Chemical Characterization of Camelina Seed Oil

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Characterization of Camelina Seed Oil CHEMICAL CHARACTERIZATION OF CAMELINA SEED OIL By ANUSHA SAMPATH A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Food Science Written under the direction of Professor Thomas G. Hartman And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey [May, 2009] ABSTRACT OF THE THESIS Chemical characterization of Camelina Seed Oil By ANUSHA SAMPATH Thesis Director: Professor Thomas G. Hartman, Ph.D Camelina sativa (L).Crantz also known as false flax, Dutch flax is an ancient oil seed crop that belongs to the Brassicaceae family. Camelina oil pressed from the seeds of this crop has a unique aroma. Eighteen camelina oil samples were analyzed for fatty acid composition (13 unrefined, 2 deodorized and 3 refined samples). Eight of these samples were analyzed for unsaponifiables content, free fatty acids and volatiles and semi-volatile compounds. Seven camelina seed samples were analyzed for volatile and semi-volatile compounds as well to determine the suitability of these products in animal feed formulations. Fatty acid composition was obtained by the trans-esterification of the triacylglycerols in the oil to their methyl esters and 21 different fatty acids with chain length from C-14 to C-24 were identified. The major fatty acids were α-linolenic, linoleic, oleic, eicosenoic and palmitic acid and three fatty acids, namely tricosanoic, pentadecanoic and heptadecanoic are being first reported here. ii The unsaponifiables fraction in camelina oil samples ranged between 0.45-0.8% and 21 compounds were identified. The major compounds identified were β-sitosterol, campesterol, cholesterol, phytol, squalene and brassicasterol which accounted for 80-90% of the unsaponifiable content in camelina oil. A total of 168 and 306 volatile and semi-volatile compounds were identified in the headspace of camelina seeds and oil respectively. Homologous series of lipid oxidation derived compounds like aldehydes, ketones, alcohols, furans and hydrocarbons dominate the aroma and favor profile of the oil and seeds. Sulfur compounds (methyl mercaptan, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide), naturally occurring 3-alkyl-2-methoxy pyrazines, terpenes, short chain free fatty acids and maillard reaction products were also identified in camelina seeds. The presence of 2-sec-butyl-3- methoxy pyrazine, aldehydes and alcohols (with green notes) and sulfur compounds like 2, 4, 5-trithiahexane and 1-butene-4-isothiocyanato in some camelina oils, may be responsible for the unique aroma of this oil. The information from this study may potentially be used by camelina oil producers as supporting data for the chemical characteristics of the oil produced in Montana, USA. Camelina oil can serve as a good vegetable source of α-linolenic acid provided it gets the much awaited GRAS certification. iii ACKNOWLEDGEMENT I would like to extend my sincere thanks and regards to my advisor Dr.Thomas Hartman, for providing me the opportunity to work on this project. He has provided me with extensive support and guidance while working on this study and during the entire time I have worked in the Mass-Spectrometry laboratory. I would like to specially thank Dr.Chi Tang Ho and Dr.Henryk Daun for having consented to be a part of my defense committee. I also sincerely appreciate their valuable time and inputs. I would like to thank Dr.Wudeneh Letchamo who has been responsible for co-ordinating this project with GNG (Great Northern Growers, Montana) and providing us with samples of camelina seeds and oil. I would like to thank the lab staffs Dr.Bin Khong Khoo and Joseph Lech for their guidance and support. I would also like to mention my special appreciation to Dr.Bin Khoo for having guided me throughout the time I have worked in the Mass-Spectrometry lab with his patience and eagerness to help students. I would also like to thank all my friends in the graduate school who have given constant support and encouragement. My special mention goes to my dear friends Poornima and Kasi Sundaresan for their constant encouragement and support. I would like to thank my family for having given me the support to work on my thesis and helping me achieve my goal. Finally I would like to thank God for giving me the strength to pursue such a wonderful opportunity. Anusha Sampath iv TABLE OF CONTENTS ABSTRACT---------------------------------------------------------------------------------ii ACKNOWLEDGEMENT---------------------------------------------------------------iv TABLE OF CONTENTS-----------------------------------------------------------------v LIST OF TABLES-------------------------------------------------------------------------x LIST OF FIGURES---------------------------------------------------------------------xiii 1. INTRODUCTION-------------------------------------------------------------------------1 1.1 Background on Camelina sativa-------------------------------------------------1 1.2 Geographical distribution of Camelina sativa----------------------------------8 1.3 Camelina Seed Processing-------------------------------------------------------10 1.4 Refining of Vegetable Oils------------------------------------------------------12 1.5 Type of Camelina Oil------------------------------------------------------------14 1.6 Uses and applications of Camelina seeds and oil-----------------------------15 1.6.1 Camelina seeds-----------------------------------------------------------15 1.6.2 Camelina Oil-------------------------------------------------------------15 1.6.3 Camelina