IEEE Std 1394-1995 IEEE Standard for a High Performance Serial

Total Page:16

File Type:pdf, Size:1020Kb

IEEE Std 1394-1995 IEEE Standard for a High Performance Serial IEEE Std 1394-1995 IEEE Standard for a High Performance Serial Bus Sponsor Microprocessor and Microcomputer Standards Committee of the IEEE Computer Society Approved 12 December 1995 IEEE Standards Board Approved 22 July 1996 American National Standards Institute Abstract: A high-speed serial bus that integrates well with most IEEE standard 32-bit and 64-bit parallel buses, as well as such nonbus interconnects as the IEEE Std 1596-1992, Scalable Coherent Interface, is specified. It is intended to provide a low-cost interconnect between cards on the same backplane, cards on other backplanes, and external peripherals. This standard follows the IEEE Std 1212-1991 Command and Status Register (CSR) architecture. Keywords: backplane, bus, computers, high-speed serial bus, interconnect, parallel buses The Institute of Electrical And Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 1996. Printed in the United States of America. ISBN 1-55937-583-3 No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. i IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the development of the standard. Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard. Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. Comments on standards and requests for interpretations should be addressed to: Secretary, IEEE Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. ii Introduction (This introduction is not a part of IEEE Std 1394-1995, IEEE Standard for a High Performance Serial Bus.) This standard describes a serial bus that provides the same services as modern IEEE-standard parallel buses, but at a much lower cost. It has a 64-bit address space, control registers, and a read/write/lock operation set that conforms to the IEEE Std 1212-1991, Command and Status Register (CSR) standard. This simplifies bridging between the Serial Bus and the other interconnects using the IEEE 1212 architecture: IEEE Std 896-1991, FutureBus+ ® and IEEE Std 1596-1992, Scalable Coherent Interface (SCI). There are two physical environments for the Serial Bus: backplane and cable. The backplane environment uses two single-ended signals on a broadcast multitapped bus using backplane transceiver logic (BTL) or emitter coupled logic (ECL) transceiver technology at 49.152 Mbit/s or enhanced transistor-transistor logic (TTL) transceiver technology at 24.576 Mbit/s. In all cases, bus arbitration on the backplane is done using a dominant-mode-logic bit serial approach. The cable environment uses two low-voltage differential signals to connect devices in a noncyclic topology at 98.304 Mbit/s, 196.608 Mbit/s, and 393.216 Mbit/s data rates. The cable arbitration system uses a self-configuring hierachical request/grant protocol that supports hot plugging and widely varying physical topologies. In addition to standard read/write/lock transactions, the Serial Bus provides extensive time-based services, including isochronous data transport (guaranteed latency and bandwidth) and an accurate submicrosecond global timebase for synchronizing events and data. This standards effort started in 1986 at the request of the membership of the IEEE Microcomputer Standards Committee as an attempt to unify the different serial busses originally proposed as parts of the IEEE 1014 VME, IEEE 1296 Multibus II, and IEEE 896 FutureBus+® efforts. The original chair was Michael Teener, and much of the original architecture of this standard was invented by Mr. Teener, David James, and David Gustavson. In particular, the fairness and retry algorithms were originally proposed by David James during this early period. As the proposed standard was developed, it attracted more interest from those that needed a much improved external I/O interconnect for multimedia information and for mass storage. This added the requirements for isochronous transport, much higher data rates, and a more rugged cable and connector system. To answer these needs a) David James and Michael Teener developed a isochronous access protocol that was compatible with the existing fairness scheme. This protocol was simplified and enhanced based on proposals by Ed Gardner. b) Roger Van Brunt and Florin Oprescu developed a much improved physical layer for the cable environment, which was capable of 400 Mbit/s peak rates using