ICM-Barrier Island Model Improvements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stability Domains in Barrier Island Dune Systems J
Ecological Complexity 2 (2005) 410–430 http://www.elsevier.com/locate/ecocom Stability domains in barrier island dune systems J. Anthony Stallins * Department of Geography, Florida State University, Room 323 Bellamy Bldg. Tallahassee, FL 32306, USA Received 1 February 2005; received in revised form 12 April 2005; accepted 25 April 2005 Available online 17 October 2005 Abstract Early ecological descriptions of barrier island dune landscapes recognized the importance of biogeomorphic feedbacks and thresholds. However, these dynamics have not been formally linked to complexity theory. In this article, I develop models of dune landscape phase states, or stability domains, based on a synthesis of these prior studies and statistical analyses. Data for these analyses were obtained from compositional and topographic sampling along Sapelo Island, Georgia and South Core Banks, North Carolina. These undeveloped barrier islands are at opposite ends of a regional meteorological gradient in storm- forced overwash disturbance along the southeastern US Atlantic coast. The topography and plant functional group abundances on each island were supportive of earlier studies noting the propensity for distinct self-organizing biogeomorphic feedbacks to emerge along barrier coasts. On South Core Banks, where storm forcings of overwash are more frequent, the recovery processes initiated by burial-tolerant species may reduce topographic resistance to overwash exposure and contagion. On Sapelo Island, a greater abundance of dune-building and burial-intolerant swale species may confer a higher topographic roughness and more resistance to overwash exposure and contagion. Conceptually, the biogeomorphic modifications of overwash forcings on each island perpetuate the habitat conditions and dominant dune plant species in a weak positive feedback. -
Stochastic Dynamics of Barrier Island Elevation
Stochastic dynamics of barrier island elevation Orencio Duran´ Vinenta,1 , Benjamin E. Schafferb, and Ignacio Rodriguez-Iturbea,1 aDepartment of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136; and bDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540 Contributed by Ignacio Rodriguez-Iturbe, November 11, 2020 (sent for review June 29, 2020; reviewed by Carlo Camporeale and A. Brad Murray) Barrier islands are ubiquitous coastal features that create low- a marked Poisson process with exponentially distributed marks. energy environments where salt marshes, oyster reefs, and man- The mark of a HWE is defined as the maximum water level groves can develop and survive external stresses. Barrier systems above the beach during the duration of the event and charac- also protect interior coastal communities from storm surges and terizes its size and intensity. This result opens the way for a wave-driven erosion. These functions depend on the existence of probabilistic model of the temporal evolution of the barrier/dune a slowly migrating, vertically stable barrier, a condition tied to elevation, along the lines of the stochastic model of soil moisture the frequency of storm-driven overwashes and thus barrier ele- dynamics (4). The knowledge of the transient probability dis- vation during the storm impact. The balance between erosional tribution function of barrier elevation allows the calculation of and accretional processes behind barrier dynamics is stochastic in after-storm recovery times, overwash probability and frequency, nature and cannot be properly understood with traditional con- and the average overwash transport rate driving the landward tinuous models. Here we develop a master equation describing migration of barriers. -
Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Geology Commons, and the Geomorphology Commons Scholar Commons Citation Roberts, Tiffany, "Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4216 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches by Tiffany M. Roberts A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Geology College of Arts and Sciences University of South Florida Major Professor: Ping Wang, Ph.D. Bogdan P. Onac, Ph.D. Nathaniel Plant, Ph.D. Jack A. Puleo, Ph.D. Julie D. Rosati, Ph.D. Date of Approval: July 12, 2012 Keywords: barrier island beaches, beach morphodynamics, beach nourishment, longshore sediment transport, cross-shore sediment transport. Copyright © 2012, Tiffany M. Roberts Dedication To my eternally supportive mother, Darlene, my brother and sister, Trey and Amber, my aunt Pat, and the friends who have been by my side through every challenge and triumph. -
