Habitat Use and New Locality Records for Cryptoblepharus Poecilopleurus (Squamata: Scincidae) from French Polynesia

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Use and New Locality Records for Cryptoblepharus Poecilopleurus (Squamata: Scincidae) from French Polynesia Herpetology Notes, volume 8: 579-582 (2015) (published online on 06 December 2015) Habitat use and new locality records for Cryptoblepharus poecilopleurus (Squamata: Scincidae) from French Polynesia Mozes P.K. Blom Cryptoblepharus Wiegmann is the most geographically Accordingly, I visited eight islands (Fig. 1) across widespread taxon in the family Scincidae. They occur French Polynesia from May 18 until June 19, 2015, within the Ethiopian-Malagasy region, on the Indo- to verify species presence and record habitat use of Australian continent and on many Pacific islands of both C. poecilopleurus. On each island, I walked transects continental and volcanic origin (Ineich and Blanc, 1988; along the beach and where possible further inland, in the Rocha et al., 2006; Horner, 2007; Hayashi et al., 2009). morning and afternoon and collected lizards by hand. Although the broad distribution of Cryptoblepharus On transects, I occasionally stripped away long pieces suggests an ecological generalist, Greer (1989) proposed of bark from Casuarina trees to spot hiding skinks. This that these small (<55 mm snout-vent length), heliotropic was particularly effective for finding Lipinia noctua, and diurnal lizards, are actually adapted to a narrow but did not reveal many Cryptoblepharus. set of ecological parameters or microhabitats. Horner (2007) developed this idea further in his comprehensive overview of the genus and distinguished between species occurring on littoral (‘beach’), arboreal (‘tree’) or saxicolous (‘rock’) substrates. Littoral species of Cryptoblepharus have been characterized as beach-dwelling, intertidal specialists and species have even been observed consuming small crustaceans and polychaetes (Fricke, 1970; Horner, 1984). These coastal lineages are of particular interest since littoral populations might potentially be the source of the vast distribution of the genus and other habitat specialists might derive from such littoral dispersers (i.e. a taxon cycle model (Ricklefs and Bermingham, 2002)). Among all littoral species, Cryptoblepharus poecilopleurus has the most extensive distribution, including the majority of islands in the Pacific (Ineich and Blanc, 1988; Horner, 2007). Within the French Polynesian region, these skinks have been recorded on islands that differ in both species richness and habitat complexity (Ineich and Blanc, 1988), providing a promising scenario to examine whether herpetofaunal diversity might induce or reduce alternative habitat use. Figure 1. The islands visited in this study are highlighted with a coloured dot. Green dots represent islands where C. poecilopleurus have been collected and red dots islands that Research School of Biology, The Australian National were visited, but no C. poecilopleurus found. The Austral University, Canberra ACT 0200, Australia island of Raivavae, is a new locality record, from which C. Correspondence: [email protected] poecilopleurus has not been observed prior. 580 Mozes P.K. Blom Table 1. Main locality and observation records for C. poecilopleurus on each visited island. (1 Two sympatric colour morphs observed, * 1–2 individuals observed in 1 hour search, ** 3–5 individuals observed in 1 hour search, *** more than 5 individuals observed in 1 hour search). Island Locality Abundance Habitat Sympatry Latitude Longitude Moorea Motu Fareone * Arboreal L. noctua -17.491 -149.918 Raivavae Motu Rani *** Arboreal Emoia sp. -23.878 -147.608 Raivavae Men's rock ** Saxicolous Emoia sp. -23.855 -147.66 Tubuai Mateauta *** Arboreal - -23.344 -149.481 Tubuai Anua *** Arboreal - -23.377 -149.527 Tubuai Mateauta harbour ** Saxicolous - -23.344 -149.478 Rurutu 1 km. south airport *** Arboreal Emoia sp. -22.459 -151.373 Rurutu Hidden beach ** Littoral Emoia sp. -22.461 -151.373 Rangiroa Tapuheitini *** Arboreal Emoia sp. -14.948 -147.686 Rangiroa Motu Paati *** Arboreal Emoia sp. -15.238 -147.716 Fakarava Vaiama Village *** Arboreal L. noctua -16.114 -145.605 Fakarava1 Raimiti *** Arboreal - -16.427 -145.376 Nuku Hiva - - - - - - Hiva Oa - - - - - - ͳ I recorded C. poecilopleurus on six out of eight is likely harder to approach and spot lizards in dense islands, including a new island record (Raivavae), and vegetation, but these lizards seem to strongly favour they were usually common (<10 individuals spotted brightly illuminated spots, which could be an indication within an hour, see Table 1). Whereas littoral habitat of thermal requirements. ͳ use has been extensively described on other islands I only recorded three Cryptoblepharus populations (Canaris and