Types and Causes of Beach Erosion Anomaly Areas in the U.S. East Coast Barrier Island System: Stabilized Tidal Inlets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal Erosion - Orrin H
COASTAL ZONES AND ESTUARIES – Coastal Erosion - Orrin H. Pilkey, William J. Neal, David M. Bush COASTAL EROSION Orrin H. Pilkey Program for the Study of Developed Shorelines, Division of Earth and Ocean Sciences, Duke University, Durham, NC, U.S.A. William J. Neal Department of Geology, Grand Valley State University, Allendale, MI, USA. David M. Bush Department of Geosciences, State University of West Georgia, Carrollton, GA, USA. Keywords: erosion, shoreline retreat, sea level rise, barrier islands, beach, coastal management, shoreline armoring, seawalls, sand supply Contents 1. Introduction 2. Causes of Erosion 2.1. Sea Level Rise 2.2. Sand Supply 2.3. Shoreline Engineering 2.4. Wave Energy and Storm Frequency 3. "Special" Cases 4. Solutions to Coastal Erosion 5. The Future Glossary Bibliography Biographical Sketches Summary Almost all of the world’s shorelines are retreating in a landward direction—a process called shoreline erosion. Sea level rise and the reduction of sand supply to the shoreline by damming of rivers, armoring of shorelines and the dredging of navigation channels are among the major causes of shoreline retreat. As sea levels continue to rise, sometimesUNESCO enhanced by subsidence caused – byEOLSS oil and water extraction, global erosion rates should increase in coming decades. Three response alternatives are available to "solve" the erosionSAMPLE problem. These are cons tructionCHAPTERS of seawalls and other engineering structures, beach nourishment and relocation or abandonment of buildings. No matter what path is chosen, response to the erosion problem is costly. 1. Introduction Coastal erosion is a major problem for developed shorelines everywhere in the world. Such erosion is regarded as a coastal hazard and is a common focus of local and national coastal management. -
Coastal Flood Defences - Groynes
Coastal Flood Defences - Groynes Coastal flood defences are key to protecting our coasts against flooding, which is when normally dry, low lying flat land is inundated by sea water. Hard engineering methods are forms of coastal flood defences which mitigate the risk of flooding and coastal erosion and the consequential effects. Hard Engineering Hard engineering methods are often used as a temporary measure to protect against coastal flooding as they are costly and only last for a relatively short amount of time before they require maintenance. However, they are very effective at protecting the coastline in the short-term as they are immediately effective as opposed to some longer term soft engineering methods. But they are often intrusive and can cause issues elsewhere at other areas along the coastline. Groynes are low lying wood or concrete structures which are situated out to sea from the shore. They are designed to trap sediment, dissipate wave energy and restrict the transfer of sediment away from the beach through long shore drift. Longshore drift is caused when prevailing winds blow waves across the shore at an angle which carries sediment along the beach.Groynes prevent this process and therefore, slow the process of erosion at the shore. They can also be permeable or impermeable, permeable groynes allow some sediment to pass through and some longshore drift to take place. However, impermeable groynes are solid and prevent the transfer of any sediment. Advantages and Disadvantages +Groynes are easy to construct. +They have long term durability and are low maintenance. +They reduce the need for the beach to be maintained through beach nourishment and the recycling of sand. -
Coastal Processes and Causes of Shoreline Erosion and Accretion Causes of Shoreline Erosion and Accretion
Coastal Processes and Causes of Shoreline Erosion and Accretion and Accretion Erosion Causes of Shoreline Heather Weitzner, Great Lakes Coastal Processes and Hazards Specialist Photo by Brittney Rogers, New York Sea Grant York Photo by Brittney Rogers, New New York Sea Grant Waves breaking on the eastern Lake Ontario shore. Wayne County Cooperative Extension A shoreline is a dynamic environment that evolves under the effects of both natural 1581 Route 88 North and human influences. Many areas along New York’s shorelines are naturally subject Newark, NY 14513-9739 315.331.8415 to erosion. Although human actions can impact the erosion process, natural coastal processes, such as wind, waves or ice movement are constantly eroding and/or building www.nyseagrant.org up the shoreline. This constant change may seem alarming, but erosion and accretion (build up of sediment) are natural phenomena