Meal-----------------------------------------------------------18 2. LITERATURE REVIEW--------------------------------------------------------------19 2.1 Fatty acid composition-----------------------------------------------------------19 2.2 Unsaponifiables fraction---------------------------------------------------------20 2.3 Flavor and Aroma compounds--------------------------------------------------21 3. HYPOTHESIS AND OBJECTIVE OF THE RESEARCH---------------------23 3.1 Hypothesis of the research-------------------------------------------------------23 v 3.2 Objectives of the research-------------------------------------------------------24 4. MATERIALS AND METHODS------------------------------------------------------25 4.1 Characterization of fatty acids in Camelina Oil------------------------------25 4.1.1 Sample Materials--------------------------------------------------------25 4.1.2 Chemicals and reagents-------------------------------------------------27 4.1.3 Trans-esterification of fatty acids--------------------------------------27 4.1.4 Instrumentation-----------------------------------------------------------27 4.2 Unsaponifiables fraction extraction and identification----------------------30 4.2.1 Sample Materials--------------------------------------------------------30 4.2.2 Chemical reagents-------------------------------------------------------30 4.2.3 Isolation and characterization of unsaponifiables fraction in Camelina oil-----------------------------------------------------------31 4.3 Free fatty Acids-------------------------------------------------------------------34 4.3.1 Sample materials---------------------------------------------------------34 4.3.2 Chemical reagents-------------------------------------------------------34 4.3.3 Determination of free fatty acids--------------------------------------34 4.4 Volatiles and semi-volatiles-----------------------------------------------------36 4.4.1 Volatiles identification using Purge & Trap thermal Desorption method ------------------------------------------------------36 4.4.1.1 Sample Materials-----------------------------------------------36 4.4.1.2 Other materials--------------------------------------------------37 4.4.1.3 Identification of volatiles and semi-volatiles in Camelina oil-----------------------------------------------------38 vi 4.4.1.4 Identification of volatiles and semi-volatiles in Camelina seeds--------------------------------------------------39 4.4.2 Volatiles identification using Static headspace method in camelina seed ---------------------------------------------------------42 5. RESULTS AND DISCUSSION--------------------------------------------------------43 5.1 Fatty Acid Composition----------------------------------------------------------43 5.1.1 Fatty acid methyl ester (FAMES) standard components----------43 5.1.2 Fatty acids in Camelina Oil---------------------------------------------43 5.2 Unsaponifiables fraction---------------------------------------------------------56 5.2.1 Calculation and determination of unsaponifiable fraction---------56 5.2.2 Identification of unsaponifiable components by GC-MS----------58 5.3 Free Fatty Acids-------------------------------------------------------------------69 5.4 Volatiles and Semi-volatiles identification------------------------------------71 5.4.1 Identification of volatiles and semi-volatiles in camelina Seeds ----------------------------------------------------------------------71 5.4.2 Identification of volatiles and semi-volatiles in individual Camelina seed samples--------------------------------------------------80 5.4.2.1 Volatiles and semi-volatiles in Sample Ligena 1 Seeds by static and dynamic headspace methods-----------80 5.4.2.2 Volatiles and semi-volatiles in Sample Ligena 1A Seeds by static and
Recommended publications
  • Camelina Sativa, a Montana Omega-3 and Fuel Crop* Alice L
    Reprinted from: Issues in new crops and new uses. 2007. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA. Camelina sativa, A Montana Omega-3 and Fuel Crop* Alice L. Pilgeram, David C. Sands, Darrin Boss, Nick Dale, David Wichman, Peggy Lamb, Chaofu Lu, Rick Barrows, Mathew Kirkpatrick, Brian Thompson, and Duane L. Johnson Camelina sativa (L.) Crantz, (Brassicaceae), commonly known as false flax, leindotter and gold of pleasure, is a fall or spring planted annual oilcrop species (Putman et al. 1993). This versatile crop has been cultivated in Europe since the Bronze Age. Camelina seed was found in the stomach of Tollund man, a 4th century BCE mummy recovered from a peat bog in Denmark (Glob 1969). Anthropologists postulate that the man’s last meal had been a soup made from vegetables and seeds including barley, linseed, camelina, knotweed, bristle grass, and chamomile. The Romans used camelina oil as massage oil, lamp fuel, and cooking oil, as well as the meal for food or feed. Camelina, like many Brassicaceae, germinates and emerges in the early spring, well before most cereal grains. Early emergence has several advantages for dryland production including efficient utiliza- tion of spring moisture and competitiveness with common weeds. In response to the resurgent interest in oil crops for sustainable biofuel production, the Montana State Uni- versity (MSU) Agricultural Research Centers have conducted a multi-year, multi-specie oilseed trial. This trial included nine different oilseed crops (sunflower, safflower, soybean, rapeseed, mustard, flax, crambe, canola, and camelina). Camelina sativa emerged from this trial as a promising oilseed crop for production across Montana and the Northern Great Plains.
