia aaaaaatd co aadaaca laearal draiaafa ada^uacaly vbaa oa«d vica appropriaca corracdon faccors. larrlar aeil layers raMla aacsracad aad parealadoa carouffc barriar soil Iay«ra iJ aoc raaerlccad or aidad by sa balov ciM barriar soil. Taa aedal «a«« a«raral alja?lirylaf aaaoDdov* aad *«••*!— coaacasca for sarraral rarlablaa. Tab la L eoncaiaa caa couacaats oaad ia -^'l^t caa bydro- loflc procaaaaa. Tab la 2 liaca caa rarlablaa vuiea ara aaaifaad raiaaa voaa dafaalc soil daca lapuc ia oaad. Corracdo* faceara, vuica adjuac caa dafaulc hydraulic condacdricy of caa cop layar far caa rarioua •Ttfacadaa cypaa , ara -T«^» liacad ia Tabla 2. Tabla 2 alao concaiaa caa eoaffieiaaca c&ac ara oaad co ealculaca caa dafaulc roaaff eurra aiaabara aa a famedom of r«f«cadou. Taa acdal aaaoawa caac Tafacadan baa aa ocaar affacca ae> caa sail caaraccar- Udca. such aa poroaicy, fiald eapacicy. aad vildaf paiac. Taa aedal alao caac nrrf >n< naaax aoaa aoc 'M'^'ir , aad »**«^ caa vacar Tt *r\m is balov aadal avaai aac aiamlaca cha aff acca of syacam aad. caarafara. caa aiaaladam ram daaouacracaa caa raasja aad fraquaacy of raamlea far a f£*a* rnadlrtnaj af caa Ttaitfm. aaam aaiaf aa iaaaraaabla liaar > a laaaaaa fracdaa ia aaaa by patzaicdaf only caac rracdoa af caa pocaadal daily pvreoladam rlrrovfh a barriar soil layar ca accaally p«rcalaca oa ^*»** day. Taia aaa af laakaaja rracdaa ia idanriftal ca caa aff ace of raduciaf caa hydraulic conducdrlcy of eaa barriar Mil. Typical laaf araa iadicaa oaad ia tt>« dafaalc cliaaeological daca far •»*'*n«"»* graaa aad a good rov crop ara liacad ia Taala 3. Viaear eorar facears aad carracdaa faccara far poorar scaada of rafacadaa ara alao fivaa ia Tabla 3.

32 3) Tia avarac* haad far tha prafll* (7) aad -ij« *£f«etl7« l*tar*i esn- doctirlty C «r« computed.

4) Lataral How and parcolatioo. thrwjfh tha barriar lay*r art canputtd,

2) If tba sua of lataral flow and rmrrtral parcolatioa la aet acespt- ably cloaa (s 3 parcaat) to tba Initial aatlaata of dralaaca rata aaod la rtap lf a aov aatlaata la obtalaad, aad tba aav aaclaata of dralaafa rata la racaraad to stap 1. If tha coavartaaca erltarloa la aot, auaamriaa ara obtalaad aad ca«p«t*tlon baflaa 0a tha a« •tap. aav aatlaata of dralaaga raca, rafarrad to la reap 3, ij obuiaad br eompariac tba prariooa aatlaaca «tth taa eovpasad raloa for eba SOB of Laearal flov aad parcoiadou. If tba covpatad rata la we blfa, It ia tu«d aa tha cop of aa aeeaptaala raafa of raiaaa, aad It la ararafad idtix taa prarloua lov *a-ctaa,ta. If tba caapatad Tml*a la too lov. It la cakaa aa tha bottaa of tha caaaa aad la cvaracad «tta tba prarloaa al«a aatlaata. la **»•*• «ay, tba bast aatlaata la appxoaebad firoa oaa aida at 4 tlaa. Qiaa eeaaacatira aatlaata* accaptably eloaa «5 parcaat), tba Itaratloa la

L2HULZZOB, ^ssairnoB, an

Tba HELP aodal la a dataralnl trlftt quMi-nw dlaaaaloaal aodal that danr«l- ooa a loar-tara mtar balaaea baaaa oa historical or alaalatad d*lly ralafall raeorda, laa IZLf aodal la aa aara eoapLaac thaa a aaaaal tabalatioa of «olj- oura balaaea, but tba BZLf aodal amkaa a^allabla a aora eoaplata data baaa aad a »tata—of-tha-art ayataa for eoapatlaf aa acearata vatar bodjat ovar a wtda vtflacy of eliaatlc, aoil. aad vafatatlva eoadlcloua. laflltratloa. of mttr throufh tba aoll aarfaca la ealealatad oalaf tba SC3 raaoff carra atatbar tach- aiqoa. Iba SCS »^*»tn<<.Ti^ darilnpad far mtaraaaaa aad Latfa pLota of laad la aaaxaud to provlda f»«d aatfaataa of laflltratloa far Laadfilla. Iha rataattoa par aaa tar, S, oa«d to ealaalata tba raaoff earra aoabar, eaa ba eoapatad from a dapth- waljhtad aranfa of Mil aaiarara la tba aoll proflla. Iha •vapotraaapiratloa aabaodal U baaod oa a aodlflad FaTaan ralatloa- ship ia11rh ralataa •vapotraaaplratioa to tha ava£Labla aaarfj baaod oa dally taaparamza aad dally solar radlatloa- Iha aodal doaa aot oaa aemal dally toaparaara aad solar radlatloa Taloaa; laataad, aoaa dally toaporatur* aad solar radlatloa valuoa latarpoLatad froa aaaa aoathly taaparatara aad solar radlaaoa data ara uaod. Similarly, dally laaf araa ladleaa, tba otbar aaia «*^p3rraaaplratl0a, ara latarpolatad froa 13 valuas seat- tarad throughout tba yaar. Coaaaquaaely, caleulatad dally arapoeraaapiratloa

31 2. SOU 7A1TAHLIS TOR SETACLr SOU 3ATA Fuaction* I2C^I50ILa)_ 2x«M six variable* ara takaa directly fr IPOtO__.S (ISOHa. ) Tabl_ a 10 accor(rdiad lagf to taa »otl typ« (ISOIla) aalactad for Lay»Layarr a ZTC(ISOZLa) flhora ttC^" hydraulic conductivity rfdOS • poroalty ZCOI • evaporation coefficient XFC • flald capacity am • rlTTfOTa laf lltratloa tata IB? • wlltlaf poiat 1C (a) • aC(IfOHa)/20 Tb«M four **riablaa ara af fact ad vhaa toil COT (a) • 3.1 Layar a ii coayattad • 0.73 I?010SCISOILa) ibara • 0.73 XTCCISOna) * 1C (a) • hydraulic contectlrlty of Layar a 0.23 2BT(I30Ha) CD!(a) • rrmporatio* ca«fficiast of Ltyar a POtO(a) • poreaity of Layar a fC

XAO IAI ITTIT -23.37 2 41.49 -34.94 3 49.90 -32.92 4 90.01 -43.12 3 92.14 -23.11 i 44.73 -36.43 7 93.34 -19.21 I. CCSSTASTS 3SP 2f 3SL? SCPEL

0.2 S Tiw t*-«g-*-»T abstraction lor SCS cur** a«*b«r aachod accooau for La««»* of v«e*r (lacarcrpcion) b«for« or ronoff ocean, «fa«r« S Is

Mil *»e«r eo*t«at of ch« top «««iH*d ca b« halfwy b«ev««B polae tad eh« fiald c*p«clry. Tb« soil v*t«r J S 7 coaMnts of ell ochar M^SAU stirs *c fiald eapaciey. for J > 7 CUTS BP » 0.1 ABC Th* Mil w»t«r concaat b«lov which plat growth, Is ' ia aa-iiM«ii to b« eha wileiat P«iat ?lu« •uach of eh* pLme crailaal* v«t«r o.sa

All 0.23 Q» ilhsjdn for SC!AT rs^tscion iczsmcpiratlom. . .