low-cost digital complimentary-symmetry metal-oxide semiconductor (CMOS) technology. Forrest Crowell further reduced the complexity of the cable physical layer proposing the data-strobe encoding from INMOS. Florin Oprescu's self-configuring hierarchical arbitration protocol was also adopted at this time, with simplifications developed by Willam Duckwall. c) Andy Carter proposed the connector and cable system for the cable environment, based on original work done by Hosiden Corporation. The connector task group under the leadership of David Hatch refined that proposal to meet the requirements of all concerned. d) Greg Floryance, Bill Ham, and Max Bassler led the specification for the internal connection system for the cable environment. Bill Ham also worked to ensure that system level grounding and power issues were handled correctly. e) Thom Potyraj coordinated the development of the backplane environment and contributed much of its technical content. f) Gerald Marazas defined the bus management protocols with extensive help from David James, Peter Johansson, Hisato Shima, Scott Smyers, and Michael Teener. Peter Johansson rewrote the bus management text during the ballot resolution process as the best way to respond to extensive ballot comments on this topic. Gerald Marazas took over as chair of the working group in 1993, while Michael Teener continued as editor of the standard. Additional editing was done by Thom Potyraj for the backplane environment physical layer, Jeff Stai for the link and transaction layers, Gerald Marazas for the bus management layer, Bill Ham for the cable environment system iii properties, Max Bassler and Greg Floryance for the internal device physical interface, Jim Baldwin for the PHY-Link interface definition, Florin Oprescu for the cable test procedures, and Steven Dunwoody for the shielding
Recommended publications
  • Getting Started with Your VXI-1394 Interface for Windows NT/98 And
    VXI Getting Started with Your VXI-1394 Interface for Windows NT/98 VXI-1394 Interface for Windows NT/98 November 1999 Edition Part Number 322109D-01 Worldwide Technical Support and Product Information www.ni.com National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100 Worldwide Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Poland 48 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545 For further support information, see the Technical Support Resources appendix. To comment on the documentation, send e-mail to [email protected] © Copyright 1998, 1999 National Instruments Corporation. All rights reserved. Important Information Warranty The National Instruments VXI-1394 board is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period.
    [Show full text]
  • A Technology Comparison Adopting Ultra-Wideband for Memsen’S File Sharing and Wireless Marketing Platform
    A Technology Comparison Adopting Ultra-Wideband for Memsen’s file sharing and wireless marketing platform What is Ultra-Wideband Technology? Memsen Corporation 1 of 8 • Ultra-Wideband is a proposed standard for short-range wireless communications that aims to replace Bluetooth technology in near future. • It is an ideal solution for wireless connectivity in the range of 10 to 20 meters between consumer electronics (CE), mobile devices, and PC peripheral devices which provides very high data-rate while consuming very little battery power. It offers the best solution for bandwidth, cost, power consumption, and physical size requirements for next generation consumer electronic devices. • UWB radios can use frequencies from 3.1 GHz to 10.6 GHz, a band more than 7 GHz wide. Each radio channel can have a bandwidth of more than 500 MHz depending upon its center frequency. Due to such a large signal bandwidth, FCC has put severe broadcast power restrictions. By doing so UWB devices can make use of extremely wide frequency band while emitting very less amount of energy to get detected by other narrower band devices. Hence, a UWB device signal can not interfere with other narrower band device signals and because of this reason a UWB device can co-exist with other wireless devices. • UWB is considered as Wireless USB – replacement of standard USB and fire wire (IEEE 1394) solutions due to its higher data-rate compared to USB and fire wire. • UWB signals can co-exists with other short/large range wireless communications signals due to its own nature of being detected as noise to other signals.