    [Show full text]
  • The Emerging Biofuel Crop Camelina Sativa Retains a Highly Undifferentiated Hexaploid Genome Structure
    ARTICLE Received 6 Jan 2014 | Accepted 21 Mar 2014 | Published 23 Apr 2014 DOI: 10.1038/ncomms4706 OPEN The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure Sateesh Kagale1,2, Chushin Koh2, John Nixon1, Venkatesh Bollina1, Wayne E. Clarke1, Reetu Tuteja3, Charles Spillane3, Stephen J. Robinson1, Matthew G. Links1, Carling Clarke2, Erin E. Higgins1, Terry Huebert1, Andrew G. Sharpe2 & Isobel A.P. Parkin1 Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop. 1 Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2. 2 National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9. 3 Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland. Correspondence and requests for materials should be addressed to A.G.S.
    [Show full text]
  • Novel Mutant Camelina and Jatropha As Valuable Feedstocks for Biodiesel
    www.nature.com/scientificreports OPEN Novel mutant camelina and jatropha as valuable feedstocks for biodiesel production Muhammad Mahran Aslam1, Asif Ali Khan1,2, Hafza Masooma Naseer Cheema1, Muhammad Asif Hanif3*, Muhammad Waqar Azeem3 & Muhammad Abubakkar Azmat4 Novel mutant camelina has become a crop of interest inspired by its short growing season, low harvesting costs and high oil composition. Despite those advantages, limited research has been done on novel mutant lines to determine applicability for biodiesel production. Jatropha is an extremely hardy, frugal and high oil yielding plant species. The major aim of the present study was not only to compare biodiesel production from jatropha and camelina but was also to test the efcacy of camelina mutant lines (M6 progenies) as superior feedstock. The biodiesel yield from camelina oil and jatropha oil was 96% and 92%, respectively. The gas chromatographic analysis using fame ionization detector (GC-FID) showed that mutant camelina oil biodiesel sample contain major amount of oleic acid (46.54 wt%) followed by linolenic acid (20.41 wt%) and linoleic acid (16.55 wt%). Jatropha biodiesel found to contain major amount of oleic acid (45.03 wt%) followed by linoleic acid (25.07 wt%) and palmitic acid (19.31 wt%). The fuel properties of produced biodiesel were found in good agreement with EN14214 and ASTM D6751 standards. The mutant camelina lines biodiesel have shown comparatively better fuel properties than jatropha. It has shown low saponifcation value (120.87–149.35), high iodine value (130.2–157.9) and better cetane number (48.53–59.35) compared to jatropha biodiesel which have high saponifcation value (177.39–198.9), low iodine value (109.7– 123.1) and lesser cetane number (47.76–51.26).
