Estuary Management Manual Providing Technical and Providing Guidelines and Information I Financial Assistance I

Total Page:16

File Type:pdf, Size:1020Kb

Estuary Management Manual Providing Technical and Providing Guidelines and Information I Financial Assistance I I :/A%J., I: 1 Estuary I) [M]CIDmJCID~®M®mJU I: . [M] CID mJ (ill CID ~ I 'I I: I I I I I; I, I: I I October 1992 ISBN 0731009339 I: © Crown Copyright 1992 New South Wales I ~ New South Wales Government I I I Foreword I The Estuary Management Policy of the New South Wales Government has been developed in conjunction with other government policies that I address resource plarming and management on a catchment basis. The Estuary Management Policy focusses on tidal waterways and coastal lakes, waterbodies which are an essential component of coastal I catchments and which are characterised by the interplay of saline coastal waters and freshwater runoff from the land (see Appendix A for a statement of the Estuary Management Policy). I The objectives of the Policy will be implemented by the government's Estuary Management Program, which aims at the production and implementation of Management Plans for all estuaries in New South I Wales. The preparation of these plans will be supervised by Estuary Management Committees made up of representatives of the local council(s), relevant State Government authorities, Catchment Management Committees and interested community groups. In the course of formulating an Estuary Management Plan, community groups with commercial, ecological or other public interests in the estuary, together with government authorities, will be able to present I their preferences and requirements for the future nature conservation, rehabilitation, development and use of the waterbody. The Committee will then determine a list of management recommendations and I objectives to be implemented by Local Government, State Government and community groups. After its public exhibition and consequent amendment, the Estuary Management Plan should be formally adopted I by local council(s). It is recognised that estuaries vary widely in their natural attributes, degree of development and, to a lesser extent, in the legal and I administrative mechanisms whereby they are controlled. In this regard, the program provides appropriate flexibility in the formulation Total Catchment of Estuary Management Plans. Management I This Manual has been produced to assist the community to implement NSW Rivers and the government's Estuary Management Policy in accordance with Estuaries Policy existing legislation. I The Estuary Management Policy is a component policy of the State Rivers and Estuaries Policy of the New South Wales Government, which in turn comes under the umbrella of Total Catchment I Management. The objectives of the Estuary Management Policy are entirely consistent with the Catchment Management Act, 1989, under which Catchment Management Trusts and Catchment Management I Committees are formed. I I I I DRAFT to better manage our estuaries '. I Acknowledgements I I This Manual has been prepared under the direction of a Steering Committee comprising the I following people drawn from the indicated organisations. PaulAdam I Coast and Wetland Society Jennifer Burchmore NSW Fisheries I Jane Chrystal Environment Protection Authority I Colin Creighton Department of Conservation and Land Management I John Downey Association of Councils on Estuaries I Michael Geary Public Works Department Peter Hughes I Department of Planning Duncan Leadbitter I Ocean Watch Leighton Llewellyn National Parks and Wildlife I Service John Patten Department of Conservation I and Land Management I I I I I I ii to better manage our estuaries DRAFT I I I Contents I Foreword I Acknowledgements I Introduction 1 The Estuary I Management Process 9 Administration 17 Appendices 25 Study boundaries 9 Local Councils 18 Introduction 25 I step 1 Public Works Department 19 A New South Wales form Estuary Estuary Management Department of Conservation Management Committee 10 Policy 27 and Land Management 19 step 2 B Physical characteristics I Department of Planning 20 assemble existing data 10 and behaviour of Environment Protection NSW estuaries 31 step 3 Authority 20 I carry out Estuary C Estuarine water quality 63 Processes Study 11 NSW Fisheries 20 D Estuarine habitat 75 step 4 National Parks and Wildlife E Estuarine flora and fauna I carry out Estuary Service 21 of special concem 95 Management Study 12 Maritime Services Board 21 F Human impacts 101 step 5 I draft Estuary G Estuarine monitoring Management Plan 13 Government and process models 111 financial assistance 23 I step 6 H Total Catchment review Estuary Grant conditions 23 Management 117 Management Plan 13 Income from royalties 24 Administration of step 7 Crown land 125 I Income from Crown land 24 adopt and implement J Management of Estuary Management Plan 14 human activities 131 step 8 I K Management of monitor and review the water quality 145 management process 15 L Management of Technical and I extractive industries 151 research assistance 16 M Management of I threatened fauna 159 N Estuary rehabilitation 165 I Glossary