33 StdlOH 3

CJkPaSS^TTZS mfQ QATt UftVT

The ICJ nodal is • quasi-evo—dlaeasional, deterministic, cosjp«tar-baj«d water budget for TsndflTlt. The nodal performs a dill7 ief[nenf1 il analysis 53 eatismta roaoff, ervpe transpiration, lateral drainage, percolation, aad water storage fro* dally precipitation data. The nodal earn *>**><<1^ water routing • through or scarce* ia op eo aine soil or waste Layers; a* assy aa c^r«« of «7 b« b*rrl*r Mil or from 2 to 20 Tb« •odttl h*a Liadcj OB chat ord«x ch*e Lay^rt can b« axra&f«d IA eh« Land- fill profile, k* diAcuvad la S«crl0a 2. «*eh Liymr anac b« d««czU»«d u b«laf OA«I of four CTP*>: Tardcal p«rcalad0a. LaecraJL dralaAf*, «uc«. and b*rri*r •ell. Th« aodAl do«« aec p«rmle 4 y«rrtftal p«rcelAdoa Lay«r or « wmaea layer eo »« placed b«lov a Lac«r»l dralaaf* L«y*r. 1 barrier Mil Layer mtj act be placed dlrecrly b«low aaoeaer b*rrl*r Mil Layer. Thai cop Layer e*y ooe be a b«rrler Mil Layer. If a barrier Mil Layer t* not p Laced directly bel«v eixe loweee Laeeral dralaafe Layer « ebe Lateral drmiaafe Layers la cae Iove«e tub- profile are c?e&ced by eae aodel aa rerrlcal pereoLaclon Layers. Be other are pLacad on eae order of eae Layers. The Laeeral draiaafe eojoeclon wee derelov«d for eae expected rage of T *~* ** "< "* deelca tperl flcaelone . Fermljalble rsagee for slope dralaafe LenfCh of eae draiaafe Layer are 0 ee LO percent aad 13 eo 200 fee-e. Accsraee eeclateees of eae Laeeral draiaafe rmte were obtained for he*da op eo 3 feet on eae ba*e of eae draiaafe Layer or on eae top of the barrier Layer. have Halts for eae valaes wnlca nay be for AJC-ZX eaa rsnfe bee**eu 20 aad 100. SO roMff corre aneVMrs nay be aelaceed by eae procedures occlined ia eae Ictlanal tasjlaeerlac Kaadbeek (A). Taa Unar leekafe fraction and eae fraction of potential raacff for open aiees can range between 0 and I. Several relationship* east exist between the soil eharacterlstics of a Layer end of the Mil snoproflle. The poroeiry. field capacity, and wilting eaa theoretically range from 0 eo I ia onies of rolisae per volisan. bat the porosity nast be greater than the field capacity and ehe field capacity oust be greater ftm ehe wilting point. The relation between soil type and soil characteristics is shown ia Figure 7. Typical rslaas for rarloua Mils art listed in Table LO which contains the default Mil eharacterlstics (U, L5,

3« £• oooooopppp 3PPH «»o»^a«i*^«-*M»-«••••••••••o I? w» §

•* f oft •I' ?l! ' i»i 8

O •1 E ji OO»— i»i!*& • llrj O U r* « • o •» I 3

V H •>$

0 O

C i; UB o A* O H »- »* r R H ..-<« • • t • t JI E H s ¥ . 8a Corn Oat! Wh«At GrU« SOTMACJ

0.0 0.00 0.00 0.00 0.00 0.00

0.1 • 0.09 0,42 0,47 1.8* 0.13

0.2 0.19 0.*4 0.90 • 3.00 0.40 O.J 0.23 0.90 0.90 3.00 2.18 0.4 0.49 0.90 0.90 3JOO 2.97

0.3 1.1* 0.91 0.90 3.00 3.00

0.6 2.97 2.42 1.62 3.00 2.96 0.7 3.00 3.00 3.00 2.70 2.92 O.I 2.72 3.00 3.00 l.M 2.30 0.9 UO 3.00 O.M O.M 1.13 1.0 0.00 O.'OC 0.00 0.30 ' 0.50

LtX T»la«« far food crop* tad «c«ll«at fr*M fircm bi««l (3)* figure 7. General relation be •oii-e»ter. M ire. and hydraulic tivlry (14). The hyurwiic conductiTltiea of the layer* of a subprofile above « barrier sell Layer should increase »lth increasing depth or at «or*c b« *i«iLtr (vitita y«r« «bcr«. -Ti« •vrnporacloa or w»c«r cr»aj«l*- sirlcy coefficient raaf«a from 3.1 m/day for au^i«ct«d soils of Law trans- adj«lTlcr eo 3.3 for scad* to Above 3.3 far.highly organic soils (3,* 7). Th« coefficient oaax b« fraatar than 3 «^day * . Soraral of tba soil chanctir- Ijtlcj for so«a Layers &ra a0t o««d by tha aod«l; th**« tacloda tba porosity, wilting point, «ad «r«9eration eo«fflclant of barriar soil Layers, and tha viltlAg point aad •raporatioa eoefflclaats of all Layers below tha evaporative

The only cUsjatologlc variable* that have United range* of value* are Leevf area i*jd*B sod winter cower factor. Leaf area ^^Ice* nay range fron 0 to 3 where aaro i* baregroead and three represent* the errfmei poesibl* vege- tative cower. The Leaf area index is the ratio of the Leaf area of vegetation to the soil surface area. Typical leaf area indicee for vnriou* vegetative coven are Listed in Table* 3 and 4 (3). The annual leaf area index distribu- tion* in the table* are normalized by the growing season at tha Location of internet. Typical growing seaaon* are available in various refarencaa inclod- iag the U.S. Oeparaant of agriculture publication, "Clinate and Man. Tear- book of Agriculture" (17). The winter cover factor is defined in tame of Leaf area index.

