A Life Cycle Assessment of Biodiesel Derived from the В€Œniche Fillingв

Total Page:16

File Type:pdf, Size:1020Kb

A Life Cycle Assessment of Biodiesel Derived from the В€Œniche Fillingв Applied Energy 92 (2012) 92–98 Contents lists available at SciVerse ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy A life cycle assessment of biodiesel derived from the ‘‘niche filling’’ energy crop camelina in the USA ⇑ Brian J. Krohn , Matthias Fripp Oxford University, Environmental Change Institute, School of Geography and the Environment, South Parks Road, Oxford OX1 3QY, UK article info abstract Article history: Camelina sativa (L.) is a promising crop for biodiesel production that avoids many of the potential pitfalls Received 19 July 2011 of traditional biofuel crops, such as land use change (LUC) and food versus fuel. In this study the environ- Received in revised form 30 September 2011 mental viability of camelina biodiesel was assessed using life cycle analysis (LCA) methodology. The LCA Accepted 14 October 2011 was conducted using the spreadsheet model dubbed KABAM. KABAM found that camelina grown as a Available online 29 November 2011 niche filling crop (in rotation with wheat or as a double crop) reduces greenhouse gas (GHG) emissions and fossil fuel use by 40–60% when compared to petroleum diesel. Furthermore, by avoiding LUC emis- Keywords: sions, camelina biodiesel emits fewer GHGs than traditional soybean and canola biodiesel. Finally, a sen- Life cycle assessment sitivity analysis concluded that in order to maintain and increase the environmental viability of camelina Camelina Biodiesel and other niche filling biofuel crops, researchers and policy makers should focus their efforts on achieving Land use change satisfactory yields (1000–2000 kg/ha) while reducing nitrogen fertilizer inputs. Biofuel Ó 2011 Elsevier Ltd. All rights reserved. 1. Introduction To address these two issues a variety of alternative biofuel feed- stocks are currently being researched. Niche filling crops show po- Due to a persistent and growing awareness of the negative so- tential in avoiding the two major issues of food vs. fuel and LUC cial, political, and environmental impacts of fossil fuels over the because they are crops that can be grown during fallow periods last two decades there has been a constant push by governments, or mixed into the traditional agricultural system. [8–11]. Camelina industry, and citizens to develop alternative energy sources that sativa (L.) is a niche filling oilseed crop that shows potential as a fu- are both domestic and renewable. In the US biofuels are predicted ture feedstock for biofuels, specifically biodiesel [12,13,13–17]. to make up 80% of the growth in liquid fuels between 2010 and Camelina is a notable potential niche filling crop because com- 2035 [1]. Biofuels from traditional food crops such as corn, soy- pared to current oilseed crops, specifically canola, it requires lower beans or canola, however, have two significant drawbacks. First, agricultural inputs, is more tolerant of cool weather, has a shorter the high demand for biofuel crops may result in direct or indirect growing season, and is more efficient in its water use [14,18–20]. changes in land use on a domestic or international level [2,3]. Land Due to these unique properties camelina is well suited to fill fallow use change (LUC) is a considerable issue when land with a large periods in dryland wheat farming or to be grown as a double crop amount of stored carbon, such as forests or peat bogs, is converted with short season soybeans or sunflowers [18,21–23]. Before con- into land with low amounts of stored carbon as is the case for most siderable acreage is devoted to camelina, however, it is important agricultural land. The resulting conversion releases sequestered to assess its environmental viability. In this paper we assess the carbon into the atmosphere creating a ‘‘carbon debt’’ that may take fossil energy consumption and greenhouse gas (GHG) emissions the biofuel years if not hundreds of years to pay off [2,4,5]. The sec- of camelina biodiesel using life cycle analysis methods. ond issue for biofuels is the dilemma between food and fuel [6].In 2006/2007, food prices around the world reached record highs while the US converted a record 20% of its corn crop to ethanol 2. Methods [7]. With an increasing global population and increasing demand for high agricultural intensity foods such as meat it seems prudent 2.1. Goal and scope to reserve arable land and crop production for food. The methodology of this study follows the ISO 14040 methods for conducting an attributional LCA [24–26]. The goal of this study ⇑ Corresponding author. Address: Keble College, Oxford University, Oxford OX1 is to assess the life cycle energy balance and GHG emissions associ- 3PG, UK. Tel.: +44 909414570. ated