of technical terms 183 I Glossary of I scientific names 195 ill I DRAFT to better manage our estuaries I I I To better manage To foster the better I our estuaries there management of our is a need to provide a estuaries, the coordinated planning Government has I approach ... formulated an Estuary Management Policy ... I I I I I I I I I I I I I I Iv to better manage our estuaries DRAFT I I I Introduction I New South Wales has some I 130 estuaries along its coastline. These estuaries form a rich and diverse tapestry of waterbodies that vary in nature and size, I including: - the long, mangrove-fringed river estuaries of the north I coast, where tidal effects are felt over 100 lan upriver (e.g. the Clarence River Estuary) I - the many lake estuaries distributed along the central and south coasts, that I vary in waterway size from 150 lan" (Lake Macquarie) to 2 lan" (Narrabeen Lagoon) I and smaller - the massive, rock-flanked, drowned river valleys of the central coast, such as the I Hawkesbury River, and - the large marine embayments such as Port Stephens and I Jervis Bay. I I I I I I I I 1 I DRAFT to better manage our estuaries Introduction I I I Collectively, the estuaries of Estuaries are an imponant focus New South Wales are of of tourism and recreational immense enviroJUnental, activities and are of significant I social and economic value. economic imponance to New South Wales: Estuary waters, shores and fringing wetlands fonn the the commercial catch of I foundation of the coastal food estuarine-dependent fish, chain and provide habitat for a crustacea and molluscs is diverse variety of aquatic and wonh some $80 million per I terrestrial animals. year recreational fishing, much of Estuaries are of significant which is based on estuarine imponancetonature I conservation: a number of animal waters or estuarine-dependent fish, is worth over $500 million species dependent on New South per year Wales estuaries are endangered I or threatened with extinction. - sand and gravel worth over $100 million per year is The catchment of an estuary is an removed from the bed and attractive place in which to work, banks of New South Wales I live and play, and it is not estuaries. surprising that 75% of the State's population live in the immediate proximity of estuaries and that I many major urban areas are sited adjacent to these waterbodies. I I I I I I I I I 2 to better manage our estuaries DRAFT I I Introduction I I Because oftheir Estuaries are the endpoints of The estuaries of New South attractiveness and value, many detrimental activities of Wales are a valuable State I estuaries are used for a wide many upstream catchment asset. Ecologically, ethically variety of purposes by activities. Over the past ZOO and economically, the people different groups of people. years, the inappropriate use, of New South Wales can ill­ I Often these uses are in conflicting use and over-use afford their estuaries to suffer conflict. of estuaries and catchments in further degradation. New South Wales have left Sand and gravel extraction may Many of the existing problems them in a degraded state. I degrade or eliminate seagrass have arisen from unwise beds that provide important Today, many estuaries are developments in the past, when nursery areas for young fish. characterised by: the complexity and inter­ relationships of the ecological, I Nutrient inputs from urban areas, - murky, silt-laden waters that physical and chemical processes rural areas or from sewage also contain high levels of of an estuary and its catchment treatment plants can reduce nutrients and other deleterious were poorly understood. I water quality. substances - silted and poorly flushed Today, such processes are better Poorly planned shoreside waterways appreciated: developments can destroy animal I habitat, be an eyesore, reduce - the loss of wildlife habitat surveys of tidal behaviour, public access to estuarine shores through shoreside sediment movement and water and cause pollution. developments and the infilling quality are undertaken on a I of wetlands more-or-less regular basis - restricted public access - wildlife surveys of the aquatic - reduced populations of aquatic and fringing terrestrial and terrestrial fauna, some of ecosystems are becoming I which are at risk of extinction. more cornmon. Estuaries and their inunediate While the interactions between I catchments are now subject to many estuarine processes are ever-increasing pressures for better understood today, additional development and the additional data and research are I expansion of existing uses. required. There is also great concern for nature conservation and The challenge is to better I environmental protection of manage our estuaries, estuarine habitats. not only to halt on-going degradation, but also to rectify past damage, with the overall I object of achieving an integrated, balanced, responsible and ecologically sustainable use of I these resources into the future. I I I 3 I DRAFT to better manage our estuaries Introduction I I To better manage our estuaries there is a need to provide a I coordinated planning The current management To better manage our approach ..