37 Sources for other clisatolofic variables xrt readily *v»ilable. Precipi- tation And temperature data are available from local libraries «nd frsa che Satianal ••ather Service through th* Director of the national Climatic Center, SCAA, ?«d«r*I Sulidlai,, Ajherrill*, H.C. 23801. Mean aonthiy «ol*r radiation (insolation) TaJ.ua* can be obtained from the "Cliaatic 4tlas of the Jolted States" (IS) and fro* Tabla 2 of the ESSTOS 3s*r's Guide (1) for •elected cities.

omcss the program has options only la the laput aad output routines. Cliaato— logic data aad soil characteristics nay be specified by th* user or selected from default data bases. Several other options are also available ia the iaput routines as will be discussed below. Design data eust be specified by toe user. The optional output routines provide summaries of dally values, ithly total: aad annual totals of various simulation variables. Average aad *MM'! totals, aad peak daily values are produced for all siault- i

Options CHaatoloflc data ««y b« tpaelflad by aitaar •anal or daxfaolt optlous. ?lv« ymars of dafaolt prvclpltatloo data art «TaHaila for 102 eltla«x ac ar* on« ««t of aonthly MIS t««p«ratBr*« aad tolar r*dlatlou, viator C9r«r factor, aad l«*f ar*» ladle** for «aeh city. This »«t of cllaatoloflc data, otaar taaa ptaclpitatlon, ts o*«d zoe aaeh of ta« f±r« y**ri of praclpitacion data. If taa iMTirial option U o*«d, eaa o*«r aa« th« option of tupplylnf on* ««t of any cllaatolofic Tarlaal* axe apt precipitation vtilch «Pnld b« o*«d for all y«arj of sioolatlott, or ta* o*«r can sp«clfy a saparvta see of rilaa* for each y«ar of insulation. th« •aaoal option al*o prorld** eh* a*«r with optional routla** to check or comet ta* ralo** prvrion*ly sp«clfl*d. Th* a*«r do«j aot o*«d to aatar ta* y*ars of precipitation data la caroaoloflcal order slace ta* prefraa sorts ta* ymara aad arraaf** thea ia iacmaaiaf caronolotlcal ardar. Th* program «ld.p* or*r year* without data littrlng ta* slaolatlon. Soil charact*rljtlc* ««y al*o b* tp«clfi*d by either •ermul or dafaale option*. Wtth bath optlow ta* dui^a data are specified by ta* a*«r. la :h« default opdoa ta« ea*r eery owrrld* ta* d*faale muuff enr^e oavb*r by sp*cl« fylaf a carrei *i*Bk)*r. SM —~**i toil eharmcteristics iap«t option prortdes ta* o*«r »1A m«tla**i ta ea*ck or correct prmoualy specified rain** or ?re- rlou.J>y t*l*ct*d v«la*s faro* ta« default data b***. Potions Four ryp*s of output caa b* obtala*d froa th* profram: dally •onthly totals, iTm^l totals, aad a soBBary of ta* siaalatlon. Output of daily ralo** Is optional aad laclod** date, indicator for fr earing t*«p*r»- tures, preclpitztion, nmoff, erapo transpiration, total lateral dralaafa from all dn-infce Lcyers ia ta* cap or eor*r, percolation from ta* base of th* co-rer, head on top of the barrl*r soil layer at th* base of th* cover, total lateral dralaaje from all- dralaafe Layers ia the waste cell aad Ua*r/drala

39 ry»tam at tha basa o£ the Landfill, percolation from the base of the Landfill, head an top of the barrier tell Layer at the base of the Landfill, and soil water content of the evaporative sou*. Output of aonthiy totals lj also optional. Tha totals of tha daily values far each month are given for the fallowing vmriablaa: precipitation, runoff, «vapotranspiration, lateral drainage from each subprofile, and percolation through the bottom of «ach tub- profile. Ootput of daily valoas and aonthiy totals are output options only «n«n detaUad output ij rv^naatad. Detailed ouput alvaye iacladea «*"wil totals of taa TmrUblea listed far wnthly output sad a soavarr. The taanary of tha «1i«nlirtrm is alwaye prodacad, and iacladea acnthly and ansual rrer~ a

Thraa ty7*s of isout ara na«d la tha aodal: cllaatolofic, soil, and data. Is,bias S sad 7 List tha cllaatolofic iapnt va>riablas for tha manual sad dafanlt oationa, raapactirely. Tha aasaal sad default laput rari- ablaa for soil charmet arts tie* ara given ia Tables 8 and 9, respectively, and Table 10 lists tha dasian vmrlablas. Tha HZLf Uaar's floida (19) provides a )lete discaaaion of iapmt Maanai Cllaatole^ic lapct _ ' • • disjBtolotlc vmrlablas arm shovm ia Tabla 3. Tarn oaar amy •omeify fromi 2 to 20 ymar* of dally pracipitatiom valoaa, oma year for aach yaar of siaola- tiom dasirad. Twelve aonthly maaa tamp*r»tnraa sad twelve monthly maan solar radiation valoaa may be ayatrtflad for one ymar or aach ymar of sianlation. Thirteen Leaf area tadieea.- tha corraapondiat Julian dates, and a vtater cover factor may also be vpacifiad for oma ymar or aach ymar of a isolation. Only «aa evaporative zone dapth amy be specified for tha siaalation. Default Cllaaitoloflc Zapmt Taa modal starma dafamlt cllaatolofic data- far 102 citias. By spmcifylat tha daairmd stata sad city from Tabla 4, tarn uaar ia so^pLiad daily pracipita- tiom data far years 1974 thramfh L978, oma sat of mamthly maaa tamaaratara and solar radiatiem vmlmaa, amd amts of laaf area tadicaa aad wlatar cover factors for a good rae? cram amd am Mr.allaat staad of graaa. aetaal laaf araa iadicas sad wlatar mwsjv faatar mamd dmxlaf tha almnlarlnm arm aelactad or corracted from tarn dmfaalt amta aftar tarn vmfatatiam type is •partfled; tha carractiom factor* arm gliam ia taala 3. Tarn iapmt variablaa arm *B*amrlaad ia Tabla 7. Manual Soil Data Input Soil characteristics most ba tamclfiad for aach layer ia tha design. The required characteristics. Us tad ia Tabla 8, iaclada poroairy, fiald capacity, wlltiaf poiat, evaporation coafficient, aad hydraolic conductivity. 6. UST^TC or 3g?Acir cmis ASP STATTS

t Data Proridad Only for tha Ltiaa and Stataa

Alaajca niiaeia Shod* Island Aaaatta Chicago Bathai Z. St. Louia Soath Carolina Sav Bawpahira CharlaatoB Arlaoaa Concord flagstaff Raahoa South Dakota Phoaalx tavid Cier D«« Taaaaaaaa ATkaaaaa cnsaa Kaoxnilt Littla lock Dodn City ilaahnila Califoraia Ti PTI

Late QiArlaa tttaem Utah Cad Salt Laka City

Cart bog Sorth Dakota

itta Bortom dadanatl Plaiaflaid vZorcactar Call Orlaade Put-la-lay Saalt Sta. ttaria Oklahoam City Saattla Takim V. P«lB Laaai Tola* St. fftaeonaia Aatorla aaofor* Portland Boaolala Liodar al^t _ Idaho Graat Fall* P»«reo llco Beta* Pocat^lo Sorth Taahi

42 5. JiASUAl CUSATCLCCIC STP?? Fnactiooa

2ia 7«ar of cha precipitation data to ba «nt«r«d. KAX3(I,J,K) Tha dally precipitation. Taloas ia iachaa «h«r« I li siab«r of eha 7%*r of data b«iaf «nt«r«d Cb«t*««a 1 and 20) , J i* tha Ua* snab«r for th« TMT of data b«la« •atarwd CD«CVM& I aad 37) , aad t la th« mab«r of th« T«lo« OB th« UM of data b*l&i «nt«r«d Cb«rp««a 1 10). ia d*fr««« ?ahr«ah«i: wh«r« a Is th« anab*r of eh« aonti, Cb«c«Ma 1 aad 12). IB* iPtttaly aaaa »olar ndiatloa tt la ta« au«b*r of cat aonti Cb«o»«a 1 and 12). vlatar ewwr factor. Jolian data of ta« laaf ana lado raloM *h«r« C is ch« ooBbar of ta« valoa (Varvaca 1 aad 00 UM laaf ar««- iad«x ralaa «ti«ra K 1* tha miahar of ch« oa CMCWMB 1 aad 13).