experienced by the shoreline in a sort of give and take relationship. This relationship is of particular interest due to its impact on human uses and development of the shore. This fact sheet aims to introduce these processes and causes of erosion and accretion that affect New York’s shorelines. Waves New York’s Sea Grant Extension Program Wind-driven waves are a primary source of coastal erosion along the Great provides Equal Program and Lakes shorelines. Factors affecting wave height, period and length include: Equal Employment Opportunities in 1. Fetch: the distance the wind blows over open water association with Cornell Cooperative 2. Length of time the wind blows Extension, U.S. Department 3. Speed of the wind of Agriculture and 4. -
Stability Domains in Barrier Island Dune Systems J
Ecological Complexity 2 (2005) 410–430 http://www.elsevier.com/locate/ecocom Stability domains in barrier island dune systems J. Anthony Stallins * Department of Geography, Florida State University, Room 323 Bellamy Bldg. Tallahassee, FL 32306, USA Received 1 February 2005; received in revised form 12 April 2005; accepted 25 April 2005 Available online 17 October 2005 Abstract Early ecological descriptions of barrier island dune landscapes recognized the importance of biogeomorphic feedbacks and thresholds. However, these dynamics have not been formally linked to complexity theory. In this article, I develop models of dune landscape phase states, or stability domains, based on a synthesis of these prior studies and statistical analyses. Data for these analyses were obtained from compositional and topographic sampling along Sapelo Island, Georgia and South Core Banks, North Carolina. These undeveloped barrier islands are at opposite ends of a regional meteorological gradient in storm- forced overwash disturbance along the southeastern US Atlantic coast. The topography and plant functional group abundances on each island were supportive of earlier studies noting the propensity for distinct self-organizing biogeomorphic feedbacks to emerge along barrier coasts. On South Core Banks, where storm forcings of overwash are more frequent, the recovery processes initiated by burial-tolerant species may reduce topographic resistance to overwash exposure and contagion. On Sapelo Island, a greater abundance of dune-building and burial-intolerant swale species may confer a higher topographic roughness and more resistance to overwash exposure and contagion. Conceptually, the biogeomorphic modifications of overwash forcings on each island perpetuate the habitat conditions and dominant dune plant species in a weak positive feedback. -
Management of Coastal Erosion by Creating Large-Scale and Small-Scale Sediment Cells
COASTAL EROSION CONTROL BASED ON THE CONCEPT OF SEDIMENT CELLS by L. C. van Rijn, www.leovanrijn-sediment.com, March 2013 1. Introduction Nearly all coastal states have to deal with the problem of coastal erosion. Coastal erosion and accretion has always existed and these processes have contributed to the shaping of the present coastlines. However, coastal erosion now is largely intensified due to human activities. Presently, the total coastal area (including houses and buildings) lost in Europe due to marine erosion is estimated to be about 15 km2 per year. The annual cost of mitigation measures is estimated to be about 3 billion euros per year (EUROSION Study, European Commission, 2004), which is not acceptable. Although engineering projects are aimed at solving the erosion problems, it has long been known that these projects can also contribute to creating problems at other nearby locations (side effects). Dramatic examples of side effects are presented by Douglas et al. (The amount of sand removed from America’s beaches by engineering works, Coastal Sediments, 2003), who state that about 1 billion m3 (109 m3) of sand are removed from the beaches of America by engineering works during the past century. The EUROSION study (2004) recommends to deal with coastal erosion by restoring the overall sediment balance on the scale of coastal cells, which are defined as coastal compartments containing the complete cycle of erosion, deposition, sediment sources and sinks and the transport paths involved. Each cell should have sufficient sediment reservoirs (sources of sediment) in the form of buffer zones between the land and the sea and sediment stocks in the nearshore and offshore coastal zones to compensate by natural or artificial processes (nourishment) for sea level rise effects and human-induced erosional effects leading to an overall favourable sediment status. -
Stochastic Dynamics of Barrier Island Elevation