with biodiesel derived from camelina in several different sce- E-mail address: [email protected] (B.J. Krohn). narios. The scope of the study includes the agricultural production 0306-2619/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.apenergy.2011.10.025 B.J. Krohn, M. Fripp / Applied Energy 92 (2012) 92–98 93 of the fuel crop, extraction of the oil, conversion of the oil to biodie- sel, and transportation of biodiesel to market. To quantify and compare the energy and emissions in an adapt- able and transparent manner we developed Krohn’s Alternative Biodiesel Analysis Model (KABAM). KABAM uses a similar structure as the attributional LCA models BESS, EBAMM, and GBAMM, which utilize a fixed life cycle energy or emission factor for each input. The life cycle factors were derived using the GREET model and the current LCA literature [27–29]. The life cycle energy and emis- sions factors for each input can then be multiplied by their usage and then summed together to determine the LCA value for the bio- diesel system, as shown in Eq. (1). The benefit of the life cycle fac- tor method is that the assumptions for each input can be easily compared across scenarios and against other models; thus making the model more transparent and allowing for easier review and cri- tique of the models assumptions [30]. X LCA value ¼ ðEmission factorÞx ðUsage rateÞx x ¼ Input into the biofuel system ð1Þ To draw further conclusions from the KABAM model, we also conducted a sensitivity analysis. A sensitivity analysis is a helpful tool because it identifies and ranks the inputs that have the great- est influence on the model’s outcomes. Specifically, a sensitivity Fig. 1. The system boundaries for the life cycle assessment of biodiesel fuel. analysis aids in drawing conclusions from an LCA model by high- lighting the inputs of greatest concern. Sensitivity is evaluated by the sensitivity coefficient, which is defined in finite terms as the change in output from two model runs over the change in a single 2.3. Emission factors variable, see Eq. (2) [31]. The following section describes the data, data sources, and C2 À C1 methods used to determine the life cycle factors for each input used S ¼ ð2Þ k2 À k1 in the KABAM model. The life cycle factors describe the upstream energy or emissions of the inputs, such as fuels (e.g. gasoline) where S is the sensitivity, C the model output, and k is the model and chemicals (e.g. methanol). We utilized GREET’s life cycle path- input. ways to calculate most of the upstream energy and emissions for Finally, a significant issue in all LCAs is how to distribute the en- each input for the year 2010, unless otherwise noted [37]. In some ergy and emissions between the primary product (biodiesel) and instances GREET was insufficient or out of date, in which case we the co-products (glycerin and seed meal) [32]. Allocation methods utilized existing industry data or previous LCA studies to deter- distribute life cycle emissions and energy by numerical properties, mine the life cycle factors, for greater details see the supplemen- such as mass, energy content, or economic value [33]. Another tary material. The greenhouse warming equivalence factors for a method, called displacement, addresses the co-product issue by 100-year period for CO2,CH4, and N2O are 1, 25, 298 respectively, taking account of the energy or emissions that are avoided when were taken from the IPCC 2007 AR4 report. Table 1 lists the fossil the co-products replace other products in the market and thus gen- energy life cycle factors and Table 2 lists the emission life cycle fac- erating an offset credit [33]. The displacement approach is recom- tors for each input used in KABAM. mended by the LCA guidelines issued by ISO 14040-14049, however, it significantly increases the scope of the study [26,34]. Biofuels LCAs have shown considerable sensitivity to the choice of allocation method [35,36]. We address this issue in KABAM by Table 1 Fossil energy life cycle factors for KABAM’s inputs. using the energy and economic value allocation methods as well as the displacement method and comparing the three results. Input Fossil energy per Ref. unit of input Nitrogen MJ/kg 47.70 GREET 1.8c [37] 2.2. System boundary and functional unit Phosphorus MJ/kg 13.35 GREET 1.8c [37] Potassium MJ/kg 8.09 GREET 1.8c [37] The system boundary is defined by the direct inputs into each Lime MJ/kg 0.42 GREET 1.8c [37] and data from [38] Herbicide MJ/kg 274.63 GREET 1.8c [37] stage of biodiesel production. Fig. 1, shows the system boundaries Insecticide MJ/kg 313.46 GREET 1.8c [37] and the general type of life cycle inputs considered in this study. Seed MJ/kg 2.35 Calculated using method from [38] The functional unit of KABAM is one unit of energy of biodiesel Gasoline MJ/L 39.52 GREET 1.8c [37] produced from the system.