Murphy, 1965; Canaris, 1973; Fricke, that used non-arboreal habitats and in these cases, they 1970; Horner, 1984), I only observed three populations did not exhibit previously described littoral behaviour. of C. poecilopleurus on a non-arboreal substrate and The first observation was on the Austral island of found none that could be described as beach-dwelling Tubuai, where five individuals were spotted on large intertidal specialists. Even though populations were dark boulders that were placed as support for the always observed less than 50 metres from the coast, local harbour. The second observation was on a large most C. poecilopleurus individuals were found on trees limestone rock-face (Raivavae), where approximately of the genus Casuarina or Cocos, adjacent to the beach three individuals scurried between the crevices and and not on the beach itself. ascended, seemingly with ease, a vertical wall. The last Deducing from over 100 observations, the behaviour observation was on the island of Rurutu, where eight of these arboreal populations is reminiscent of individuals were spotted between vegetation and debris Cryptoblepharus in Australia that occur on the same on a pebble beach (Fig. 2a). They remained within close substrate (pers. obs.). Upon approach, these skinks distance to the vegetation adjacent to the beach and were circumvent the tree and escape by moving upwards. not observed within 20 meters of the shoreline. They were active during daytime, if the sun was Intraspecific aggression was incidentally observed, sufficiently bright (i.e. no cloud cover) and mostly with two individuals chasing each other across the base present in patches of full sun light. Areas that had of a tree. This behaviour has been recorded prior (Horner, been cleared by human activity, but where large trees 2007) but it remains unclear whether this is territorial or remained, yielded high numbers of individuals and each sex-specific, since C. poecilopleurus individuals were tree sometimes harboured more than one individual. also frequently observed in close proximity without any This could have been an observation bias, since it form of aggressive behaviour (Fig. 2b). Habitat use and new locality records for Cryptoblepharus poecilopleurus 581 surveyed, skinks of the genus Emoia tended to be ground-dwelling, but were sometimes also observed on the same trunk as Cryptoblepharus without exhibiting any form of belligerent behaviour. Given these observations, displacement does not seem directly evident. Thus it is remarkable that C. poecilopleurus populations were only found on trees adjacent to the beach and not further inland (the most inland record was a single juvenile on a Casuarina tree 50 m. from the coast). There did not seem to be a clear change in species diversity or richness on trees further inland, except for the absence of Cryptoblepharus. Specialization in littoral beach dwelling as described for other species of Cryptoblepharus (Fricke, 1970; Horner, 1984) was not observed on the Polynesian islands visited. Most C. poecilopleurus populations recorded, were using an arboreal substrate and often shared trees with other skink species. Nonetheless, all populations were observed on trees in close vicinity to the beach. Given these observations it remains unclear what processes limit the distribution and habitat use of these skinks. If interspecific competition, as recorded on the Solomon islands (McCoy, 2006), does not limit expansion from trees adjacent to the beach to trees further inland, other potential limitations should be considered. One explanation could be that these skinks are potentially restricted in their thermal requirements and require an open habitat with sufficient exposure to bright light. Denser vegetation inland might not provide ample opportunity to optimally thermoregulate, but Figure 2. A) C. poecilopleurus population with (semi-) littoral further research is required. habitat use. Individual photographed at a pebble beach on the island of Rurutu. B) Two C. poecilopleurus individuals Acknowledgements. I thank the National Geographic Society, the observed on arboreal substrate, several Emoia sp. were Mohamed bin Zayed Species Conservation Fund, the Richard B. observed on the same tree (not visible on picture). Gump Station, Jean-Yves Meyer and Craig Moritz for supporting this work. I thank Matthew Fujita and Foteini Spagopoulou for help during the fieldwork and Paul Oliver for helpful suggestions to improve this manuscript. References Three other skink species were observed on these Case, T.J., Bolger, D.T., Petren, K. (1994): Invasions and surveys (Table 1). Of these, Lipinia noctua tends to competitive displacement among house geckos in the tropical occur under bark and be quite secretive. Emoia cyanura, Pacific. Ecology 75: 464–477. uses open habitat and has a high thermal preference Canaris, A.G., Murphy, D.G. (1965): A scincid reptile feeding seemingly similar to C. poecilopleurus. Finally, Emoia primarily