    [Show full text]
  • Camelina Sativa Oil-A Review
    Scientific Bulletin. Series F. Biotechnologies, Vol. XXI, 2017 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 CAMELINA SATIVA OIL-A REVIEW Alina-Loredana POPA1, Ștefana JURCOANE1, Brândușa DUMITRIU2 1University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, Bucharest, Romania 2S.C. BIOTEHNOS S.A., 3-5 Gorunului Street, Otopeni, Romania Corresponding author email: [email protected] Abstract Camelina sativa is an oil seeded plant belonging to the Brassicaceae family. It can be cultivated both in winter and spring season, having a remarkable capacity to adapt and resist to difficult climate conditions. Moreover, Camelina crop has shown resistance to pests and diseases which affect other crops from the same family. The synthesis of phytoalexins seems to be responsible for the unusual camelina defense system. Camelina oil is the main product resulted by extraction from seeds. The most common extraction methods are: mechanical extraction, solvent extraction and enzymatic extraction. Recently it has been considered also the supercritical-CO2 extraction. The oil obtained contains an unsaponifiable fraction represented by tocopherols, sterols and a saponifiable fraction consisting in fatty acids. The fatty acids profile is mainly represented by unsaturated fatty acids- mono and mostly polyunsaturated (>55%) and saturated fatty acids (9.1-10.8%). The most frequent fatty acids from camelina oil are linolenic, linoleic, oleic and eicosenoic. In comparison with other Brassicaceae plants, camelina oil has a low content of erucic acid. Camelina oil, due to its composition, has multiple uses in various industries: feed technology for substitution or supplementation of other oils (fish, broilers) in animal diets, biodiesel production, jet fuel production, biopolymer industry (peel adhesion properties, paints, varnishes), cosmetic industry (skin-conditioning agent), in food products due to its high omega-3 fatty acid content and low erucic acid content and as milk fat substitution.
    [Show full text]
  • Camelina Sativa L. Crantz) Genotypes in Response to Sowing Date Under Mediterranean Environment
    agronomy Article Performance and Potentiality of Camelina (Camelina sativa L. Crantz) Genotypes in Response to Sowing Date under Mediterranean Environment Luciana G. Angelini , Lara Abou Chehade , Lara Foschi and Silvia Tavarini * Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] (L.G.A.); [email protected] (L.A.C.); [email protected] (L.F.) * Correspondence: [email protected] Received: 10 November 2020; Accepted: 5 December 2020; Published: 8 December 2020 Abstract: Given the growing interest for camelina, as a multipurpose oilseed crop, seven cultivars and two sowing times were compared to characterize camelina’s production potential in the rainfed agroecosystems of Central Italy. A split-plot design, with sowing date as main plot (autumn and spring) and cultivar (V1, V2, V3, V4, V5, V6, and CELINE) as subplot, was adopted over two growing seasons (2017–2019). Phenology, yield and yield components, protein and oil content, and fatty acid profile were evaluated. Going from autumn to spring sowing, a significant reduction was observed in the number of days (139 vs. 54 days) and GDD (642 vs. 466 ◦C d) from emergence to beginning of flowering, with more consistent variations among cultivars. V1 and V2 were the earlier ones both in spring and autumn sowing. Autumn sowing increased seed yield (+18.0%), TSW (+4.1%), number of siliques per plant (+47.2%), contents of α-linolenic, eicosenoic, erucic and eicosadienoic acids, and polyunsaturated to saturated fatty acid ratio. Regarding genotype, V3 showed the best seed and oil yield in autumn, whereas V1 and CELINE were the best performing in spring.
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]
  • Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using The
    Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of Instant Controlled pressure Drop (DIC) : process performance and biofuel quality Fanar Bamerni To cite this version: Fanar Bamerni. Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of In- stant Controlled pressure Drop (DIC) : process performance and biofuel quality. Chemical and Process Engineering. Université de La Rochelle, 2018. English. NNT : 2018LAROS004. tel-02009827 HAL Id: tel-02009827 https://tel.archives-ouvertes.fr/tel-02009827 Submitted on 6 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NIVERSITÉ DE LA ROCHELLE UFR des SCIENCES et TECHNOLOGIE Année: 2018 Numéro attribué par la bibliothèque: THÈSE pour obtenir le grade de DOCTEUR de L’UNIVERSITÉ DE LA ROCHELLE Discipline : Génie des Procédés Industriels Présentée et soutenue par Fanar Mohammed Saleem Amin BAMERNI Le 23 février 2018 TITRE: Procédé de Fabrication de Biodiesel assistée par Texturation par Détente Instantanée Contrôlée (DIC) de Camelina Sativa : Performance des Procédés et Qualité du Produit. Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using the Technology of Instant Controlled Pressure Drop (DIC); Process performance and biofuel Quality. Dirigée par : Professeur Ibtisam KAMAL et Professeur Karim ALLAF JURY: Rapporteurs: M.