Recommended publications
  • Camelina Sativa, a Montana Omega-3 and Fuel Crop* Alice L
    Reprinted from: Issues in new crops and new uses. 2007. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA. Camelina sativa, A Montana Omega-3 and Fuel Crop* Alice L. Pilgeram, David C. Sands, Darrin Boss, Nick Dale, David Wichman, Peggy Lamb, Chaofu Lu, Rick Barrows, Mathew Kirkpatrick, Brian Thompson, and Duane L. Johnson Camelina sativa (L.) Crantz, (Brassicaceae), commonly known as false flax, leindotter and gold of pleasure, is a fall or spring planted annual oilcrop species (Putman et al. 1993). This versatile crop has been cultivated in Europe since the Bronze Age. Camelina seed was found in the stomach of Tollund man, a 4th century BCE mummy recovered from a peat bog in Denmark (Glob 1969). Anthropologists postulate that the man’s last meal had been a soup made from vegetables and seeds including barley, linseed, camelina, knotweed, bristle grass, and chamomile. The Romans used camelina oil as massage oil, lamp fuel, and cooking oil, as well as the meal for food or feed. Camelina, like many Brassicaceae, germinates and emerges in the early spring, well before most cereal grains. Early emergence has several advantages for dryland production including efficient utiliza- tion of spring moisture and competitiveness with common weeds. In response to the resurgent interest in oil crops for sustainable biofuel production, the Montana State Uni- versity (MSU) Agricultural Research Centers have conducted a multi-year, multi-specie oilseed trial. This trial included nine different oilseed crops (sunflower, safflower, soybean, rapeseed, mustard, flax, crambe, canola, and camelina). Camelina sativa emerged from this trial as a promising oilseed crop for production across Montana and the Northern Great Plains.
    [Show full text]
  • The Emerging Biofuel Crop Camelina Sativa Retains a Highly Undifferentiated Hexaploid Genome Structure
    ARTICLE Received 6 Jan 2014 | Accepted 21 Mar 2014 | Published 23 Apr 2014 DOI: 10.1038/ncomms4706 OPEN The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure Sateesh Kagale1,2, Chushin Koh2, John Nixon1, Venkatesh Bollina1, Wayne E. Clarke1, Reetu Tuteja3, Charles Spillane3, Stephen J. Robinson1, Matthew G. Links1, Carling Clarke2, Erin E. Higgins1, Terry Huebert1, Andrew G. Sharpe2 & Isobel A.P. Parkin1 Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop. 1 Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2. 2 National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9. 3 Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland. Correspondence and requests for materials should be addressed to A.G.S.