Tha cvaferatlTa zona dapth ia iaahaa. 3af aule Soil Data lapuc Ti« dafaulc soli caaracearijcicj ara LLstad la Tabla 9. Tb« only *bl« u*«d ta obula dafaolc toll caaraccariscica 1* eaa mabar of ch« soil cypa or caxtura. Dafaole sell caaractarljcics *ra proridad for 21 caxruru. Taa ooBbarad s«ll eaxeuraa, labalad BOIL la. caa profraa, sad chair eorra- tpondlat Mil caaracearljelca ara Ustad la Tabla 10. Soil eaxrori suabars II cad 23 ara oaad eo (pacify caaractariJticj •anaally. Daalga Data laput (iraa ia Tabla II 4a>eTHx eaa T«Mf*^ eaa snabar of layarj • g^^ eaicaaaaa of lor aaca layar. y**^ slopa and aaxlan dralaafa diaeaac* ae of aaca drmlaafa ryitaa. cad eaa eoeal surfaca araa of eaa T ••"<*< y Tar«a catacadant aoiatnra coaditloa ZX« Caa ^ 1*^T laakafa fraction* and *r**^ opaa vaaea call peeantial naoff fraction. Taa SCS naoff cnrra avabar lj opeional for dafanle Mil caarmctarlatica iaput axeape whan eaa vaaea call la opaa; eaa ij rnanirad for •anal iapue of Mil caaractarirelca. Taa Uaar it ba •parlflad vhaaarar a synfhatic 1<«^* lj oaad ia eaa Taa potantlal rancff fraction for opaa sieaa ia oaad vnan eaa cop Layar la a vaaea layer.

• 9 '

0^^7^7 7aJ^UuD^CS Taa output ia L 11*41 u«ad of iaput iaformation and siavlation raaulea. All of eaa iaput daea azcapt dally pracipieatlon raloaa ara alvay* rape re ad; dally pracipieaelon ralaaa ara prlatad only vnaa eaa dally output option la oaad. *^»^* sac clan praaaaea only a dlacnaalon of output rartablaa for siaulation raaulea. Daily Output Taa rariablaa for dally output ara Uatad ia Tabla L2. All of ehaaa rar- iablaa, axcapt praciplcacloa. ara eavjvutad dally. Dally ralaaa for pracipica- tion, naoff, avapotramaplrmclon, parcalation, and dralaafa ara uaad ea eaa- puta eaa aoacaly and ananal eaxala. Dua eo eaa n»*»^ aoabar of rarlablaa vnlea caa ba priacad acroaa a pafa. dally ralaaa of dmlaafa and parcalaelon fro* aaca aabvroflla ara a»t alvaya prlatad for aaca rtavlirtnn. Latarml dralaafa raloav for all vavprofllaa coa^lataly abova eaa eop vaaea layar ara eaealad and +»n»* eorar dralaafa; lacaral dralaafa Talaaa froa all otaar sub- prof ilaa ara alaa eaealad aad raportad aa baaa dralaafa. Parcoladoa Taluaa ara flTaa only for subprofilaa **•»••« «<*f aleaar eaa baaa of eaa eorar or caa baaa of eaa ^^.^^n Taaaa tvo parcolaeion raloaa rapraaane eaa dally aaounea of parcolaeion earoufa eaa baaa of eaa corar and earoufa eaa baaa of eaa i—«i««n only eve baada ara rapcread; eaa baada on barrlar layars ae eaa baaa of eaa csrar and ae eaa baaa of ciia lanriflU. tAJLZ 7. SPAgLr C.^ATCLOCIC I^PTT 7/JCAJL2S

7«riabla Function KCTTT "2i« MM of 4 dry (Ivan la T*bla 6. of a atata (lT«n la I*bl« 6. I aad 7).

S2EPT3 A* craporatiT* ZDQA dapch la

TULZ 8. MJJffTAL SOU CBAIACaOgrnCS 7arl*bU pOIOdLkD 7h« peroaitr of aoil Layar ZLH la val/vol «har« HAT 1J of tte Laymr fro* tha cap Cbacvaaa 1 and 9) . Tha fiald eap«citr of aeil L>7«r HAT. la «o W?(HJLI) Iha vUdac poiat of aoil Ixyar CULT ia 1C CHAD CM aatoratad brdraalie cooductiricy of aoil L*y«r HJLl la iactiaa/Ur. C05(rUlI) Tha arape ration eoafflciant of aoil Lcyar ILil la as/day '3 Soli T«zrar« CLu Field •lit lag Porosity Cap»cir Hydraulic1 3.S^ 33V CSCS in/hr 7ol/Vol v»i /v-*7 Polat. C^aductivir r COS- ^^^•^— —— ™™— ^—— ^«~ * *•*/ * 9^ 7ol/7ol ——— — _ — — —— —1 ia/fcr 1 •— «^ ^—— —— «/d«y CoS cs 0.300 • ™——— ———— m 0.331 0.174 0.107 2 CoSL- c? 11.93 3.3 0.430 0.376 0.218 0.131 7.090 3 S » 0.400 3.3 0.349 0.199 0.066 4 6.620 H SM Q.390 0.371 3.3 0.172 0.030 3.400 5 LS SM 0.340 3 = 3 0.430 0.160 0/060 $ 2.780 3.4 LTS SH 0.340 0.401 0.129 0.073 1.000 7 L7TS SM 3.3 0.320 0.421 0.176 0.090 0.910 3.4 8 & SM 0.300 0.442 0.236 0.133 0.670 9 fSI SM 0.290 3.8 0.434 0.223 0.092 10 V73L m 0.330 4.3 0.230 0.311 0.301 0.184 11 I. 0.330 5.0 XL 0.200 0.321 0.377 0.221 0.210 4.3 12 sn XL 0.170 OJ33 0.421 0.222 0.110 13 so. SC 3.0 0.110 0.433 0.319 0.200 0.044 4.7 14 a a 0.090 0.342 0.432 0.323 13 0.063 3.9 sia. a 0.070 0.344 0.304 0.333 0.041 16 sc a 0.060 4.2 0.372 0.436 0.378 17 SIC 0.063 3.6 a 0.320 0.392 0.30L 0.378 0.033 3.J 18 c a 0.010 0.640 0.607 0.492 19 0.022 3,3 HMt

car •

46 11LSL2 9. 3I7An.r SOU 7arlabi« faactian CSOH(ILAI) Tfc« •ell t«xrar« anb«r (We*a«a I tad 23) for tell Uy«r HA! vh«r« HAT tj th« oaab«r of ch« Lty«T from tha top Cb«tM«a 1 ud 9) . ?OlO(ILiT!) T5i« o««r-«p«elft«d poroticy of Mil laymr TT^T la TO I/TO! for Mil c«3K8r*« 12 cad 23. fiald capacicy a* wU 4*y«r CJiI l for soil CBZtortt* 22 «a4 23. tha oa«r-4p«elfi«d viltiat poiat of Mil Iay«r HAT la far Mil caxrorM 22 cad 23. 1C CHAT) Ta* «Mr-ep«ciflcd hydraulic eoadactirlry of Mil lcy«r HAT ia iaca««/hr for soil t«xtar»« 22 cad 23. COH(HAl) Ta« o»«r-*p«ciJifd crmpormtlott c0«ificiaat of Mil L»y«r HAT ia «/d«7 for* Mil t*ztor«« 22 cad 23.