    [Show full text]
  • RS-485: Still the Most Robust Communication Table of Contents
    TUTORIAL RS-485: Still the Most Robust Communication Table of Contents Abstract...........................................................................................................................1 RS-485 vs. RS-422..............................................................................................................................2 An In-Depth Look at RS-485...........................................................................................................3 Challenges of the Industrial Environment.....................................................................................5 Protecting Systems from Harsh Environments.........................................................................5 Conclusion......................................................................................................................10 References......................................................................................................................10 Abstract Despite the rise in popularity of wireless networks, wired serial networks continue to provide the most robust, reliable communication, especially in harsh environments. These well-engineered networks provide effective communication in industrial and building automation applications, which require immunity from noise, electrostatic discharge and voltage faults, all resulting in increased uptime. This tutorial reviews the RS-485 protocol and discusses why it is widely used in industrial applications and the common problems it solves. www.maximintegrated.com
    [Show full text]
  • LPT, COM, 1394, USB, USB-C LPT IEEE 1284, LPT (Англ. Line Print Terminal; Также Параллельный Порт, По
    LPT, COM, 1394, USB, USB-C LPT IEEE 1284, LPT (англ. Line Print Terminal; также параллельный порт, порт принтера) — международный стандарт параллельного интерфейса для подключения периферийных устройств персонального компьютера. В основном используется для подключения к компьютеру принтера, сканера и других внешних устройств (часто использовался для подключения внешних устройств хранения данных), однако может применяться и для других целей (организация связи между двумя компьютерами, подключение каких-либо механизмов телесигнализации и телеуправления). В основе данного стандарта лежит интерфейс Centronics и его расширенные версии (ECP, EPP). Название LPT образовано от наименования стандартного устройства принтера LPT1 (Line Printer Terminal или Line PrinTer) в операционных системах семейства MS-DOS. Параллельный порт Centronics — порт, используемый с 1981 года в персональных компьютерах фирмы IBM для подключения печатающих устройств, разработан фирмой Centronics Data Computer Corporation; уже давно стал стандартом де-факто, хотя в действительности официально на данный момент он не стандартизирован. Изначально этот порт был разработан только для симплексной (однонаправленной) передачи данных, так как предполагалось, что порт Centronics должен использоваться только для работы с принтером. Впоследствии разными фирмами были разработаны дуплексные расширения интерфейса (byte mode, EPP, ECP). Затем был принят международный стандарт IEEE 1284, описывающий как базовый интерфейс Centronics, так и все его расширения. Разъемы. Порт на стороне управляющего
    [Show full text]
  • PC 97 Hardware Design Guide
    Part 4 — Device Design Guidelines CHAPTER 21 Printers This chapter presents the requirements and recommendations for printers under the Microsoft Windows family of operating systems. Version 1.1 Includes changes to References for Printers Contents Overview for Printers.............................. ............... 312 Basic Printer Features............................. ................ 312 Basic Features for IEEE 1394 Printers. ................. 312 Basic Features for USB Printers . ............... 312 Basic Features for IEEE 1284 Printers. ................. 313 PC 97 Design for Printers .......................... ................ 314 Plug and Play for Printers. ............... 314 Power Management for Print Components . .............. 315 Device Drivers and Installation for Printers . .................... 315 References for Printers ............................ ................ 318 Checklist for Printers ............................. ................ 320 312 PC 97 Design — Part 4 Device Design Guidelines Overview for Printers This section presents the key design issues for printers under Microsoft Windows. Printers and other devices attached to parallel ports should be capable of high- speed, bidirectional data transfers. The design criteria for parallel devices follow those for parallel ports described in the “Serial, Parallel, and Wireless Support” chapter. The PC 97 requirements for printers and parallel ports seek to ensure the following: • Ensure maximum speed for transfer of parallel data between the system and the peripheral. • Ensure a true Plug and Play experience for users. Basic Printer Features This section summarizes the basic hardware requirements for printers for PC 97. Basic Features for IEEE 1394 Printers This section defines requirements for printers that use IEEE 1394. 1. Compliance with PC 97 requirements for IEEE 1394 Required This bus is recommended in PC 97 for support of fast, high-density data transfer. For information about implementing IEEE 1394 for PC 97, see the “IEEE 1394” chapter in Part 3 of this guide.
