Degree Project Template

Total Page:16

File Type:pdf, Size:1020Kb

Degree Project Template Faculty of Health and Life Sciences Degree project work The Prevalence of Anterior Segment and Crystalline Lens Changes in a Nicaraguan Population Author:Georgette Nisa Subject:Optometry Level:First cycle No:2016:O20 i Prevalence of Anterior Segment and Crystalline Lens Changes in a Nicaraguan Population Georgette Nisa Supervisor: Karthikeyan Baskaran Department of medicine and Optometry PhD, Senior Lecturer Linnaeus University SE- 391 82 Kalmar Sweden Examiner: Peter Gierow Department of medicine and Optometry Professor, FAAO Linnaeus University SE- 391 82 Kalmar Sweden The Examination Project Work is included in the Optometrist study program, 180 hp Abstract Aim: The purpose of this study was to find the prevalence of different ocular changes in the anterior segment of the eye and changes in the crystalline lens among Nicaraguan population. Method: The study was done during a journey to Nicaragua with the organization VFA and Synoptik that lasted for two weeks in March/April. There were a total of 134 participants with 71 females and 63 males. The average age of the study participants was 50 (±20) years and the age ranged from 7 to 97 years. The total sample size was collected in the three towns that we visited during the journey: Ticuantepe, Léon and Estéli. The changes were evaluated by direct ophthalmoscopy. Conjunctiva was examined by asking the patients to look into different gaze directions. Cornea and crystalline lens was examined by asking the patient to look directly at the ophthalmoscope. Results: 31% out of the participants enrolled in this study were healthy with no visible ocular changes. The remaining 69% had ocular changes with majority of them having either cataract, pterygium or pinguecula. The prevalence of cataract was 24%, pterygium 20%, pinguecula 10%. There were other minor ocular changes such as red eye in 4%, arcus senilis in 4%, ptosis in 1%, and aphakia in 1% seen in these participants. Conclusion: The UV related changes had the highest prevalence. This study like previous studies have shown that cataract was most prevalent ocular change in this population. Keywords Vision For All, Ocular Changes, Cataract, Pterygium, Pinguecula, Nicaragua. i Sammanfattning Syftet: Syftet med denna studie var att undersöka prevalensen av förändringar i ögats främre segment samt i den kristallina linsen hos befolkningen i Nicaragua. Metod: Studien genomfördes under en resa till Nicaragua med organisationen VFA och Synoptik. Resan skedde i mars/april och varade i två veckor, där städerna Ticuantepe, Estéli och Léon besöktes. Studien hade totalt 134 deltagare från alla tre städerna varav 71 kvinnor och 63 män med en åldersspridning på 7-97 år. Bedömningen av förändringarna gjordes med hjälp av ett oftalmoskop genom att be patienterna att följa examinatorns finger med blicken på olika riktningar. För bedömning av corneala och lentikulära förändringar fick patienterna titta rakt fram på oftalmoskopet. Resultat: 31% av deltagarna hade friska ögon utan några förändringar. De vanligaste okulära förändringar som upptäcktes i denna studie var katarakt, pterygium och pinguecula. Prevalensen av katarakt var 24%, pterygium 20% och pinguecula 10%. De andra förändringar som upptäcktes bland befolkningen var röda ögon 4%, ptos 1%, arcus senilis 4% och afaki1%. Det fanns ingen signifikant skillnad mellan män och kvinnor i de olika förändringarna. Slutstats: Den högsta prevalens av förändringar var bland de UV relaterad förändringar. Denna studie precis som tidigare studier visar att katarakt är det mest prevalenta ögonförändringen bland denna befolkning. ii Thanks/ Acknowledgements I would like to thank my supervisor Karthikeyan Baskaran for all the help throughout the entire project and for his advices. I thank all my amazing co-travelers to Nicaragua: John Godoy, Sara Thoresson, Hege Welin, Maud Arvidsson, Jaime Hellqvist, Camilla Efraimsson, Tomas Hjalmarson, Mona Lundgren, Andreas Johansson and Åsa Mårtensson. It was such a great and memorable experience. I am thankful to Synoptik and VFA for making this journey and study possible I also want to thank my wonderful classmates for an exciting and fun three years together. Big thanks to my parents, siblings and the entire family for all their love, motivation and always be there for me. Finally I would like to thank my Fiancé and soon to be husband Armel Fungula for his support, encouragement and motivation throughout the entire study. iii Contents 1 Introduction _________________________________________________________ 1 1.1 Anatomy of the Eye _______________________________________________ 1 1.1.1 Eyelid _______________________________________________________ 1 1.1.2 Conjunctiva __________________________________________________ 2 1.1.3 Cornea ______________________________________________________ 2 1.1.4 Iris _________________________________________________________ 3 1.1.5 Crystalline Lens _______________________________________________ 4 1.2 Ocular Changes __________________________________________________ 4 1.2.1 Ptosis _______________________________________________________ 4 1.2.2 Red eye ______________________________________________________ 4 1.2.3 Pinguecula ___________________________________________________ 5 1.2.4 Pterygium ___________________________________________________ 6 1.2.5 Arcus Senilis _________________________________________________ 7 1.2.6 Cataract _____________________________________________________ 8 1.3 Vision for All ____________________________________________________ 8 1.4 Nicaragua _______________________________________________________ 9 1.5 Previous