Recommended publications
  • Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands
    Micronesica 29(1): 37-48 , 1996 Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands DONALD W. BUDEN Division Mathematics of and Science, College of Micronesia, P. 0 . Box 159 Kolonia, Polmpei, Federated States of Micronesia 96941. Abstract-Fifteen species of reptiles, 18 birds, and five mammals are recorded from Pakin Atoll. None is endemic to Pakin and all of the residents tend to be widely distributed throughout Micronesia. Intro­ duced species include four mammals (Rattus exulans, Canis fami/iaris, Fe/is catus, Sus scrofa), the Red Junglefowl (Gallus gal/us) among birds, and at least one lizard (Varanus indicus). Of the 17 indigenous birds, ten are presumed or documented breeding residents, including four land birds, a heron, and five terns. The Micronesian Honeyeater (My=omela rubratra) is the most common land bird, followed closely by the Micro­ nesian Starling (Aplonis opaca). The vegetation is mainly Cocos forest, considerably modified by periodic cutting of the undergrowth, deliber­ ately set fires, and the rooting of pigs. Most of the present vertebrate species do not appear to be seriously endangered by present levels of human activity. But the Micronesian Pigeon (Ducula oceanica) is less numerous on the settled islands, probably reflecting increased hunting pressure, and sea turtles (especially Chelonia mydas) and their eggs are harvested indiscriminately . Introduction Terrestrial vertebrates have been poorly studied on many of the remote atolls of Micronesia, and distributional records are lacking or scanty for many islands. The present study documents the occurrence and relative abundance of reptiles, birds, and mammals on Pakin Atoll for the first time.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • <I>ANOLIS</I> LIZARDS in the FOOD WEBS of STRUCTURALLY
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA Nathan W. Turnbough University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Turnbough, Nathan W., "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4174 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nathan W. Turnbough entitled "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • The Herpetofauna of Timor-Leste: a First Report 19 Doi: 10.3897/Zookeys.109.1439 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 109: 19–86 (2011) The herpetofauna of Timor-Leste: a first report 19 doi: 10.3897/zookeys.109.1439 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The herpetofauna of Timor-Leste: a first report Hinrich Kaiser1, Venancio Lopes Carvalho2, Jester Ceballos1, Paul Freed3, Scott Heacox1, Barbara Lester3, Stephen J. Richards4, Colin R. Trainor5, Caitlin Sanchez1, Mark O’Shea6 1 Department of Biology, Victor Valley College, 18422 Bear Valley Road, Victorville, California 92395, USA; and The Foundation for Post-Conflict Development, 245 Park Avenue, 24th Floor, New York, New York 10167, USA 2 Universidade National Timor-Lorosa’e, Faculdade de Ciencias da Educaçao, Departamentu da Biologia, Avenida Cidade de Lisboa, Liceu Dr. Francisco Machado, Dili, Timor-Leste 3 14149 S. Butte Creek Road, Scotts Mills, Oregon 97375, USA 4 Conservation International, PO Box 1024, Atherton, Queensland 4883, Australia; and Herpetology Department, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 5 School of Environmental and Life Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia 6 West Midland Safari Park, Bewdley, Worcestershire DY12 1LF, United Kingdom; and Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Vic- toria 3010, Australia Corresponding author: Hinrich Kaiser ([email protected]) Academic editor: Franco Andreone | Received 4 November 2010 | Accepted 8 April 2011 | Published 20 June 2011 Citation: Kaiser H, Carvalho VL, Ceballos J, Freed P, Heacox S, Lester B, Richards SJ, Trainor CR, Sanchez C, O’Shea M (2011) The herpetofauna of Timor-Leste: a first report. ZooKeys 109: 19–86.