45 *JLXLZ 12. aATLT lyiy'-T 7A»-i»rr«

7*rt*bl« Function « u lap dat*. \ ia indicator th«« ch« «ua c«p«ratTm ij b«lov 32*?, Bi« dallj prttclpiCAtioa valoa ia iach««. SDH 2i« 4*117 naoff ia iach««. •rcpetrmaiplrmclott ia iaeh«a. on ca« b*M of ta« eormr ia iaeh«J. p»real«tio« taroofh tha ba«« of th« e0r«r ia

015 tt« lataxml drmlaaf* fro» «&• covmr ia iaehca. BUD HM hMd om tii« b*M of ea« LndfUI ia ia«aa*. BPtC IB* p«rc0lAtlM throvfh ta« B«JM of ta« LndfiU ia

B3U th« latmrml e0r«r of th« landfill ia Th* •ail vtttar eoatcat ia tha «r»poratiT% son* ia TA3LZ 11. DESIST 3ATJL 2T?7T

7arl4bl« fraction ULT Th« ssm««r of Mil layers. TSXCL(ILlI) Ia* fhirtaaaa of toil lay«r IZJJ ia iaeb«« vfa«r* la CA« aaab«r of e&a Lcyvr from ch« cop (b«e««aa 1 aaa 9« T&a dascripcor of Mil layer XLiI (b«c«*«a I aad 2). FLLUL th« I«AkAf« fracdea ciroujii th« ty^tiiatic liaar 0 ad I). ff fraedoa for 0 and 1). GJ2 tli« SCS rvnoff C8xr« mab«r for *&e«c*d«ac coaiicioa. tZ Cb«evMB 2fl cad 100) (option*! if d&£aal: Mil of ch« i«*"*«ii ia S^QAT* f««e. *t ea« *«•« of Mil L»y«r ZLAZ ia p«rc*ac. at ta« BAM of Mil Lty«r Zdtl ia fMC.

47 a ac; »»7 pcv 91 m* »qa ae;

ye jo

•»fcta»AY

jo r^T6**^ •Sv^ftA* *q3 vrraqe ej miu «jrt ;D ye o 03 M wp nc ao

;c -TT ae; ^a

ae; a ac; 12. Olil^'Jl' 0? aCMTSLT TOTALS 7*r±*bl« Function RISK J) Ta« catal pr%clpic*clon. la iacb«« , durlag *rach J vhar* J of ch« aonch Cb«r»««a I «ad 240) . XCSKCJ) Th* eoul nmoff, ia lar.h«a, dorlaf •until J. (J) Tb* weal «r«poeraa«pmel0n, ia iaehM, daziaf month J. «i, la iach««, chsoofa eh* b«M of •ubprofli* dorlaf aoaea J. DBf3M(J) Ta* total Laearml drain*t*> la iacfaaa. from ca« cop tub- prof 11* dorlac aoaea J. F1C2HCJ) Q» eacal p«rc0lAt±oa. ia iacbM, taroofh ea« b««« of eh* •otyrofil* from ea« coy darlaf aoaca J. Iha caul Ltcml dnlnija, la laehM, fna ca« ••cemd from C*M cay texlaf voata J. * Iji lacaAfl • ftirn'iirt ***^ bftsc of ea« toy teriaf «0ack J. DBflKCJ) ta« l*e«r*l dzv±aa««, ia iachM, from cha eaird rahprofil* fzwi ca« ttof dvrlac •each J. doa 3 jo »*» •HI jo anaiW rj *ui ***^ dca np *oa; •Bver«2p 7*2*9*1 T*3n •% TCBICU

das

dea tjs woij •Bvu^K2p ^V2V3^^ ^rsea

dea dea

dea

je 3«»ai»d try *TTT 2v»^ tc^snp ^ernaa T»ae3 «a TKELi

jraoa *^a jo • -3; 'to «r "WTaraTdTwiad ^noa »^i TTE£1 jo 14. (Continued) r?2C2A Tha total pareolatioa, la en. ft., through ch« bu« of :h« •acoad nbprofil* from tha cop duriag j«ar m. Tha total pareoiaeion through tha baa* of the second sub- profila from tha cop daring jaar m, la parcaac of th« total dartaf 7«*r eaeal lae«ral drxia*j« from ea« s«coad tubprofll* f;am cop, la iaciM, dorlaf 7«*r T2BT2A. Taa total lataral drainage from tha sacond suhprefil* from taa tap, ia ea. ft., daring jaar ZTL. Tha total lataral dralaaga from taa «acoad tooprofila from tha top dsrlag jaar m, ia pareaat of taa total pr«ciaita- tlo« dsrlag 7«ar ZTL. PICUL(ITX) HM total p«reolation, ia iacix««, earoofh ta« baa* of ci« taird aoafrefila from eaa cop darlaf ymar IUL Tha taeal p«reolael0a, ia ea. ft., taroaga taa t>aa« of calrd soBproflia from tha top dvriac 7«ar ZH. Tha total pareolatloa throagh tha baaa of tha third fila from tha top daring jaar m. ia pareaat of zh« :oc*i praclaicatloa daring jaar ITi. DEfLiCITZ) Tha total lataral dralaaga from tha third sabprofii* from tha top, ia iachaa. daring jaar ITZ. TD0LA. Tha total lataral dralaag* from tha third suoprofiia from tha tap, ia ea. ft., during jaar ITL. FD0L*. Taa total lataral dralaaga from tha third sobprofll* from taa top dorlag jaar £21. ia pareaat of tha total prvclpi- taclom dorlag jaax

OS9QLZ Iha total *oll vatar storaga ia taa i ***** T T «e cha b«gla- alag of 7«ar m. ia iachaa. TOS¥ Taa total *oll watar storaga ia taa t ^««<*-f TT 45 cJn bagla- alag of yaar RZ, ia ea. ft. P5BCLE Tha total aoll vattr storaga ia tha landfill at tha aad of 7«ar m. ia iachaa. (Coatlauad) R 3 • w »M d •M» d U O «4 i I "8 1I a a a 1 e B iL I I M 3 u i i I* I S ft U* Ma M o. SI U «M U M c u w w i; i i \ \ ii! ^ 8 8 Jl a f2 3 S a* ^ a*-sj

•^ 3 8 I ii i 13. ocr?r: o? Function A712KJ) Ta« rr«raf« aontaiy pr%cl?ication, ia- iach««, for «onth J of period wturt J i« on« of ch« CV«!T« acuci* of

rr«rmf« •onehly ranoff, ia inch**, for aoach J of p«rlod. ' 4Z2KJ) Tb* «T«r*t« "cntaly rr»pocranJrpirati0n, ia iac^M, for acnch T of ea« siaolaclon p«rlod.