Recommended publications
  • Sediment Transport in the San Francisco Bay Coastal System: an Overview
    Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants.
    [Show full text]
  • Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay
    water Article Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay Chao Cao 1,2,3,* , Feng Cai 1,2,3, Hongshuai Qi 1,2,3,4, Yongling Zheng 1 and Huiquan Lu 1 1 Third Institute of Oceanography, Ministry of Natural and Resources, Xiamen 361005, China; [email protected] (F.C.); [email protected] (H.Q.); [email protected] (Y.Z.); [email protected] (H.L.) 2 Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China 3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 591000, China 4 Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, MNR, Beihai 536015, China * Correspondence: [email protected]; Tel.: +86-18030085312 Abstract: Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. In this study, single-beam bathymetry coupled with sediment sampling and analysis was carried out to ascertain submarine topography, geomorphology and sediment distribution patterns, and explore sediment provenance in Qinzhou Bay, China. The results show the following: (1) the underwater topography in Qinzhou Bay is complex and variable, with water depths in the range of 0–20 m. It can be divided into four underwater topographic zones (the central (outer Qinzhou Bay), eastern (Sanniang Bay), western (east of Fangcheng Port), and southern (outside of the bay) parts); (2) based on geomorphological features, the study area comprises four major submarine geomorphological units (i.e., tide-dominated delta, tidal sand ridge group, tidal scour troughs, and underwater slope) and two intertidal geomorphological Citation: Cao, C.; Cai, F.; Qi, H.; units (i.e., tidal flat and abrasion platforms); (3) sandy sediments are widely present in Qinzhou Zheng, Y.; Lu, H.
    [Show full text]
  • Large‐Scale Scour in Response to Tidal Dominance in Estuaries
    RESEARCH ARTICLE Large-Scale Scour in Response to Tidal Dominance in 10.1029/2020JF006048 Estuaries Key Points: J. R. F. W. Leuven1,2 , D. van Keulen1,3, J. H. Nienhuis4 , A. Canestrelli5, and A. J. F. Hoitink1 • Tidal funneling creates large-scale scours when channel convergence 1Department of Environmental Sciences, Hydrology and Quantitative Water Management Group, Wageningen exceeds friction effects such that University, Wageningen, The Netherlands, 2Royal HaskoningDHV, Rivers & Coasts (Water), Nijmegen, The peak velocities are amplified 3 4 • A simple metric shows that large- Netherlands, Deltares, Delft, The Netherlands, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, scale scours appear in channels with 5Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA large tidal amplitudes and short convergence lengths • Estuary shape, fluvial, and tidal Abstract Channel beds in estuaries and deltas often exhibit a local depth maximum close to the river discharge predict scouring behavior now and under future changes, such mouth. There are two known mechanisms of large-scale (i.e., >10 river widths along-channel) channel as sea-level rise bed scours: width constriction and draw-down during river discharge extremes, both creating flow acceleration. Here, we study a potential third mechanism: tidal scour. We use a 1D-morphodynamic model Supporting Information: to reproduce tidal dynamics and scours in estuaries that are in morphologic equilibrium. A morphologic Supporting Information may be found equilibrium is reached when the net (seaward) sediment transport matches the upstream supply along in the online version of this article. the entire reach. The residual (river) current and river-tide interactions create seaward transport.
    [Show full text]
  • The Shallow Stratigraphy and Sand Resources Offshore of the Western
    Prepared in cooperation with the U.S. Army Corps of Engineers The Shallow Stratigraphy and Sand Resources Offshore of the Mississippi Barrier Islands Open-File Report 2011–1173 Version 1.1, March 2014 U.S. Department of the Interior U.S. Geological Survey This page has been left blank intentionally. 2 The Shallow Stratigraphy and Sand Resources Offshore of the Mississippi Barrier Islands By David Twichell,1 Elizabeth Pendleton,1 Wayne Baldwin,1 David Foster,1James Flocks,2 Kyle Kelso,2 Nancy DeWitt,2 William Pfeiffer,2 Arnell Forde,2 Jason Krick,3 and John Baehr Open-File Report 2011–1173 Version 1.1, March 2014 1U.S. Geological Survey, Woods Hole, MA 2U.S. Geological Survey, St. Petersburg, FL 3U.S. Army Corps of Engineers, Mobile, AL U.S. Department of the Interior U.S. Geological Survey 3 U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Twichell, David, Pendleton, Elizabeth, Baldwin, Wayne, Foster, David, Flocks, James, Kelso, Kyle, DeWitt, Nancy, Pfeiffer, William, Forde, Arnell, Krick, Jason, and Baehr, John, 2011, The shallow stratigraphy and sand resources offshore of the Mississippi Barrier Islands (ver. 1.1, March 2014): U.