Stochastic dynamics of barrier island elevation Orencio Duran´ Vinenta,1 , Benjamin E. Schafferb, and Ignacio Rodriguez-Iturbea,1 aDepartment of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136; and bDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540 Contributed by Ignacio Rodriguez-Iturbe, November 11, 2020 (sent for review June 29, 2020; reviewed by Carlo Camporeale and A. Brad Murray) Barrier islands are ubiquitous coastal features that create low- a marked Poisson process with exponentially distributed marks. energy environments where salt marshes, oyster reefs, and man- The mark of a HWE is defined as the maximum water level groves can develop and survive external stresses. Barrier systems above the beach during the duration of the event and charac- also protect interior coastal communities from storm surges and terizes its size and intensity. This result opens the way for a wave-driven erosion. These functions depend on the existence of probabilistic model of the temporal evolution of the barrier/dune a slowly migrating, vertically stable barrier, a condition tied to elevation, along the lines of the stochastic model of soil moisture the frequency of storm-driven overwashes and thus barrier ele- dynamics (4). The knowledge of the transient probability dis- vation during the storm impact. The balance between erosional tribution function of barrier elevation allows the calculation of and accretional processes behind barrier dynamics is stochastic in after-storm recovery times, overwash probability and frequency, nature and cannot be properly understood with traditional con- and the average overwash transport rate driving the landward tinuous models. Here we develop a master equation describing migration of barriers. -
Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches Tiffany Roberts University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Geology Commons, and the Geomorphology Commons Scholar Commons Citation Roberts, Tiffany, "Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4216 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches by Tiffany M. Roberts A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Geology College of Arts and Sciences University of South Florida Major Professor: Ping Wang, Ph.D. Bogdan P. Onac, Ph.D. Nathaniel Plant, Ph.D. Jack A. Puleo, Ph.D. Julie D. Rosati, Ph.D. Date of Approval: July 12, 2012 Keywords: barrier island beaches, beach morphodynamics, beach nourishment, longshore sediment transport, cross-shore sediment transport. Copyright © 2012, Tiffany M. Roberts Dedication To my eternally supportive mother, Darlene, my brother and sister, Trey and Amber, my aunt Pat, and the friends who have been by my side through every challenge and triumph. -
Barrier Island Migration Sea Level Rise and the Future
Barrier Island Migration stable location and absence of historic inlets in this area suggest that barrier migration may not be a These barrier islands retreated or migrated north- continuous process over timescales of a thousand ward as the ocean continued rising. There is some years or less. Further to the east, the barriers are debate about how the barriers actually moved. more mobile and one can find evidence of barrier Some research suggests that the barriers slowly island rollover processes such as old flood shoals drowned in place and then “jumped” or “skipped” in the bay that were associated with inlets that have landward to a new position coinciding with the new opened and closed naturally over the last several position of the shoreline. More recent studies indi- hundred years. cate the islands move in a more continuous process where sand is transported across the island from the ocean to the bay, allowing the island to migrate Sea Level Rise and the Future landward. There are three primary ways that sand can be transported across a barrier island: inlet Along the New York coast, sea level is not only ris- formation, overwash processes and eolian (or wind) ing, the land is also slowly sinking, or subsiding due transport. On Long Island’s south shore, the inlets to geologic processes. The rise in the water level in are actually far more important than either over- relation to the land surface due to the sinking of the washes or the wind in terms of moving sand land- land and the raising of the sea is known as relative ward and driving barrier migration. -
Coastal Zone and Estuaries