Barrier Island Migration Sea Level Rise and the Future
Barrier Island Migration stable location and absence of historic inlets in this area suggest that barrier migration may not be a These barrier islands retreated or migrated north- continuous process over timescales of a thousand ward as the ocean continued rising. There is some years or less. Further to the east, the barriers are debate about how the barriers actually moved. more mobile and one can find evidence of barrier Some research suggests that the barriers slowly island rollover processes such as old flood shoals drowned in place and then “jumped” or “skipped” in the bay that were associated with inlets that have landward to a new position coinciding with the new opened and closed naturally over the last several position of the shoreline. More recent studies indi- hundred years. cate the islands move in a more continuous process where sand is transported across the island from the ocean to the bay, allowing the island to migrate Sea Level Rise and the Future landward. There are three primary ways that sand can be transported across a barrier island: inlet Along the New York coast, sea level is not only ris- formation, overwash processes and eolian (or wind) ing, the land is also slowly sinking, or subsiding due transport. On Long Island’s south shore, the inlets to geologic processes. The rise in the water level in are actually far more important than either over- relation to the land surface due to the sinking of the washes or the wind in terms of moving sand land- land and the raising of the sea is known as relative ward and driving barrier migration. -
Sediment Transport in the San Francisco Bay Coastal System: an Overview
Marine Geology 345 (2013) 3–17 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Sediment transport in the San Francisco Bay Coastal System: An overview Patrick L. Barnard a,⁎, David H. Schoellhamer b,c, Bruce E. Jaffe a, Lester J. McKee d a U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA b U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA c University of California, Davis, USA d San Francisco Estuary Institute, Richmond, CA, USA article info abstract Article history: The papers in this special issue feature state-of-the-art approaches to understanding the physical processes Received 29 March 2012 related to sediment transport and geomorphology of complex coastal–estuarine systems. Here we focus on Received in revised form 9 April 2013 the San Francisco Bay Coastal System, extending from the lower San Joaquin–Sacramento Delta, through the Accepted 13 April 2013 Bay, and along the adjacent outer Pacific Coast. San Francisco Bay is an urbanized estuary that is impacted by Available online 20 April 2013 numerous anthropogenic activities common to many large estuaries, including a mining legacy, channel dredging, aggregate mining, reservoirs, freshwater diversion, watershed modifications, urban run-off, ship traffic, exotic Keywords: sediment transport species introductions, land reclamation, and wetland restoration. The Golden Gate strait is the sole inlet 9 3 estuaries connecting the Bay to the Pacific Ocean, and serves as the conduit for a tidal flow of ~8 × 10 m /day, in addition circulation to the transport of mud, sand, biogenic material, nutrients, and pollutants. -
Safe Boating Through the St. Lucie Inlet
Information: Florida Fish & Wildlife Commission 850-488-4676 SAFE BOATING US Coast Guard - Ft. Pierce 772-461-7606 THROUGH THE ST. LUCIE INLET US Coast Guard Auxiliary 772-465-8128 US Army Corps of Engineers 772-221-3349 St. Lucie Inlet Coastal 772-225-2300 Weather Station HERE ARE SOME THINGS TO REMEMBER: • Listen to the most recent weather forecast for the times you plan to go out AND come back in the inlet. • Look in the Tide Tables or local newspapers for the times St. Lucie Inlet of predicted high and low tides for the day you plan to go out. Remember the outgoing (ebb) tital current at low Newcomers tide is the worst time to make a passage through the St. Lucie Inlet. If you are a boater new to this area, it is highly • Safe boating practices are even more important in inlets. recommended that you make your first passage of Check your boat before you head out. Life preservers the St. Lucie Inlet as an observer. An experienced should be worn when going through inlets. boater with local knowledge at the helm can point • Expect the unexpected. Watch the clouds to anticipate out various hazards and conditions to avoid. This is severe weather such as thunderstorms. Be on the lookout for shifting shoals and changing channels. especially important if you have no prior experience • Engine failure is common in small boats in rough seas. with any ocean inlets. The extra roughness agitates gasoline and settled dirt or water in the fuel system, which can cause engine failure Notes on Navigation at Night at a crtical time. -