    [Show full text]
  • Long and Short-Term Morphologic Evolution and Stratigraphic Architecture of a Transgressive Tidal Inlet, Little Pass Timbalier, Louisiana
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-18-2007 Long and Short-Term Morphologic Evolution and Stratigraphic Architecture of a Transgressive Tidal Inlet, Little Pass Timbalier, Louisiana Michael David Miner University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Miner, Michael David, "Long and Short-Term Morphologic Evolution and Stratigraphic Architecture of a Transgressive Tidal Inlet, Little Pass Timbalier, Louisiana" (2007). University of New Orleans Theses and Dissertations. 557. https://scholarworks.uno.edu/td/557 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Long and Short-Term Morphologic Evolution and Stratigraphic Architecture of a Transgressive Tidal Inlet, Little Pass Timbalier, Louisiana A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering and Applied Science Geology by Michael David Miner B.S.
    [Show full text]
  • UC Davis San Francisco Estuary and Watershed Science
    UC Davis San Francisco Estuary and Watershed Science Title Will Restored Tidal Marshes Be Sustainable? Permalink https://escholarship.org/uc/item/8hj3d20t Journal San Francisco Estuary and Watershed Science, 1(1) ISSN 1546-2366 Authors Orr, Michelle Crooks, Stephen Williams, Philip B. Publication Date 2003 DOI 10.15447/sfews.2003v1iss1art5 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Introduction The large scale historic loss of tidal marsh habitat throughout the San Francisco Estuary has prompted major initiatives aimed at restoring extensive areas of diked former tidal marsh (Goals Project 1999; CALFED 2000; Steere and Schaefer 2001). State, federal and local agencies have proposed restoration of between 13,000 and 26,000 ha of tidal marsh in San Francisco Bay (Goals Project 1999; Steere and Schaefer 2001) and 10,000 to 20,000 ha in the Delta (Hastings and Castleberry 2003). Because of the large investment in tidal marsh restoration, the question of whether tidal marsh habitats will persist once restored needs to be addressed. Tidal marshes are generally resilient but ephemeral landforms (Pethick and Crooks 2000). The natural marshes of the San Francisco Estuary have historically been resilient features of the landscape, behaving dynamically to accommodate slow changes in sea- level and sediment supply (Atwater and others 1979). However just as the estuary’s landscape has been transformed in the last 150 years, so have certain key physical processes that affect the character and persistence of vegetated tidal marshes. Looking to the future, rates of sea level rise are expected to increase (IPCC 2001), suspended sediment concentrations decrease (Beeman and Krone 1992; Oltmann and others 1999; Wright and Schoellhamer 2003), and salinity gradients move upstream (Williams 1989).
    [Show full text]
  • Research on Local Scour at Bridge Pier Under Tidal Action
    MATEC Web of Conferences 25, 001 13 (2015) DOI: 10.1051/matecconf/201525001 1 3 C Owned by the authors, published by EDP Sciences, 2015 Research on Local Scour at Bridge Pier under Tidal Action Jianping Wang Pearl River Hydraulic Research Institute of Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, Guangdong, China ABSTRACT: Through the local scour test at bridge pier under tidal action in a long time series, this paper ob- serves the growing trend of the deepest point of local scour at bridge pier under tidal conditions with different characteristic parameters, analyzes the impact of repeat sediment erosion and deposition in the scouring pit caused by reversing current on the development process of the scouring pit, and clarifies the relation between the tide and local scouring depth at bridge pier under steady flow conditions, so as to provide a scientific basis for bridge design and safe operation of estuary and harbor areas. Keywords: local scour; bridge pier; tide 1 RESEARCH BACKGROUND 2 MODEL DESIGN AND CONSTRUCTION The local scour of river bed around the bridge pier is 2.1 Model design affected by water flow state, bridge pier form, bed sand composition, river bed form and other factors. The test is carried out in a water tank, with the length The maximum scouring depth directly threatens the of 35m and width of 2m. Due to little impact of sus- safety of pier foundation [1]. The book, Hydrological pended sediment on local scour at bridge pier, the Specifications for Survey and Design of Highway En- movable bed model only considers bed sand.