CONTENTS COASTAL ZONE AND ESTUARIES Coastal Zone and Estuaries - Volume 1 No. of Pages: 540 ISBN: 978-1-84826-016-0 (eBook) ISBN: 978-1-84826-466-3 (Print Volume) For more information of e-book and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) COASTAL ZONES AND ESTUARIES CONTENTS Coastal Zone and Estuaries 1 Federico Ignacio Isla, Centro de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata, Argentina 1. The Coastal Zone 1.1. Climate Change 1.2. Sea Level and Sea Ice Fluctuations 1.3. Coastal Processes 1.4. Sediment Delivery 1.5. Beaches 1.6. Tidal Flats and Marshes 1.7. Mangroves 1.8. Coral Reefs, Coral Cays, Sea Grasses, and Seaweeds 1.9. Eutrophication and Pollution 1.10. Coastal Evolution 2. Estuarine Environments 2.1. Estuaries 2.2. Coastal Lagoons 2.3. Deltas 2.4. Estuarine Evolution 3. Coastal Management 4. New Techniques in Coastal Science 5. Concluding Remarks Coastal Erosion 32 Orrin H. Pilkey, Program for the Study of Developed Shorelines, Division of Earth and Ocean Sciences, Duke University, Durham, NC, U.S.A. William J. Neal, Department of Geology, Grand Valley State University, Allendale, MI, USA. David M. Bush, Department of Geosciences, State University of West Georgia, Carrollton, GA, USA. 1. Introduction 2. Causes of Erosion 2.1. Sea Level Rise 2.2. Sand Supply 2.3. Shoreline Engineering 2.4. Wave Energy and Storm Frequency 3. Special Cases 4. Solutions to Coastal Erosion 5. The Future Waves and Sediment Transport in the Nearshore Zone 43 Robin G. -
Understanding Our Coastal Environment
Preface The South Carolina Beachfront Management Act In the Beginning The Coastal Zone Management Act of 1977 was enacted to protect our coastal resources from unwise development. This legislation served the beaches well during its first decade, but as South Carolina became a more popular tourist destination, it became apparent that the portion of the Act that dealt with beaches was inadequate. As development crept seaward, seawalls and rock revetments proliferated, damaging the public’s beach. In many areas there was no beach left at high tide. In some areas, there was no beach at low tide, either. In 1988 and again in 1990, South Carolina’s legislators took action and amended and strengthened the Coastal Zone Management Act. The resulting Beachfront Management Act protects South Carolina’s sandy shores by increasing the state’s jurisdiction and encouraging development to move landward. South Carolina’s Beachfront Jurisdiction To find the boundaries of this jurisdiction, staff from the Office of Ocean and Coastal Resource Management must first locate the baseline, which is the crest of the primary oceanfront sand dune. Where there are no dunes, the agency uses scientific methods to determine where the natural dune would lie if natural or man-made occurrences had not interfered with nature’s dune building process. The setback line is the most landward boundary and is measured from the baseline. To find the depth of the setback line, the beach’s average annual erosion rate for the past forty years is calculated and multiplied by forty. For example, if the erosion rate is one foot per year, the results will be a setback line that stretches forty feet from the baseline. -
1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift. -
Coastal Processes on Long Island
Shoreline Management on Long Island Coastal Processes on Long Island Coastal Processes Management for ADAPT TO CHANGE Resilient Shorelines MAINTAIN FUNCTION The most appropriate shoreline management RESILIENT option for your shoreline is determined by a SHORELINES WITHSTAND STRESSES number of factors, such as necessity, upland land use, shoreline site conditions, adjacent conditions, ability to be permitted, and others. RECOVER EASILY Costs can be a major consideration for property owners as well. While the cost of some options Artwork by Loriann Cody is mostly for the initial construction, others will require short- or long-term maintenance costs; Proposed construction within the coastal areas therefore, it is important to consider annual and of Long Island requires the property owner to long-term costs when choosing a shoreline apply for permits from local, state and federal management method. agencies. This process may take some time In addition to any associated financial costs, and it is recommended that the applicant there are also considerations of the impacts on contacts the necessary agencies as early as the natural environment and coastal processes. possible. Property owners can also request Some options maintain and/or improve natural pre-application meetings with regulators to coastal processes and features, while others discuss the proposed project. Depending on may negatively impact the natural environment. the complexity of the site or project, property Resilient shorelines tend to work with nature owners can contact a local expert or consultant rather than against it, and are more adaptable that can assist them with understanding and over time to changing conditions. Options that choosing the best option to help stabilize their provide benefits to habitat or coastal processes shorelines and reduce upland risk.