    [Show full text]
  • The Regional Feedstock Partnership: Herbaceous Energy Crops and CRP Land for Biomass Production
    The Regional Feedstock Partnership: Herbaceous Energy Crops and CRP Land for Biomass Production 20-23 May 2013 Feedstock Supply and Logistics Peer Review Vance N. Owens South Dakota State University Goal/Objectives . Development of more accurate cost supply information and improved communication with partners in the biomass feedstock supply chain . Replicated field trials across regions to determine the impact of residue removal on future grain yield. Replicated field trials to develop energy crops within geographical regions. Regional assessment of feedstock resources which can be used to determine supply curves. Long term field data is the best and most direct way to determine commercial viability 20 May 2013 2013 Feedstock Platform Review 2 Quad Chart Overview Timeline Barriers • Project start date: 01/15/2007 • Ft-A: Resource availability and cost • Project end date: 09/30/2013 • Ft-B: Sustainable production • Percent complete: 80% • Ft-C: Crop genetics Budget Partners • Funding for FY11 • DOE: $1,150,637 • Collaborations: Sun Grant, DOE, USDA-ARS, Land-Grant • Cost share: $287,659 Universities, National Labs • Funding for FY12: $0 • Project management: • Funding for FY13: $0 Herbaceous lead, species leads, • Years the project has been field trial PIs funded/average annual funding • 6 years @ $755,512/yr 20 May 2013 2013 Feedstock Platform Review 3 Project Overview . Field trials initiated in 2008, or added later as needed, on multiple selected species . Development of regional and national yield estimates for sustainable biomass supply systems 20 May 2013 2013 Feedstock Platform Review 4 Presentation Outline . General Approach . Overall Technical Progress and Accomplishments . Species discussion . Energycane . CRP . Miscanthus . Switchgrass .
    [Show full text]
  • A Co-Opted Steroid Synthesis Gene, Maintained in Sorghum but Not Maize, Is Associated with a Divergence in Leaf Wax Chemistry
    A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry Lucas Bustaa,b,1,2,3, Elizabeth Schmitza,b,1, Dylan K. Kosmac, James C. Schnableb,d, and Edgar B. Cahoona,b,3 aDepartment of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE 68588; bCenter for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, NE 68588; cDepartment of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557; and dDepartment of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583 Edited by Julian I. Schroeder, University of California San Diego, La Jolla, CA, and approved February 1, 2021 (received for review November 17, 2020) Virtually all land plants are coated in a cuticle, a waxy polyester Though plants deploy diverse mechanisms to protect them- that prevents nonstomatal water loss and is important for heat selves against drought and heat, one of the most widespread and drought tolerance. Here, we describe a likely genetic basis for (found in essentially all land plants), is a hydrophobic, aerial a divergence in cuticular wax chemistry between Sorghum bicolor, surface coating called the cuticle. This structure is composed of a a drought tolerant crop widely cultivated in hot climates, and its fatty acid-derived polyester scaffold called cutin, inside and on close relative Zea mays (maize). Combining chemical analyses, het- top of which accumulates wax, a mixture of hydrophobic com- erologous expression, and comparative genomics,
    [Show full text]
  • Camelina D.T
    EM 8953-E • January 2008 Oilseed Crops Camelina D.T. Ehrensing and S.O. Guy History Camelina (Camelina sativa L.) is native from Finland to Romania and east to the Ural Mountains. It was first cultivated in northern Europe during the Bronze Age. The seeds were crushed and boiled to release oil for food, medicinal use, and lamp oil. It is still a relatively common weed in much of Europe, known as false flax or gold-of- pleasure. Although it was widely grown in Europe and Russia until the 1940s, camelina was largely displaced by higher-yielding crops after World War II. Its decline in Europe was accelerated by farm subsidy programs that favored the major commodity grain and oilseed crops. In recent years, camelina production has Camelina field in eastern Washington. increased somewhat due to heightened interest in vegetable oils high in omega-3 fatty acids (a principle component of camelina oil). Very little plant breeding or crop production improvement has been done on camelina, so the full potential of this crop has not yet been explored. Since it can be grown with few input costs and under marginal conditions, there is currently a major effort in Montana to produce camelina on a large scale in dryland production as a low-input-cost oilseed. Since canola production is currently prohibited in many parts of Oregon state, Oregon growers are considering growing camelina as an alternative oilseed crop. Daryl T. Ehrensing, agronomist, Department of Crop and Soil Science, Oregon State University; and Stephen O. Guy, Extension crop management specialist, University of Idaho.