    [Show full text]
  • Novel Mutant Camelina and Jatropha As Valuable Feedstocks for Biodiesel
    www.nature.com/scientificreports OPEN Novel mutant camelina and jatropha as valuable feedstocks for biodiesel production Muhammad Mahran Aslam1, Asif Ali Khan1,2, Hafza Masooma Naseer Cheema1, Muhammad Asif Hanif3*, Muhammad Waqar Azeem3 & Muhammad Abubakkar Azmat4 Novel mutant camelina has become a crop of interest inspired by its short growing season, low harvesting costs and high oil composition. Despite those advantages, limited research has been done on novel mutant lines to determine applicability for biodiesel production. Jatropha is an extremely hardy, frugal and high oil yielding plant species. The major aim of the present study was not only to compare biodiesel production from jatropha and camelina but was also to test the efcacy of camelina mutant lines (M6 progenies) as superior feedstock. The biodiesel yield from camelina oil and jatropha oil was 96% and 92%, respectively. The gas chromatographic analysis using fame ionization detector (GC-FID) showed that mutant camelina oil biodiesel sample contain major amount of oleic acid (46.54 wt%) followed by linolenic acid (20.41 wt%) and linoleic acid (16.55 wt%). Jatropha biodiesel found to contain major amount of oleic acid (45.03 wt%) followed by linoleic acid (25.07 wt%) and palmitic acid (19.31 wt%). The fuel properties of produced biodiesel were found in good agreement with EN14214 and ASTM D6751 standards. The mutant camelina lines biodiesel have shown comparatively better fuel properties than jatropha. It has shown low saponifcation value (120.87–149.35), high iodine value (130.2–157.9) and better cetane number (48.53–59.35) compared to jatropha biodiesel which have high saponifcation value (177.39–198.9), low iodine value (109.7– 123.1) and lesser cetane number (47.76–51.26).
    [Show full text]
  • Camelina Sativa L. Crantz) Genotypes in Response to Sowing Date Under Mediterranean Environment
    agronomy Article Performance and Potentiality of Camelina (Camelina sativa L. Crantz) Genotypes in Response to Sowing Date under Mediterranean Environment Luciana G. Angelini , Lara Abou Chehade , Lara Foschi and Silvia Tavarini * Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] (L.G.A.); [email protected] (L.A.C.); [email protected] (L.F.) * Correspondence: [email protected] Received: 10 November 2020; Accepted: 5 December 2020; Published: 8 December 2020 Abstract: Given the growing interest for camelina, as a multipurpose oilseed crop, seven cultivars and two sowing times were compared to characterize camelina’s production potential in the rainfed agroecosystems of Central Italy. A split-plot design, with sowing date as main plot (autumn and spring) and cultivar (V1, V2, V3, V4, V5, V6, and CELINE) as subplot, was adopted over two growing seasons (2017–2019). Phenology, yield and yield components, protein and oil content, and fatty acid profile were evaluated. Going from autumn to spring sowing, a significant reduction was observed in the number of days (139 vs. 54 days) and GDD (642 vs. 466 ◦C d) from emergence to beginning of flowering, with more consistent variations among cultivars. V1 and V2 were the earlier ones both in spring and autumn sowing. Autumn sowing increased seed yield (+18.0%), TSW (+4.1%), number of siliques per plant (+47.2%), contents of α-linolenic, eicosenoic, erucic and eicosadienoic acids, and polyunsaturated to saturated fatty acid ratio. Regarding genotype, V3 showed the best seed and oil yield in autumn, whereas V1 and CELINE were the best performing in spring.