Types and Causes of Beach Erosion Anomaly Areas in the U.S. East Coast Barrier Island System: Stabilized Tidal Inlets
Middle States Geographer, 2007, 40:158-170 TYPES AND CAUSES OF BEACH EROSION ANOMALY AREAS IN THE U.S. EAST COAST BARRIER ISLAND SYSTEM: STABILIZED TIDAL INLETS Francis A. Galgano Jr. Department of Geography and the Environment Villanova University 800 Lancaster Avenue Villanova, Pennsylvania 19085 ABSTRACT: Contemporary research suggests that most U.S. beaches are eroding, and this has become an important political and economic issue because beachfront development is increasingly at risk. In fact, the Heinz Center and Federal Emergency Management Agency (FEMA) estimate that over the next 60 years, beach erosion may claim one out of four homes within 150 meters of the U.S. shoreline. This is significant because approximately 350,000 structures are located with 150 meters of the shoreline in the lower 48 states, not including densely populated coastal cities such as New York and Miami. Along the East Coast, most beaches are eroding at 1 to 1.5 meters per year. However, beach erosion is especially problematic along so-called beach erosion anomaly areas (EAAs) where erosion rates can be as much as five times the rate along adjacent beaches. Identifying and understanding these places is important because property values along U.S. East Coast barrier islands are estimated to be in the trillions of dollars, and the resultant beach erosion may also destroy irreplaceable habitat. There are a number of factors⎯natural and anthropogenic⎯that cause beaches to erode at anomalous rates. This paper will focus on the barrier island system of the U.S. East Coast, classify beach EAAs, and examine beach erosion down drift from stabilized tidal inlets because they are perhaps the most spatially extensive and destructive EAAs. -
Understanding Our Coastal Environment
Preface The South Carolina Beachfront Management Act In the Beginning The Coastal Zone Management Act of 1977 was enacted to protect our coastal resources from unwise development. This legislation served the beaches well during its first decade, but as South Carolina became a more popular tourist destination, it became apparent that the portion of the Act that dealt with beaches was inadequate. As development crept seaward, seawalls and rock revetments proliferated, damaging the public’s beach. In many areas there was no beach left at high tide. In some areas, there was no beach at low tide, either. In 1988 and again in 1990, South Carolina’s legislators took action and amended and strengthened the Coastal Zone Management Act. The resulting Beachfront Management Act protects South Carolina’s sandy shores by increasing the state’s jurisdiction and encouraging development to move landward. South Carolina’s Beachfront Jurisdiction To find the boundaries of this jurisdiction, staff from the Office of Ocean and Coastal Resource Management must first locate the baseline, which is the crest of the primary oceanfront sand dune. Where there are no dunes, the agency uses scientific methods to determine where the natural dune would lie if natural or man-made occurrences had not interfered with nature’s dune building process. The setback line is the most landward boundary and is measured from the baseline. To find the depth of the setback line, the beach’s average annual erosion rate for the past forty years is calculated and multiplied by forty. For example, if the erosion rate is one foot per year, the results will be a setback line that stretches forty feet from the baseline. -
1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift. -
A Nonlinear Relationship Between Marsh Size and Sediment Trapping Capacity Compromises Salt Marshes’ Stability Carmine Donatelli1*, Xiaohe Zhang2*, Neil K
https://doi.org/10.1130/G47131.1 Manuscript received 22 October 2019 Revised manuscript received 9 March 2020 Manuscript accepted 26 April 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 10 June 2020 A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes’ stability Carmine Donatelli1*, Xiaohe Zhang2*, Neil K. Ganju3, Alfredo L. Aretxabaleta3, Sergio Fagherazzi2† and Nicoletta Leonardi1† 1 Department of Geography and Planning, School of Environmental Sciences, Faculty of Science and Engineering, University of Liverpool, Roxby Building, Chatham Street, Liverpool L69 7ZT, UK 2 Department of Earth Sciences, Boston University, 675 Commonwealth Avenue, Boston, Massachusetts 02215, USA 3 Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, Massachusetts 02543, USA ABSTRACT tidal flats to keep pace with sea-level rise (Mari- Global assessments predict the impact of sea-level rise on salt marshes with present-day otti and Fagherazzi, 2010). levels of sediment supply from rivers and the coastal ocean. However, these assessments do Regional effects are crucial when evaluating not consider that variations in marsh extent and the related reconfiguration of intertidal area coastal interventions under the management of affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. multiple agencies. Though many studies have We conducted a meta-analysis of six bays along the United States East Coast to show that focused on local marsh dynamics, less atten- a reduction in the current salt marsh area decreases the sediment availability in estuarine tion has been paid to how changes in marsh systems through changes in regional-scale hydrodynamics. -
Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay
water Article Characteristics of Underwater Topography, Geomorphology and Sediment Source in Qinzhou Bay Chao Cao 1,2,3,* , Feng Cai 1,2,3, Hongshuai Qi 1,2,3,4, Yongling Zheng 1 and Huiquan Lu 1 1 Third Institute of Oceanography, Ministry of Natural and Resources, Xiamen 361005, China; [email protected] (F.C.); [email protected] (H.Q.); [email protected] (Y.Z.); [email protected] (H.L.) 2 Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China 3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 591000, China 4 Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, MNR, Beihai 536015, China * Correspondence: [email protected]; Tel.: +86-18030085312 Abstract: Human activities for exploitation and utilization of coastal zones have transformed coastline morphology and severely changed regional flow fields, underwater topography, and sediment distribution in the sea. In this study, single-beam bathymetry coupled with sediment sampling and analysis was carried out to ascertain submarine topography, geomorphology and sediment distribution patterns, and explore sediment provenance in Qinzhou Bay, China. The results show the following: (1) the underwater topography in Qinzhou Bay is complex and variable, with water depths in the range of 0–20 m. It can be divided into four underwater topographic zones (the central (outer Qinzhou Bay), eastern (Sanniang Bay), western (east of Fangcheng Port), and southern (outside of the bay) parts); (2) based on geomorphological features, the study area comprises four major submarine geomorphological units (i.e., tide-dominated delta, tidal sand ridge group, tidal scour troughs, and underwater slope) and two intertidal geomorphological Citation: Cao, C.; Cai, F.; Qi, H.; units (i.e., tidal flat and abrasion platforms); (3) sandy sediments are widely present in Qinzhou Zheng, Y.; Lu, H. -
BARRIER ISLAND STATUS REPORT Fiscal Year 2020 Annual Plan
BARRIER ISLAND STATUS REPORT Fiscal Year 2020 Annual Plan In compliance with Act 297 of the 2006 Regular Legislative Session, the Coastal Protection and Restoration Authority (CPRA) provides this barrier island status report as part of the Annual Plan document, which will be submitted to each member of the Louisiana Legislature. The current Barrier Island Status report is available electronically at the CPRA website. Please visit www.coastal.LA.gov to download and review the full report. A summary of the report is provided below. CONSTRUCTED PROJECTS The coastlines of the modern Mississippi River delta plain are bordered by numerous barrier islands from Raccoon Island in the west to Hewes Point in the northern Chandeleur Islands (Figure 1). These barrier islands could be grouped to represent fragmented remnants of distal extremities of several major delta lobes and headlands: to identify these barrier islands with their respective delta lobes they have been grouped from west to east as the Early Lafourche Delta System, Late Lafourche Delta System, Modern Delta System, and the St. Bernard Delta System. The back- barrier lagoons are connected to the Gulf of Mexico by approximately 25 tidal inlets which separate these barrier islands from each other and allow the exchange of diurnal tides. Figure 1: Location of barrier islands belonging to Early Lafourche, Late Lafourche, Modern, and St. Bernard barrier island systems in Louisiana The restoration of Louisiana’s barrier islands and barrier island systems has been a priority for a number of restoration programs over the past several decades and over 40 barrier island projects have been constructed to date (including 13 in the Early Lafourche Delta System, 18 in the Late Lafourche Delta System, 9 in the Modern Delta System, and 2 in the St.