1D1S2MCJ) Ta« cr«raf« «oataiy Lateral draiaaf*, ia iaea«s. fr «>coad »uoprofil« from ta« tap doxlaf aoaeh J of ta« clou p«riod. ehly p«rcaL*tlon, ia iaehui, of eha caird «ubprofli« fro* ch« cop duriaf aout-h J of

calrd •ttbprefll* fro« ca« top (iurlag •each J of ta« «i dOA P^Z^B^* prwclpiucioa, ia iachat, for ta«

Ta« cwraf* ooaal pr«clpitatlaa, ia cm. ft., for ta« siau- latloa p«rt04. PAPUJL Ta« cr«r»f« caaaal precipitation for ta« «iaolatlon p«rlod ia P47CMBC of tli* «T«r«4« "T""*1 prvclpitatloa for ta* si latloa p«riod. raoff, ia iacao*. for tiM «laolatlon TABLZ 13. S 7ariabl« Function The average rrrrmil rcooff, ia en., ft., for th« period. The everafe •mtnil ranoff for the •laaltelon period, IA p«x- ie of the average aanael precipitation. The average imrnaL evapetraajrplrnciom. ia iacaea, for period. The «r«rm«« •mmal «rfa^ccr«&«pir»tlon. ia cu. ft., for period. FAZZJL CM cveraf* osul «tvpeer«B«plr«clom for period, ia percent of tae crera^e aaaaal precipitation. Tae rreraf* evBoal percolation, ia iacaeo, earonfh she b«*e of tae to* •ubprofilA for eae siaoladon period. I1PC34 the vrerafe osaal pereoladom. ia en. ft.. taronfa eae be«e of eae eof Mbproflle for tae rfanliilmi period. The cverafe caaael perefilAtlon taroofa tae beoe of tae cop oabfToflle for the «i«Blarltm period, ia per&e&c of the preciyltaelon. The crernfe -"""^ Lateral dralaeyet ia iacheo, from th« cop onoproflle for the •jjnlafiltm period. T14DI1A, The «ren§e aaaael Liiteral drmlaefe, ia en. ft., from eae toy •mbproflle for eiie siaoLatlon period. FAOI3A The cremte ««BaaI Littoral dralaefe fro* the toy •obprofil* for the •ianlatiom picrlod, ia percent of the «rerag«

The overage enamel percolation, ia iachee, throngh eae beoe ef the second smhyro£ila from the toy for the slamlation

HPC2A, The ererete enamel percoLation. ia en. ft., taromch the beae of the •ecrmd •obproCil* from the toy for the tlmaLatlon

The crermfe enamel percolation taroofh the beee of eae second suoorofile from ehe eoy for the •1mnlarl

'A tar For Tar til* Liadf

100.00 37.03 100.30 totoff 6.93 1S.3J 0.00 0.00 STapocraM?lr»sl0« 17.30 43.49 16.04 43.34 Lataral ^Txio»j« 12.23 32.43 20.10 34.12 s-^*«» 1.24* 3.29 O.S7* 2.36 total 4ec9raead For 37.70 100.01 37.03 99.93

a Krc*at of cr«r*f« b For 3*aszLa, 34. c For StAttia. «4, 1931-73. of of Mil aoUcart

0-3. 47C3UU3 43IRLkL SU1X 4UUUL13 FKZSICta IT 3Z »^» iCCEL 4 TT7TCLL 3X9017 O317X STEfflO. 13 3315 FOt 22 UBDITLL

S-Iach

37.70 100.00 37.70 100.CO bmof** 9.03 23.93 9.20 16.41 17.01 43.22 11.04 29.23 10.23 27.26 1.20 3.IS 1.11 2.H

Total F»T 37. M 9*.93 37. M 94.93 a P*rcflBC of b For S«*ttl«» 04/1933-73. C 5C3 rQB02« Ctt^TV 8SBP4T of SO. 4* P^rs^t^? j8*! f^ov ba^sA of « t>Trtnd->Tt dlffamea la soil

236 Tba aselaaca of crapocraaapiracioii Jj soaavbac saaaltlv* -a th« spaciiitd rV.g'caaaa of eaa rraporaclva zoua. la caa lisulacioaa raporxad haraia, «vap- oracira ton* dapcaa vara sac co a^ual caa ••<•••*•.«• taictaaaa raaaooabla far tn« •pacifiad vagaeaciva coudlclooa la ord«r to aaclaaea caa •^-^~—1 i < >«i y s«rp~ ag* aad Lacaral draisaga. Aa a raaule. rrapoeraajpiraelou «sciaacaa wara, paraapa, mail for eha daaiga. Lacraajiag rraporaclva dapcaa. would lacraaa* aaclaaeaa for crapeeraasplzaelou, cad daeraa«« aaclaacaa of aaapaga, Laearal dralaafa aad, paraapa, nmoff. To illojerata e*cii potac, &aa lapuc crapora- eira zoaa dapcaa warm iaezaaa«d from & lacaaa for taa cap cad 2 iacfaaa for tiia op«n «iia co 8 ius,as aad 6 lacaaa, raa-p«cclT%iy. Ta« laccar ralaaa art cao«|hc co b« aera eypleal. laanlu for simlacl0na> with caaaa crapcraci-ra dapcaa art shovn la Tabla D-4. for caa op«a fica, arapccrcaaptraciott iacraaaad by abouc 1.7 iacaaa cad couaaa^iaatly, lACanl draiaaf* daeraajad by above l.i laaaa*. S«*p*c* dacraaaad by abcQt 0.2 lacaaa. Tor caa laadilll cap, a-rapccraiiapiraclan iacraaaad by about 0.7 lachaa vhlla Licaral dralaaf*, •aapafa aad nmoff dacra*a«d by above 0.5, 0.1 cad 0.1 lacaaa, raapacslvalj. Licaral driljuga aad s*«p«f« dacraaaa b«c«aaa laaa vseox raacaaa caa drmlaa(a cod b*rrlar aoil lay«rs wa«a rrapoerenurpiraeloa lacrmaaaa. larr***"*"! caa tr«poer«naptracl0tt also dacraaaaa caa aoll veijear* eoaeaae a«ar caa turfae* voica iaeraaaaa laiilcraciau aad raducaa caa raneff ali^BCly. Taa raoff pocaaeial of caa landfill cap oa«d la caa alBalaclena v«a> rary saall, typical of wall-calrtYmead afrlcalesral f la Ida. Moae l«Hf<-'T-T« would harm cooaldarably craacaz naoff pocaacial. 4 SCS naoff earra nmbar of 80 would f-»«-^»^y b« aora rapraaaataclTn caaa caa SO OM* ia caa siaBladon wich caa OXJ aodal. Taa cnrra nraihor of 30 wm< «a«d ea aatca caa nmofl pocaaclal os«d is caa «1™«T •*•*** wiea caa D1AIB7IL aodal. 4 "-*1! naolf poea&clal waa oa«d eo aaclmaca caa aarlana. 11 Italy »«ap«ca and lacarml drmlaafa aa -nil rraporaclTa daoraa *«xa oaad. Halaa, boea *- and l-iaca crapormclra xoaa dapcaa for caa landfill cap. a1anlir1r«a ««ra na odaf a ztoaff arrra suabar of 80 co coapara visa caa raaulcj aaown la Tablaa D-3 aad D-4. laaulu for caaaa tiaulaclouc ara praaaacad la Talala D-3. Taa naoff lacrmaaad by abouc 2.1 lachaa whlla Lacaral dralaaaa, •nipocraaaplraelaa aad saapac* dacraajad by abouc 1.8, 0.2 aad 0.1 lacaaa, raapacclrvly. Caaafaa la caa rrapocrasaptr*- cion on roaoff malaly affact caa aacljaacaa of Lacaral dralaaga la cals daai^a.