    [Show full text]
  • From Camac to Wireless Sensor Networks and Time- Triggered Systems and Beyond: Evolution of Computer Interfaces for Data Acquisition and Control
    Janusz Zalewski / International Journal of Computing, 15(2) 2016, 92-106 Print ISSN 1727-6209 [email protected] On-line ISSN 2312-5381 www.computingonline.net International Journal of Computing FROM CAMAC TO WIRELESS SENSOR NETWORKS AND TIME- TRIGGERED SYSTEMS AND BEYOND: EVOLUTION OF COMPUTER INTERFACES FOR DATA ACQUISITION AND CONTROL. PART I Janusz Zalewski Dept. of Software Engineering, Florida Gulf Coast University Fort Myers, FL 33965, USA [email protected], http://www.fgcu.edu/zalewski/ Abstract: The objective of this paper is to present a historical overview of design choices for data acquisition and control systems, from the first developments in CAMAC, through the evolution of their designs operating in VMEbus, Firewire and USB, to the latest developments concerning distributed systems using, in particular, wireless protocols and time-triggered architecture. First part of the overview is focused on connectivity aspects, including buses and interconnects, as well as their standardization. More sophisticated designs and a number of challenges are addressed in the second part, among them: bus performance, bus safety and security, and others. Copyright © Research Institute for Intelligent Computer Systems, 2016. All rights reserved. Keywords: Data Acquisition, Computer Control, CAMAC, Computer Buses, VMEbus, Firewire, USB. 1. INTRODUCTION which later became international standards adopted by IEC and IEEE [4]-[7]. The design and development of data acquisition The CAMAC standards played a significant role and control systems has been driven by applications. in developing data acquisition and control The earliest and most prominent of those were instrumentation not only for nuclear research, but applications in scientific experimentation, which also for research in general and for industry as well arose in the early sixties of the previous century, [8].
    [Show full text]
  • IPUG75 2.2 Table of Contents
    PCI Express 2.0 x1, x4 Endpoint IP Core User’s Guide October 2014 IPUG75_2.2 Table of Contents Chapter 1. Introduction .......................................................................................................................... 6 Quick Facts ........................................................................................................................................................... 7 Features ................................................................................................................................................................ 7 PHY Layer.................................................................................................................................................... 7 Data Link Layer............................................................................................................................................ 8 Transaction Layer ........................................................................................................................................ 8 Configuration Space Support....................................................................................................................... 8 Top Level IP Support ................................................................................................................................... 8 Chapter 2. Functional Description ...................................................................................................... 10 Overview ............................................................................................................................................................
    [Show full text]
  • Getting Started with Your PCI Serial Hardware and Software for Windows 95
    Serial Getting Started with Your PCI Serial Hardware and Software for Windows 95 PCI Serial for Windows 95 December 1997 Edition Part Number 321824A-01 Internet Support E-mail: [email protected] FTP Site: ftp.natinst.com Web Address: http://www.natinst.com Bulletin Board Support BBS United States: 512 794 5422 BBS United Kingdom: 01635 551422 BBS France: 01 48 65 15 59 Fax-on-Demand Support 512 418 1111 Telephone Support (USA) Tel: 512 795 8248 Fax: 512 794 5678 International Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545 National Instruments Corporate Headquarters 6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100 © Copyright 1997 National Instruments Corporation. All rights reserved. Important Information Warranty The serial hardware is warranted against defects in materials and workmanship for a period of two years from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period.
    [Show full text]
  • LVDS Owner's Manual
    LVDS Owner’s Manual Low-Voltage Differential Signaling 3rd Edition, Spring 2004 National Semiconductor The Sight & Sound of Information LVDS Owner’s Manual Low-Voltage Differential Signaling Spring 2004 3rd Edition The last thing an engineer ever does is read the owner’s manual. An engineer expects to be able to use his or her skills and training to figure out how to use a product without ever referring to the instructions. In my experience, either through intuition or trial and error, most of us will eventually figure out the basics. However, while this may be reasonable for assembling a toy or even working on a car, it is an expensive and time consuming way to go about electrical engineering. National Semiconductor has written this LVDS Owner’s Manual to assist you. This design guide compiles the information and concepts that we think you will need to save you valuable time and money and maximize the benefit of using National's Low-Voltage Differential Signaling (LVDS) solutions. National is the premier analog semiconductor solution supplier and the innovator of LVDS. Our experi- ence with LVDS gives us the insight to be your trusted advisor. This third edition of the LVDS Owner’s Manual is an easy-to-read compendium that contains useful information for everyone. There is an intro- duction to the technology, concepts, and applications for someone just starting to design with LVDS. We offer guidance on how to select the right LVDS device and family for your application whether it is chip- to-chip, mezzanine-to-mezzanine, or box-to-box.