    [Show full text]
  • Maine Coefficient of Conservatism
    Coefficient of Coefficient of Scientific Name Common Name Nativity Conservatism Wetness Abies balsamea balsam fir native 3 0 Abies concolor white fir non‐native 0 Abutilon theophrasti velvetleaf non‐native 0 3 Acalypha rhomboidea common threeseed mercury native 2 3 Acer ginnala Amur maple non‐native 0 Acer negundo boxelder non‐native 0 0 Acer pensylvanicum striped maple native 5 3 Acer platanoides Norway maple non‐native 0 5 Acer pseudoplatanus sycamore maple non‐native 0 Acer rubrum red maple native 2 0 Acer saccharinum silver maple native 6 ‐3 Acer saccharum sugar maple native 5 3 Acer spicatum mountain maple native 6 3 Acer x freemanii red maple x silver maple native 2 0 Achillea millefolium common yarrow non‐native 0 3 Achillea millefolium var. borealis common yarrow non‐native 0 3 Achillea millefolium var. millefolium common yarrow non‐native 0 3 Achillea millefolium var. occidentalis common yarrow non‐native 0 3 Achillea ptarmica sneezeweed non‐native 0 3 Acinos arvensis basil thyme non‐native 0 Aconitum napellus Venus' chariot non‐native 0 Acorus americanus sweetflag native 6 ‐5 Acorus calamus calamus native 6 ‐5 Actaea pachypoda white baneberry native 7 5 Actaea racemosa black baneberry non‐native 0 Actaea rubra red baneberry native 7 3 Actinidia arguta tara vine non‐native 0 Adiantum aleuticum Aleutian maidenhair native 9 3 Adiantum pedatum northern maidenhair native 8 3 Adlumia fungosa allegheny vine native 7 Aegopodium podagraria bishop's goutweed non‐native 0 0 Coefficient of Coefficient of Scientific Name Common Name Nativity
    [Show full text]
  • Chemical Characterization of Camelina Seed Oil
    CHEMICAL CHARACTERIZATION OF CAMELINA SEED OIL By ANUSHA SAMPATH A Thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Food Science Written under the direction of Professor Thomas G. Hartman And approved by ________________________ ________________________ ________________________ ________________________ New Brunswick, New Jersey [May, 2009] ABSTRACT OF THE THESIS Chemical characterization of Camelina Seed Oil By ANUSHA SAMPATH Thesis Director: Professor Thomas G. Hartman, Ph.D Camelina sativa (L).Crantz also known as false flax, Dutch flax is an ancient oil seed crop that belongs to the Brassicaceae family. Camelina oil pressed from the seeds of this crop has a unique aroma. Eighteen camelina oil samples were analyzed for fatty acid composition (13 unrefined, 2 deodorized and 3 refined samples). Eight of these samples were analyzed for unsaponifiables content, free fatty acids and volatiles and semi-volatile compounds. Seven camelina seed samples were analyzed for volatile and semi-volatile compounds as well to determine the suitability of these products in animal feed formulations. Fatty acid composition was obtained by the trans-esterification of the triacylglycerols in the oil to their methyl esters and 21 different fatty acids with chain length from C-14 to C-24 were identified. The major fatty acids were α-linolenic, linoleic, oleic, eicosenoic and palmitic acid and three fatty acids, namely tricosanoic, pentadecanoic and heptadecanoic are being first reported here. ii The unsaponifiables fraction in camelina oil samples ranged between 0.45-0.8% and 21 compounds were identified.
    [Show full text]
  • Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using The
    Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of Instant Controlled pressure Drop (DIC) : process performance and biofuel quality Fanar Bamerni To cite this version: Fanar Bamerni. Plant-based (Camelina Sativa) biodiesel manufacturing using the technology of In- stant Controlled pressure Drop (DIC) : process performance and biofuel quality. Chemical and Process Engineering. Université de La Rochelle, 2018. English. NNT : 2018LAROS004. tel-02009827 HAL Id: tel-02009827 https://tel.archives-ouvertes.fr/tel-02009827 Submitted on 6 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NIVERSITÉ DE LA ROCHELLE UFR des SCIENCES et TECHNOLOGIE Année: 2018 Numéro attribué par la bibliothèque: THÈSE pour obtenir le grade de DOCTEUR de L’UNIVERSITÉ DE LA ROCHELLE Discipline : Génie des Procédés Industriels Présentée et soutenue par Fanar Mohammed Saleem Amin BAMERNI Le 23 février 2018 TITRE: Procédé de Fabrication de Biodiesel assistée par Texturation par Détente Instantanée Contrôlée (DIC) de Camelina Sativa : Performance des Procédés et Qualité du Produit. Plant-Based (Camelina Sativa) Biodiesel Manufacturing Using the Technology of Instant Controlled Pressure Drop (DIC); Process performance and biofuel Quality. Dirigée par : Professeur Ibtisam KAMAL et Professeur Karim ALLAF JURY: Rapporteurs: M.