raaulca prooitcad by caa SELF aad DULLBFLL aodalj war* fooad co ba rary alallar* alcaoufB caa OCJ aodal pradlctad aoamaae hlffaar crapc- erxnaplraclaa, aaa* lammx Lataral dzalaaaa cad saapaya for caa e*o caaaa l&raa- d«acad. Saapaa)a, lataral dnlaaf*. ana* «rapo«raaaplraclaa, aadaacaa proaucad by caa SZU aaail vara fovad ca ba aoawvoat saaalclT* ea caa avaporaelTa zoua dapca, a paraaacar volca la difficult co aaciaaea wita coofldaaca, aad caa SCS iff a Scazoadar, f. t,, J. H. Horyaa. I. K. Valakl. aad *. C. Glbaoa. Hydrolotie ETaluaeloa of T«.^»

225 , ATIiiCX ANNEAL *ATI2 BUS'.TTS TJT^ICTD JJ 721 gy g TL SCDELS

A Average -IT;"*! Cater grr » WUI3TH Sad?et Camoca-int (Iaeiiej\ C?«rc«nt*) for the Landfill Cao Precipitation* 37 . 70 100.00 37.70 100.00 feaoff 7.04 14.64 6.47 18.22 ETmnctraarpirmtion 16.39 43.99 13.74 41.73 Lateral Draiaag* 12.77 33.44 13.74 36.33 e S*a^f. 1.31 3.44 1.39 3.69

Total Accented Tor 37.71 100.01 37.74 100.21

For fH« Oeea Landfall Precipitation* 37.03 100.00 37.03 100.00

•BflBMBHftB^BAcV *i A' UV ^• U*^^UP 0.00 0.00 0.00 Ermpotraacpiracitfa 14.42 34.91 • 12.64 34.12 Lateral Dniaac« 21.34 54.23 23.37 63.62 S««p«fe" ' 1.04 2.40 1.11 2.99

Total Accounted Tor 37.04 99.94 37.32 100.73

b Tor S«attle, 94, 1933-73. * e Per co Lit lorn froai baa* of cover. d td final toil aoiamr* rtoraM. • Tor S**trl*, 34-, 1991-73. f Pvrealado* fro« b«M of Inifill.

234 poiat o.i3 vol/vol Hydraulic conductivity 14.17 ia./'fcr. Evaporation ( transmits ivl 77) coefficient 3,3 m/day Barrier Soil -»r«rs: Poroairy 0.30 vol/vol Tield capacity 0.49 Tol/vol Hydraulic conductivity . 1.417 I 10 ia./ar Saata Layer: Poroaicy 0.30 vol/vol Tiald capacity 0.43 TOI/YO! Wilting poiat 0.13 vol/vol HydT^illi conductivity 1.417 X lOJj^i Evaporation (traaaeCLssivlty) coefficient 3.8 IB/ day

RZSULTS ASD DISC33SIOH Monthly and rnnnaL total* were generated for the following water budget covponeats: precipitation, ronoff, evapotraaapiratioa, lateral subsurface dralaafa, and percolation thzoofh tba bottom of tha barriar aoil layer. Ansoal totaij of aaca coapcnant for tn« alaolatlon period van ere raged to obtAia the ere rage aaaoal vatar bod get, table 0-3 «bowa rreraga annual water budge u produced by the HH.? aad OtAUflL eodalj for both the landfill cap aad the open mate cell/ lia«r/ drain fyatem. taaolta are girea in iachea (TO!/ landfill are*) aad la percent of the average annual precipitation. The reaultJ produced by the on sod«la are very slailar; though, the HZ1? •odel tanda to predict aoeMvoat higher crapotraaxpirmtioa than the OLaUTPTL aodel, Canae^ueatly , the eatlaataa of lateral iraiaage aad seepage produced by the STL? aodel are aoaMvfaat amallar thaa estiaataa fro* the DULUJ11 aodtl. T«Q eauaes for the difference ia the aatlaate of crapotranapiration are apparent: 1) The HTL? e0d«l aatlaatea «rapctraa«pi ration by a eodifiad Peaoaa relatioaahlp while the OljLZSlTL esdal oaea a Tionryalthe relationship adjuated with pan •vapotraaapiratlon datA. 2) The 01XUT1L eodel roatee water vertically down the Mil profile to the water table each faater them the VHJ eodel; this reewea water fron the cvapotraaa-piration son* of the aoil pi'ofila before the water can be uaed to satlafy the erayo tranap irattre deeemd. Canae^ueatly , leaa *rap« transpiration ij predicted by The eeefate (percoLatiott) eatlaaiu produced by the IZXJ eodal is leaa than the iwapafi predicted by the OIAJ37IL eodel. 4a noted above, thia U caaae4, at lea*t ia part, by the coaiblaaclon of the alover vertical draiaage rate* dowa ana higher evapotranaviraelon predicted by the &ZLP eodal. Aaothar canae of the avmller seepage eetiaatee ij the aaao>»tiott uaed ia the BZU •odel that barrier soil Layers alwer» reaala at saturation, that ia. that tha dralaable poroaiey of barrier soil layers ia always zero. The OlAdTIL aodal aaaoaea a dralaable poroaiey of one p-trcent. This *aa*na?tlon pendta »atar :o seep fro* a barrier soil layer after iralaag* iaco **• ^7«« ceaaea, thua ylaldiag greater eatlaatea of seepage. Both sndels uae Oarcy'« Lav to covputa seepage (percolation) £roa barrier soil layers.