    [Show full text]
  • PDF Version of Evaluating Scour at Bridges, Edition 2
    Evaluating Scour at Bridges HEC 18, Second Edition February 1993 Table of Contents Preface Tech Doc US-SI Conversion Factor DISCLAIMER: During the editing of this manual for conversion to an electronic format, the intent has been to keep the document text as close to the original as possible. In the process of scanning and converting, some changes may have been made inadvertently. Archived Table of Contents for HEC 18 - Evaluating Scour at Bridges List of Figures List of Tables List of Equations Cover Page : HEC 18 - Evaluating Scour at Bridges Chapter 1 : HEC 18 Introduction 1.1 Purpose 1.2 Organization of This Circular 1.3 Background 1.4 Objectives of a Bridge Scour Evaluation Program 1.5 Improving the State-of-Practice of Estimating Scour at Bridges Chapter 2 : HEC 18 Basic Concepts 2.1 General 2.2 Total Scour 2.2.1 Aggradation and Degradation 2.2.2 Contraction Scour 2.2.3 Local Scour 2.2.4 Lateral Stream Migration 2.3 Aggradation and Degradation - Long-Term Streambed Elevation Changes 2.4 Contraction Scour 2.4.1 General 2.4.2 Live-Bed Contraction Scour Equation 2.4.3 Clear-Water Contraction Scour Equation 2.5 Local Scour 2.6 Clear-Water and Live-Bed Scour 2.7 Lateral Shifting of a Stream 2.8 Pressure Scour Chapter 3 : HEC 18 Designing Bridges to Resist Scour 3.1 Design Philosophy and Concepts 3.2 General Design Procedure 3.3 Checklist of DesignArchived Considerations 3.3.1 General 3.3.2 Piers 3.3.3 Abutments Chapter 4 : HEC 18 Estimating Scour at Bridges Part I 4.1 Introduction 4.2 Specific Design Approach 4.3 Detailed Procedures
    [Show full text]
  • Morphologic and Facies Trends Through the Fluvial–Marine Transition in Tide
    Earth-Science Reviews 81 (2007) 135–174 www.elsevier.com/locate/earscirev Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation ⁎ Robert W. Dalrymple , Kyungsik Choi 1 Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6 Received 22 June 2005; accepted 3 October 2006 Abstract Most tide-dominated estuarine and deltaic deposits accumulate in the fluvial-to-marine transition zone, which is one of the most complicated areas on earth, because of the large number of terrestrial and marine processes that interact there. An understanding of how the facies change through this transition is necessary if we are to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions. The most important process variations in this zone are: a seaward decrease in the intensity of river flow and a seaward increase in the intensity of tidal currents. Together these trends cause a dominance of river currents and a net seaward transport of sediment in the inner part of the transition zone, and a dominance of tidal currents in the seaward part of the transition, with the tendency for the development of a net landward transport of sediment. These transport patterns in turn develop a bedload convergence within the middle portion of all estuaries and in the distributary-mouth-bar area of deltas. The transport pathways also generate grain-size trends in the sand fraction: a seaward decrease in sand size through the entire fluvial–marine transition in deltas, and through the river-dominated, inner part of estuaries, but a landward decrease in sand size in the outer part of estuaries.