    [Show full text]
  • The Effect of Camelina Oil (Α-Linolenic Acid) and Canola Oil (Oleic Acid) on Lipid Profile, Blood Pressure, and Anthropometric Parameters in Postmenopausal Women
    Experimental research The effect of camelina oil (α-linolenic acid) and canola oil (oleic acid) on lipid profile, blood pressure, and anthropometric parameters in postmenopausal women Małgorzata Anna Dobrzyńska, Juliusz Przysławski Chair and Department of Bromatology, Poznan University of Medical Sciences, Corresponding author: Poznań, Poland Małgorzata Anna Dobrzynska PhD Submitted: 25 September 2018 Chair and Department Accepted: 3 December 2018 of Bromatology Poznan University of Medical Arch Med Sci Sciences DOI: https://doi.org/10.5114/aoms.2020.94033 42 Marcelińska St Copyright © 2020 Termedia & Banach 60-354 Poznań, Poland E-mail: mdobrzynska@ump. edu.pl Abstract Introduction: Cold-pressed camelina oil (Camelina sativa) is rich in polyun- saturated fatty acids and may have a beneficial effect on the reduction of cardiovascular risk. Material and methods: In this study, we investigated the parameters contrib- uting to the development of cardiovascular diseases, such as dietary intake, nutritional status, blood pressure, and lipid profile. Sixty postmenopausal women with dyslipidaemia were randomly assigned to two oil groups: came- lina oil and canola oil. The subjects consumed daily 30 g of the test oils for six weeks. Before and after dietary intervention, the assessment of nutrition (four-day dietary recall), anthropometric parameters, lipid profile, and blood pressure were evaluated. Results: During the dietary intervention, decreased low-density lipoprotein (LDL) cholesterol concentration in both groups (15 mg/dl [0.4 mmol/l] reduc- tion in the camelina oil group and 11 mg/dl [0.3 mmol/l] reduction in the canola oil group) was observed. In this study a decrease of waist circumfer- ence (approx.
    [Show full text]
  • Camelina Sativa Biodiesel Cope the Burning Issue of Global Worming; Current Status and Future Predictions
    Modern Concepts & Developments CRIMSON PUBLISHERS C Wings to the Research in Agronomy ISSN 2637-7659 Mini Review Camelina sativa Biodiesel Cope the Burning Issue of Global Worming; Current Status and Future Predictions Aslam MM1,2*, Usama M3, Nabi HG3, Ahmad N4, Parveen B4, Bilawal Akram HM5 and Zafar UB6 1Department of Molecular and Cellular Biology, Canada 2Department of Crop Genetics and Breeding, China 3Department of Plant Breeding and Genetics, Pakistan 4Department of Agronomy, Pakistan 5Department of Agronomy, University of Agriculture, Pakistan 6Department of Biotechnology, Pakistan *Corresponding author: Aslam MM, Department of Crop Genetics and Breeding, China Submission: : January 06, 2019; Published: February 26, 2019 Abstract Camelina sativa possesses high potential for biodiesel and ethanol production. It has more biodiesel potential per unit area of land than many other crops with minimum usage of inputs. This is very useful for effective spring moisture utilization. Biofuels appear to be a potential alternative “greener” energy substitute for fossil fuels. About 84% savings in GHG emissions were obtained with camelina jet fuel, compared with petroleum jet fuel. This shift from fossil fuels to biofuels has the potential to reduce global warming emissions, lessen the country’s dependence on petroleum import and create new jobsKeywords: for rural and urban communities. 2 emission Camelina; Biodiesel; Energy; Global warming; CO Introduction Camelina sativa to Brassicaceae family [1]. Camelina plants germinate in early spring on petroleum import and create new jobs for rural and urban L. Crantz is a broad leaf flowering plant, belongs before other cereal grains. This is very useful for effective spring communities [4]. Biodiesel is the renewable energy resource which has opened up a new horizon for using a wide range of feed stock as engine [5].
    [Show full text]