233 n •' it n • OOOOOOOOOOOOO §3

g I OOOOOOOOOOOOOO •B

Hx

o Leaf Area Index: On* set of 13 T*liaM describing 4 year, particularly the grovlnf season; typical of A poor rrass far the cap And of bArground for the open mat* cell .(see Table 3-2} Winter Corer Feetor: One of dormant winter carer (see B-2) Eraporative Zone Depta: 6 iachee for a poor grass (for land- fill cap) and 2 laches for (for open site), 3«slra laforaatlon information for the Landfill cap sad liaer/drain system are below.

of **fetat±*e layer 2 ft Jmaaa of drain layer 1 ft Tbickaeee of barrier Mil layer 2 ft Slop* of barrier Mil layer 32 liaxanca 173 ft SC3 runoff evrr* namfeer * 30, poor mne-K potential Liaer/Draia System: Thictaeas of eaate layer 9 ft Thleteees of drain layer 1 ft Thiek&eea of barrier Mil layer 2 ft Slop* of barrier soil layer 22 Xaxira drelAace ^^ *Tan**^ 23 ft SCS ruauf* cnr^e oxsmoer 20", 00 runoff permitted Soil Characteristics the Mil prop*rtiee of the *erlci«* Layers are, ae follows: top Fo*t of TefetatiTe Layer: ity 0.3 eapaelty 0.47 vol/rel polat 0.13 rol/Tol fydrmmlic eoodoctlTlty 1.417 2 10*l.j Bmporatio* (traaemlaeiTlrjO coefficient 4.8 em/day Bottom Foot of Tec*tatlre Layer: same ae Above except Field capacity 0.43 rol/rol Drain Layers: Poroeirf 0.30 TO!/TO! Field capacity 0.38

22L TSXPEUCSRZ SOLA* UDIATIOH 3*1

M»aa Monthly M**a Hottthly Solar \idlatiaa Month January 40.13 69.30 February 41.08 148.61 Sarch 45.08 267.86 April 51.07 395.37 Say 57.45 497.33 Juaa 62.49 346.46 July 64.87 329.20 Aufuat 63.92 430.39 S«pta*b«r 59.92 331.14 October 53.93 203.42 !rcraa*«r 47.55 101.45 D«cavb«r 42.50 32.54

230 0

alXSCB WHH US-CUS Of DUanm MODE.

Beta cae EEL? aad DUU37H «ed*ls wert developed ca siaulatt siu hydra- la pLc periarmaact of landfills. The wo Bodels are siallar ytca rtapecc ca cae aaaaar la which Lateral dnlnagt ij esciaaced. bae art oc^«rvlj« quiet dif ca 4r« j«a«r*ii7 »1iff lar, «xc*pt ehae DTLLEnTL o»«« hourly pr«ciptt*tlan data wtiils BSJ r^ulrw ouly dally caeAl precipitation. la erd*r ta covpaz* produced by ca« •edals, liaalaeiowi »%r« p«rfota*d for boci, a cap (ccrr«r) >y*cam aad a lia«r/drala ty«ta«. Ta« datfifa* salactad v«r« baa«d en draft daaifa galdarica dooaa«icj prepared by eha U.S. Earlroaawaeal ?rerac» tion afeaey. Ujcorleal preelpitAClim data for S«atcla, Vaaalafton v«r« far all eaa «l«alatlona.

ULFUT Three cyp«a of iapue are oaed by eae OZJ aodel: cllaacoLafdLe aad caeion daea. deaisa iaformation, aad soil eaaraetariJCica. laput data art below. Cllaaeale^le laoue The cllaaeolofie and refeeatioa iapas art deaecLbed below aad partlaU lUced la Tablea D-l, and D-2. Freclaication: 23 years of dally raloea (1921 ea 1973) for eae opea i—^*<" aad 21 year* of daily valnea (L953 to 197S) for eae TmdffH cap Tee^pti inn t One »ee of 12 (see table 0-1) Solar ltd Urine; Oae sec of U • (see Table D-L)

a Skaf^s, 1. V. Uodllication co OKAJ2DflOD ca conaider dralaafe from aad seep- aae carouffa a Landfill. Draft lepore, U.S. Iariron»eatal Froceecion JLfeaey, Ciaeiaaaci, OH, 1982. 21 pp. b U.S. EarirotBMacal PTocection Agency. Draft 1C2A, Coidaace OecuBeae, Land- fill D«ai«a, Liner Syseeaa, aad fiaal Corer. Baaaiactoa, DC, 19&2. 33 pp.

249 APPENDIX A

HELP SOURCE 5ROGRAW LISTING

(Not Included)

71 12. Lotiandammaa, 7., and I. L. £v*m. Us« of 41r-*atar lULitionjai?* far Fradixtiat Tatar 7a«p«ratttra. HiiaoU Seat* 'J*t«r Survey, ?rb«aa, lapor: of laraatigation 69, 1972. 14 pp.

13. Sudar, t. A., I. 2. Saxton, and L. G. Spomar. 1 Pr»dictivm Model of Batar Straaa la Cora aad Soyb«aaa. Transaction of Aaarlcan Soeiarj of Africaltsral Eari.aa«ri, p. 97-102, 1981. 14. Latton, 1. Jw, C. L. I«fa« ««^ ^« "• Jena*. Daaifa aad Conatroetlon of Co>«ra for JoiV ^Mta Tjndfnii. PB 80-100381, DA-400/2-79-L63, U.S. Earlrtii»a>ntJLl Protaction Afvaey, ClaelaaAti, Ohio, 1979. 13. T"i^«*^. C. B. Lad Capability: 4 S7iiad«. AI5 41-172, 4crlculcaral La««arch Strrlca, U5^4, 1970. 16. Br««zaala, E., aad W. ?. acflaort*. 4 5«w Tarhnlr for 0«t«zsialaf 711 tint P«re«ntaf« of Soil. Soil Sclanca, Vol. 68. pp. 371-374, 1949. 17. HSL4-. dlaata aad Ham Ta«rbook of afrieultBT*. Unit ad Stataa D«par of afrlcaltor*. U.S. CuniMant Prlatlaf Office, 1941. 1248 pp. 18. Bgrlraaaaatal Sclaaea S*rrlea« adalaljtratlaa. nint^tt 4tla« of tha Unltad SutM. U.S. Oapt. of CoaBarca, 90AA, latlooal ^1***^* O«ntar, t, K, 1974. 10 pp. 19. Sehro«Ur, F. 1., J. 0. tforfa, T^ H. Qilaki, aad 1. C. Slb lo«le tralaatloB of Tmdfm P%rfon«nca (IZLT.) ttodol: Tolamw I. Uoar's Calda for Vanloa 1. Draft laport, tftsalelpal brlroaaanULl taaaarca Laboratory, U.S. Egrlrnaaiiiril Pro-caction Afvncy, Ciaciaaati, 01, 1963. 20. 3H. 3M OS FOtHUI IT (I axtaadod). Cbapilar ProfraBMr't Golda. latar&atloual Boalaaaa MirMnaa Corporation, S«v York, S«v Tort, 1974.

70 L. r«rriar, C. i. , end A.'C. Clbaon- Srdrolofic Simulation on Solid V*«t« DlJpoaal Sltaa. EfA-SB-868, U.S. Earlrnnaa'utal Protection Afency, CiacisBati, 08, I960. Ill pp. 2. Schroadar, ?. U, aad 1. C. dbaca, Stipportiaf Dooaaantation for the lydrolofic Siaolatioa Sodel for Eatiaatlaf Percolation at Solid 7a«te Dispoaal Sitaa CISS9W). Draft laport, U.S. EaTironmaatal Protection , Claelaxutl, OH, 1982. LJ3 pp. 3. tolMl, V. J., Jr., Editor. CXJJLM5, A field Seal* 3o