    [Show full text]
  • Single-Port PCI Card— RS-232/422/485/530
    NOVEMBER 2001 IC073C IC074C-R2 Single-Port PCI Card— RS-232/422/485/530 CUSTOMER Order toll-free in the U.S. 24 hours, 7 A.M. Monday to midnight Friday: 877-877-BBOX SUPPORT FREE technical support, 24 hours a day, 7 days a week: Call 724-746-5500 or fax 724-746-0746 INFORMATION Mail order: Black Box Corporation, 1000 Park Drive, Lawrence, PA 15055-1018 Web site: www.blackbox.com • E-mail: [email protected] TRADEMARKS TRADEMARKS USED IN THIS MANUAL OS/2 and PS/2 are registered trademarks of International Business Machines Corporation. Windows and Windows NT are registered trademarks of Microsoft Corporation. UL is a registered trademark of Underwriters Laboratories Incorporated. Any other trademarks used in this manual are acknowledged to be the property of the trademark owners. 1 SINGLE-PORT PCI CARD—RS-232/422/485/530 FEDERAL COMMUNICATIONS COMMISSION AND INDUSTRY CANADA RADIO FREQUENCY INTERFERENCE STATEMENTS This equipment generates, uses, and can radiate radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio communication. It has been tested and found to comply with the limits for a Class A computing device in accordance with the specifications in Subpart B of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when the equipment is operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user at his own expense will be required to take whatever measures may be necessary to correct the interference.
    [Show full text]
  • Getting Started with Modbus March 31, 2020
    Getting Started with Modbus March 31, 2020 Application Note Getting Started with Modbus OVERVIEW Modbus is a communication protocol used widely in industrial applications. Since its introduction in 1979, Modbus has become the standard mode of transferring data to PLCs. Due to its wide adoption, SignalFire’s wireless telemetry system is natively built from the ground up to support Modbus. However, many technicians working on SignalFire equipment as well as other industrial machines may not be entirely familiar with this protocol or how it can be used to set up the instrumentation and controls they want. This guide – in conjunction with the System Overview app note – serves to introduce new users to getting their desired flow of data up and running. HARDWARE Modbus is the name of a communication protocol developed by Modicon (now Schneider Electric) in 1979. Modbus as a protocol is typically sent over an RS-485 serial bus, which offers it many advantages. ‘Protocol’ refers to the software while ‘bus’ refers to the hardware. RS-485 is a two or four-wire serial multidrop bus. In a four-wire configuration, there’s TxD+, TxD-, RxD+, and RxD-. In a two-wire configuration, TxD+ and RxD+ are jumped together, and TxD- and RxD- are jumped together, leaving a positive and negative line. Modbus typically uses this two-wire configuration, labeled ‘A’ (usually positive) and ‘B’ (usually negative). Multidrop means that multiple devices can all be daisy-chained in parallel together to communicate on the same line. Multiple devices can have all their ‘A’ terminals connected together, and all their ‘B’ terminals connected together to communicate with each other, making the wiring simple.
    [Show full text]
  • Cable Discharge Event (CDE) Automated Test System Based on TLP Method
    Cable Discharge Event (CDE) Automated Test System Based on TLP Method Draft V3-2016.03.18 Wei Huang, Jerry Tichenor Web: www.esdemc.com Email: [email protected] Tel: (+1) 573-202-6411 Fax: (+1) 877-641-9358 Address: 4000 Enterprise Drive, Suite 103, Rolla, MO, 65401 Cable Discharge Event (CDE) Background What is CDE Event ? A Cable Discharge Event (CDE) is electrostatic discharge(s) between metal of a cable connector and the mating cable connector or plug. It is very common in daily life. When CDE happens, transient high current and high voltage pulses are generated into the connector pins and cause potential damage to the system with connector. The pulse characteristic is determined by the cable type, cable length, physical arrangement of the cable and system with connector, and system with connector side circuitry. A Generic CDE System Concept Why understanding CDE robustness is important ? The discharge processes are complicated due to the number of pins involved and their connections to a system. In addition, the occurrence rate and severity of the static discharge is important to design a robust system. Basic System Features: A well repeatable test setup to reproduce cable discharge events Pulse injection level covers different types of cable connections Additional System Features: Automatic computer controlled test for all available connector pins Automatic remove DUT residue charge safely after each pulse safely Integrate current and voltage probes to monitor CDE events on each pin ESDEMC Collected Cable Pins and Practical Passive
    [Show full text]