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Emoia Impar and Emoia Cyanura)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.11.902866; this version posted January 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SIZE-BASED DOMINANCE HIERARCHY IN ONE OF TWO SYMPATRIC CRYPTIC PACIFIC SKINKS (EMOIA IMPAR AND EMOIA CYANURA) MARY “MOLLY” HALLSTEN Department of Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Emoia impar and Emoia cyanura are two morphologically cryptic Pacific skinks that have different preferred thermal micro-habitats but similar geographic range and overlap. Previously individuals have been noted to display a size-based dominance hierarchy at favored basking sites, though this behavior was not specified between species. I found that only one of the two species, E. impar, naturally presents this size-based dominance hierarchy in areas of high population density. Neither species exhibit the hierarchy in low population density areas. No evidence was found to suggest that the presence of this hierarchy allows one species to exclude the other. Key words: skinks; Emoia; thermal resource partitioning; Moorea, French Polynesia; size- based dominance hierarchy INTRODUCTION Understanding how multiple species co- exist within a shared habitat is a fundamental challenge in ecology (Gause 1934). Hardin (1960) documented the competitive exclusion principle, which states that if two non- interbreeding populations occupy the same ecological niche and geographical territory, and differ in their rate of resource consumption, one species will eventually drive the other to extinction.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland
    Summary of an Observational Survey of Reptiles and Amphibians at Bimblebox Nature Reserve - Queensland Graham Armstrong – May, 2016 Objective - to provide an updated and more complete list of the herpetofauna recorded from Bimblebox Nature Refuge. Approach - 1. Review available data and records pertaining to the herpetofauna at Bimblebox Nature Refuge. 2. Visit Bimblebox Nature Refuge during Spring, Summer and Autumn seasons to make observational and photographic records of the herpetofauna observed. Methodology - In order to maximise the number of species recorded, 3 successive 2.5 day visits were made to BNR, one in September 2015, Jan 2016 and the end of April 2016. This approach potentially broadens the range of weather conditions experienced and hence variety of reptiles and amphibians encountered when compared to a single field visit. Survey methodology involved walking and driving around the nature refuge during the day and after dark (with the aid of a head torch to detect eye-shine). Active reptiles including those that ran for or from cover while passing by were recorded. Frequently, in situ photographic evidence of individuals was obtained and the photographs are available for the purpose of corroborating identification. To avoid any double counting of individual animals the Refuge was traversed progressively and the locations of animals were recorded using a GPS. During any one visit no area was traversed twice and when driving along tracks, reptiles were only recorded the first time a track was traversed unless a new species was detected at a later time. Available Records The most detailed list of reptiles and amphibians recorded as occurring on Bimblebox Nature Reserve comes from the standardised trapping program of Eric Vanderduys of CSIRO in Townsville.
    [Show full text]
  • Science for Saving Species Research Update Project 2.3.2 Options Beyond Captivity for Two Critically Endangered Christmas Island Reptiles
    Science for Saving Species Research Update Project 2.3.2 Options beyond captivity for two critically endangered Christmas Island reptiles Conservation options for Christmas Island’s blue-tailed skinks Project Overview Introduced predators The blue-tailed skink Several introduced predators (Cryptoblepharus egeriae) threaten these lizard species, and and Lister’s gecko (Lepidodactylus were likely to have significantly listeri) are two endemic reptiles contributed to their extinction in to Christmas Island that are the wild. The wolf snake (Lycodon now presumed to be extinct in capucinus) and giant centipede the Wild. Both were once (Scolopendra subspinipes) are two common on the Island, however such species, and pose ongoing both declined rapidly from the threats to reintroduced wild 1980s, and by 2012 both had populations of skinks and geckos. vanished from the wild. The wolf snake was introduced Fortunately, in 2009 and early to Christmas Island in the 1980s 2010, Parks Australia, with the and is now found across the entire help of Perth Zoo, captured 66 island. On Christmas Island, the wolf blue-tailed skinks and 43 Lister’s snake is known to threaten native geckos to establish captive reptiles via predation. It has also breeding populations on been implicated in the extinction Christmas Island and at Taronga of the Christmas Island pipistrelle Zoo. Captive breeding has (Pipistrellus murrayi). circumvented extinction in Giant centipedes have been the short term, with both present since European settlement captive populations now over of the island in the late 1880s. 1000individuals. However, They predate on a range of native the facilities on Christmas Island species, including native reptiles Image: Renata De Jonge, Parks Australia have reached carrying capacity, like the blue-tailed skink and Blue-tailed skinks within a breeding and there is strong interest in Lister’s gecko.
    [Show full text]