    [Show full text]
  • Moss Landing Community
    Moss Landing Community Coastal Climate Change Vulnerability Report Photo: Don Debold JUNE 2017 CENTRAL COAST WETLANDS GROUP MOSS LANDING MARINE LABS | 8272 MOSS LANDING RD, MOSS LANDING This page intentionally left blank Moss Landing Coastal Climate Change Vulnerability Report Prepared by Central Coast Wetlands Group, Moss landing Marine Labs Technical assistance provided by ESA Revell Coastal The Nature Conservancy Center for Ocean Solutions Prepared for Monterey County and the Community of Moss Landing Funding Provided by The California Ocean Protection Council Grant number C0300700 Moss Landing Coastal Climate Change Vulnerability Report i Primary Authors: Central Coast Wetlands group Ross Clark Sarah Stoner-Duncan Jason Adelaars Sierra Tobin Acknowledgements: California State Ocean Protection Council Abe Doherty Paige Berube Nick Sadrpour Monterey County Martin Carver Jacqueline Onciano Coastal Conservation and Research Jim Oakden Kamille Hammerstrom Science Team David Revell, Revel Coastal Bob Batallio, ESA James Gregory, ESA James Jackson, ESA GIS Layer support AMBAG Monterey County Santa Cruz County Adapt Monterey Bay Kelly Leo, TNC Sarah Newkirk, TNC Eric Hartge, Center for Ocean Solutions Moss Landing Coastal Climate Change Vulnerability Report ii This page intentionally left blank Moss Landing Coastal Climate Change Vulnerability Report iii Contents Contents Contents ................................................................................................................................................... iv Summary of
    [Show full text]
  • Tidal Courses: Classification, Origin and Functionality
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Coastal Wetlands: An Integrated Ecosystem Approach. The copy attached is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Gerardo M. E. Perillo, Tidal Courses: Classification, Origin and Functionality. In: Gerardo M. E. Perillo, Eric Wolanski, Donald R. Cahoon, Mark M. Brinson, editors, Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, 2009, p. 185. ISBN: 978-0-444-53103-2 ª Copyright 2009 Elsevier B.V. Elsevier. Author's personal copy CHAPTER 6 TIDAL COURSES:CLASSIFICATION,ORIGIN AND FUNCTIONALITY Gerardo M.E. Perillo Contents 1. Introduction 185 2. Proposed Tidal Course Classification 187 3. Geomorphology of Tidal Courses 189 4. Course Networks and Drainage Systems 196 5. Origin of Tidal Courses 198 6. Course Evolution 203 7. Summary 206 Acknowledgements 206 References 206 1. INTRODUCTION Tidal courses (otherwise know as channels, creeks or gullies) are the most distinctive and important features of coastal environments even with a minimum tidal influence.
    [Show full text]
  • ICM-Barrier Island Model Improvements
    2023 COASTAL MASTER PLAN BARRIER ISLAND MODEL IMPROVEMENTS REPORT: VERSION 01 DATE: NOVEMBER 2020 PREPARED BY: IOANNIS GEORGIOU, MADELINE FOSTER-MARTINEZ, CATHERINE FITZPATRICK, ELIZABETH JARRELL, JONATHAN BRIDGEMAN, DARIN LEE, MICHAEL MINER, SOUPY DALYANDER, ZHIFEI DONG COASTAL PROTECTION AND RESTORATION AUTHORITY 150 TERRACE AVENUE BATON ROUGE, LA 70802 WWW.COASTAL.LA.GOV COASTAL PROTECTION AND RESTORATION AUTHORITY This document was developed in support of the 2023 Coastal Master Plan being prepared by the Coastal Protection and Restoration Authority (CPRA). CPRA was established by the Louisiana Legislature in response to Hurricanes Katrina and Rita through Act 8 of the First Extraordinary Session of 2005. Act 8 of the First Extraordinary Session of 2005 expanded the membership, duties, and responsibilities of CPRA and charged the new authority to develop and implement a comprehensive coastal protection plan, consisting of a master plan (revised every six years) and annual plans. CPRA’s mandate is to develop, implement, and enforce a comprehensive coastal protection and restoration master plan. CITATION Georgiou, I., Foster-Martinez, M., Fitzpatrick, C., Jarrell, E., Bridgeman, J., Lee, D., Miner, M., Dalyander, S., & Dong, Z. (2020). 2023 Coastal Master Plan: Barrier Island Model Improvements. Version I. (p. 42). Baton Rouge, Louisiana: Coastal Protection and Restoration Authority. 2023 COASTAL MASTER PLAN. Barrier Island Model Improvements 2 ACKNOWLEDGEMENTS This document was developed as part of a broader Model Improvement Plan
    [Show full text]