    [Show full text]
  • The Regional Feedstock Partnership: Herbaceous Energy Crops and CRP Land for Biomass Production
    The Regional Feedstock Partnership: Herbaceous Energy Crops and CRP Land for Biomass Production 20-23 May 2013 Feedstock Supply and Logistics Peer Review Vance N. Owens South Dakota State University Goal/Objectives . Development of more accurate cost supply information and improved communication with partners in the biomass feedstock supply chain . Replicated field trials across regions to determine the impact of residue removal on future grain yield. Replicated field trials to develop energy crops within geographical regions. Regional assessment of feedstock resources which can be used to determine supply curves. Long term field data is the best and most direct way to determine commercial viability 20 May 2013 2013 Feedstock Platform Review 2 Quad Chart Overview Timeline Barriers • Project start date: 01/15/2007 • Ft-A: Resource availability and cost • Project end date: 09/30/2013 • Ft-B: Sustainable production • Percent complete: 80% • Ft-C: Crop genetics Budget Partners • Funding for FY11 • DOE: $1,150,637 • Collaborations: Sun Grant, DOE, USDA-ARS, Land-Grant • Cost share: $287,659 Universities, National Labs • Funding for FY12: $0 • Project management: • Funding for FY13: $0 Herbaceous lead, species leads, • Years the project has been field trial PIs funded/average annual funding • 6 years @ $755,512/yr 20 May 2013 2013 Feedstock Platform Review 3 Project Overview . Field trials initiated in 2008, or added later as needed, on multiple selected species . Development of regional and national yield estimates for sustainable biomass supply systems 20 May 2013 2013 Feedstock Platform Review 4 Presentation Outline . General Approach . Overall Technical Progress and Accomplishments . Species discussion . Energycane . CRP . Miscanthus . Switchgrass .
    [Show full text]
  • A Co-Opted Steroid Synthesis Gene, Maintained in Sorghum but Not Maize, Is Associated with a Divergence in Leaf Wax Chemistry
    A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry Lucas Bustaa,b,1,2,3, Elizabeth Schmitza,b,1, Dylan K. Kosmac, James C. Schnableb,d, and Edgar B. Cahoona,b,3 aDepartment of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE 68588; bCenter for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, NE 68588; cDepartment of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557; and dDepartment of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583 Edited by Julian I. Schroeder, University of California San Diego, La Jolla, CA, and approved February 1, 2021 (received for review November 17, 2020) Virtually all land plants are coated in a cuticle, a waxy polyester Though plants deploy diverse mechanisms to protect them- that prevents nonstomatal water loss and is important for heat selves against drought and heat, one of the most widespread and drought tolerance. Here, we describe a likely genetic basis for (found in essentially all land plants), is a hydrophobic, aerial a divergence in cuticular wax chemistry between Sorghum bicolor, surface coating called the cuticle. This structure is composed of a a drought tolerant crop widely cultivated in hot climates, and its fatty acid-derived polyester scaffold called cutin, inside and on close relative Zea mays (maize). Combining chemical analyses, het- top of which accumulates wax, a mixture of hydrophobic com- erologous expression, and comparative genomics,
    [Show full text]
  • Camelina D.T
    EM 8953-E • January 2008 Oilseed Crops Camelina D.T. Ehrensing and S.O. Guy History Camelina (Camelina sativa L.) is native from Finland to Romania and east to the Ural Mountains. It was first cultivated in northern Europe during the Bronze Age. The seeds were crushed and boiled to release oil for food, medicinal use, and lamp oil. It is still a relatively common weed in much of Europe, known as false flax or gold-of- pleasure. Although it was widely grown in Europe and Russia until the 1940s, camelina was largely displaced by higher-yielding crops after World War II. Its decline in Europe was accelerated by farm subsidy programs that favored the major commodity grain and oilseed crops. In recent years, camelina production has Camelina field in eastern Washington. increased somewhat due to heightened interest in vegetable oils high in omega-3 fatty acids (a principle component of camelina oil). Very little plant breeding or crop production improvement has been done on camelina, so the full potential of this crop has not yet been explored. Since it can be grown with few input costs and under marginal conditions, there is currently a major effort in Montana to produce camelina on a large scale in dryland production as a low-input-cost oilseed. Since canola production is currently prohibited in many parts of Oregon state, Oregon growers are considering growing camelina as an alternative oilseed crop. Daryl T. Ehrensing, agronomist, Department of Crop and Soil Science, Oregon State University; and Stephen O. Guy, Extension crop management specialist, University of Idaho.