Studies __________________________________________________ 9 2 Aim _______________________________________________________________ 11 3 Methods ___________________________________________________________ 12 3.1 Patients ________________________________________________________ 12 3.2 Materials _______________________________________________________ 12 4 Results _____________________________________________________________ 14 5 Discussion __________________________________________________________ 17 6 Conclusion _________________________________________________________ 20 References ___________________________________________________________ 21 Appendix _____________________________________________________________ I iv 1 Introduction Changes in different parts of the eye occur gradually as we get older and they are due to different factors such as age, sicknesses, trauma, infections and exposure to UV radiation. 1.1 Anatomy of the Eye The human eye is divided into thirteen different parts (see figure 1). It is spherical, consists of three coats with different structures and has 24 mm as a mean diameter. The cornea and sclera make up the outer coat, the second coat consists of the uveal tract which is made up of the iris, choroid and the ciliary body. The third and inner coat of the eye includes the retina, macula fovea and the optic disc (Forrester, 2002). figure 1 Schematic diagram of different parts of the eye. (Modified from google, glaucoma.org) 1.1.1 Eyelid The eyelid is a thin skin that covers and protects the anterior surface of the eye from injury and foreign bodies. Other functions of the eyelid are regulation of the amount of light that enters the eye, distribution of tear film on the cornea during blinking and the drainage of tears. The motion of the eyelid is mostly vertical but there is also a horizontal motion of the eyelid that occurs during blinking. This enables the sweeping of the tears towards the superior and inferior puncta along the lid margin. Fibrous tissue also known as the tarsal plate make up the eyelid´s fibrous layer and this gives a firm shape to the eyelid. Because there is a more developed tarsal plate collagen 1 in the upper lid, it enables the lid to be everted. The structure of the eyelid is divided into six parts: skin, subcutaneous layer, muscles, sub muscular areolar layer, fibrous layer, and palpebral conjunctiva. The eyelid has a very elastic, thin and fat free skin composed of dermis, epidermis and subcutaneous tissue. Due to the delicacy and thinness of the skin, the eyelid is susceptible to pathology. (Bergmanson, 2012, p 30). 1.1.2 Conjunctiva The conjunctiva provides a smooth surface to facilitate the sliding of the eyelid every time the eye blinks (Remington, 2005 p 170). It is a thin mucous membrane that stretches from the limbus to the margin of the eyelid and covers the eye ball (Lawrenson, 2010 p, 10). Palpebral, fornix and the bulbar conjunctiva are the three regions of the conjunctiva. The palpebral conjunctiva has many blood vessels and is attached to the tarsal; it also covers the inner eyelid. The bulbar conjunctiva covers the eye ball all the way to the limbus, it can freely move because it is loosely attached to the Tenon´s capsule. The fornix conjunctiva connects both the palpebral and bulbar conjunctiva from the transition of the eyelid to the eye ball (Kanski, 2011, p 132). The conjunctiva is an important protection of the eye because it serves as a barrier for microorganisms and foreign bodies. It is the most active immunological tissue on the outer part of the eye because it contains many immunological cells (Bergmanson, 2012, p 38). 1.1.3 Cornea The cornea is normally transparent with no muscles or blood vessels and is very sensitive due to the many nerves that are present in its stroma and epithelium. (Kanski, 2011 p 168). It protects the eye from outer influences and has approximately 42 dioptres which stands for two thirds
Recommended publications
  • Peripheral Ring Opacity of the Cornea
    Brit. jt. Ophthal. (I969) 53, 270 Br J Ophthalmol: first published as 10.1136/bjo.53.4.270 on 1 April 1969. Downloaded from Peripheral ring opacity of the cornea A. J. BRON Moorfields Eye Hospital, City Road, London, E.C. I A bilaterally symmetrical ring-shaped corneal opacity has been observed in two patients. The condition is described here because of its unusual appearance and because of its appar- ent uniqueness in the literature. Case reports (i) A 59-year-old Caucasian male presented at the casualty department complaining of pricking in the right eye. Symptoms were caused by a marginal infiltrate and this resolved on conventional therapy. A recurrence one month later also responded well. Each cornea presented an arcus senilis and, in the zone ofstroma affected by the arcus, an additional opacity could be seen. This was identical in each eye, and took the form of a striking, narrow, dense white ring in the stroma, passing forwards as a band from Descemet's to Bowman's membrane (Fig. l). copyright. ... ........... http://bjo.bmj.com/ k t_ ; ~~~~~~~~~~~~~~~FI (,GIas I. Drawing of right and left corneae. Insets show slit-lamp sec- tions above and belowv, in the right eye on September 26, 2021 by guest. Protected In slit section, except above, each band appeared as a slender wedge-shaped opacity with its base lying on Descemet's membrane and its apex reaching forwards to Bowman's membrane. The opacity was dense at the base and faint at the apex (Fig. 2, opposite). Between the I I to I o'clock positions, the rings were very faint in each eye and sloped inwards and forwards at an angle in each eye, 450 to the normal on the right and at a shallower angle to the normal on the left.