    [Show full text]
  • Genome-Edited Camelina Sativa with a Unique Fatty Acid Content and Its
    Kawall Environ Sci Eur (2021) 33:38 https://doi.org/10.1186/s12302-021-00482-2 REVIEW Open Access Genome-edited Camelina sativa with a unique fatty acid content and its potential impact on ecosystems Katharina Kawall* Abstract ‘Genome editing’ is intended to accelerate modern plant breeding enabling a much faster and more efcient devel- opment of crops with improved traits such as increased yield, altered nutritional composition, as well as resistance to factors of biotic and abiotic stress. These traits are often generated by site-directed nuclease-1 (SDN-1) applications that induce small, targeted changes in the plant genomes. These intended alterations can be combined in a way to generate plants with genomes that are altered on a larger scale than it is possible with conventional breeding techniques. The power and the potential of genome editing comes from its highly efective mode of action being able to generate diferent allelic combinations of genes, creating, at its most efcient, homozygous gene knockouts. Additionally, multiple copies of functional genes can be targeted all at once. This is especially relevant in polyploid plants such as Camelina sativa which contain complex genomes with multiple chromosome sets. Intended alterations induced by genome editing have potential to unintentionally alter the composition of a plant and/or interfere with its metabolism, e.g., with the biosynthesis of secondary metabolites such as phytohormones or other biomolecules. This could afect diverse defense mechanisms and inter-/intra-specifc communication of plants having a direct impact on associated ecosystems. This review focuses on the intended alterations in crops mediated by SDN-1 applications, the generation of novel genotypes and the ecological efects emerging from these intended alterations.
    [Show full text]
  • Look Through Our List of Principal Investigators (Pis)
    Model PI Areas of Research Organism(s) Summary of Work Mode PI Quote (from DDPSC website) Soybean "I'm motivated by studies that can Central Carbon Metabolism Canola give us insights to how plants work Metabolic Flux Analysis Camelina The Allen laboratory uses isotopes combined at a mechanistic level. The thought Photosynthesis Grasses with computational methods to assess plant that we may explain something in Carbon Partitioning Legumes growth and productivity at the molecular level the lab that no one else has figured Lipid and Protein Oilseeds that contribute to enhanced biomass production Bench out is awe-striking and worthy of the PhD Douglas Allen, Douglas Biosynthesis and Turnover Algae and value-added seed compositions. Computer effort." Crop Improvement The Bart laboratory combines genetics with Disease Triangle Cassava molecular and computational biology to study Plant-microbe interactions Sorghum host-microbe interactions in important crops Bench "Food security is a basic human Bart, PhD Bart, Rebecca Rebecca Plant Pathology Cotton including cassava, sorghum, and cotton. Computer right." Elemental Accumulation Bioinformatics Corn "Studying how plants take up Quantitative Genetics Sorghum The Baxter laboratory uses advanced elements will allow us to understand High-Throughput Setaria viridis technologies to understand the diverse ways how life works while also being able Phenotyping (green foxtail plant genetics interacts with the environment to Bench to improve plant, animal, and human PhD Ivan Baxter, Ivan Ionomics millet) enable growth. Computer nutrition." The Education Research & Outreach team studies how to effectively engage students in - authentic STEM research at all grade levels, K- "Be it healthcare, agriculture, the 16, in formal, informal and virtual learning environment, or human environments in an effort to recruit the next Computer empowerment and freedom, the Setaria viridis generation of diverse STEM and AgTech Social way we solve the majority of the (green foxtail scientists and leaders in St.
    [Show full text]