    [Show full text]
  • Infantile Aphakia and Successful Fitting of Pediatric Contact Lenses; a Case Presentation Authors: Virji N, Patel A, Libassi D
    Infantile aphakia and successful fitting of pediatric contact lenses; a case presentation Authors: Virji N, Patel A, Libassi D An eleven month old male presents with bilateral aphakia secondary to congenital cataracts. The patient is currently successfully wearing B&L Silsoft Pediatric contact lenses, with good prognosis for vision in both eyes. I. Case History -Patient demographics: African American male, DOB 8/18/2009 -Chief complaint: patient presents with bilateral aphakia secondary to bilateral congenital cataract extraction -Ocular, medical history: S/P CE with anterior vitrectomy OD 09/22/2009, followed by OS 09/29/09. (+) squinting, rubs eyes, light sensitivity -Medications: none -Other salient information: patient has been seen by SUNY Contact Lens clinic since 2 months old, 10/14/2009 II. Pertinent findings -Clinical: Keratometry readings 41.00/41.25 @ 005 OD, 38.50/41.00 @ 046 Axial length, immeasurable Horizontal corneal diameter 8mm OD/OS Fundus exam WNL OU -Others: surgical dates: successful CE OU, September 2009 III. Differential diagnosis -Primary/leading: Idiopathic -Others: Posterior lenticonus, persistent hyperplastic primary vitreous, anterior segment dysgenesis, and posterior pole tumors, trauma, intrauterine infection (rubella), maternal hypoglycemia, trisomy (eg, Down, Edward, and Patau syndromes), myotonic dystrophy, infectious diseases (eg, toxoplasmosis, rubella, cytomegalovirus, and herpes simplex [TORCH]), and prematurity. (5) IV. Diagnosis and discussion -Elaborate on the condition: Bilateral infantile cataracts are one of the major treatable causes of visual impairment in children. (2) Hubel and Weisel’s research on the critical period of visual development determined that if infantile cataracts are removed within the critical period and appropriate correction is worn, vision is greatly improved.
    [Show full text]
  • Cornea Plana Associated with Open-Angle Glaucoma: a Case Report
    Cornea plana associated with open-angle glaucoma: a case report Bilge Ozturk Sahin, Goktug Seymenoglu & Esin F. Baser International Ophthalmology The International Journal of Clinical Ophthalmology and Visual Sciences ISSN 0165-5701 Volume 31 Number 6 Int Ophthalmol (2012) 31:505-508 DOI 10.1007/s10792-011-9490-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Int Ophthalmol (2011) 31:505–508 DOI 10.1007/s10792-011-9490-4 CASE REPORT Cornea plana associated with open-angle glaucoma: a case report Bilge Ozturk Sahin • Goktug Seymenoglu • Esin F. Baser Received: 20 October 2011 / Accepted: 22 November 2011 / Published online: 11 December 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Cornea plana is a rare disease in which the Introduction cornea is flattened with a low refractive power. In addition to these features, hypermetropia, deep central Cornea plana is a rare congenital disease characterized corneal opacities, hazy corneal limbus, peripheral by a flattened corneal curvature and low refractive scleralization of the cornea and early arcus senilis can power.
    [Show full text]
  • Intraocular Lenses and Spectacle Correction
    MEDICAL POLICY POLICY TITLE INTRAOCULAR LENSES, SPECTACLE CORRECTION AND IRIS PROSTHESIS POLICY NUMBER MP-6.058 Original Issue Date (Created): 6/2/2020 Most Recent Review Date (Revised): 6/9/2020 Effective Date: 2/1/2021 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY I. POLICY Intraocular Lens Implant (IOL) Initial IOL Implant A standard monofocal intraocular lens (IOL) implant is medically necessary when the eye’s natural lens is absent including the following: Following cataract extraction Trauma to the eye which has damaged the lens Congenital cataract Congenital aphakia Lens subluxation/displacement A standard monofocal intraocular lens (IOL) implant is medically necessary for anisometropia of 3 diopters or greater, and uncorrectable vision with the use of glasses or contact lenses. Premium intraocular lens implants including but not limited to the following are not medically necessary for any indication, including aphakia, because each is intended to reduce the need for reading glasses. Presbyopia correcting IOL (e.g., Array® Model SA40, ReZoom™, AcrySof® ReStor®, TECNIS® Multifocal IOL, Tecnis Symfony and Tecnis SymfonyToric, TRULIGN, Toric IO, Crystalens Aspheric Optic™) Astigmatism correcting IOL (e.g., AcrySof IQ Toric IOL (Alcon) and Tecnis Toric Aspheric IOL) Phakic IOL (e.g., ARTISAN®, STAAR Visian ICL™) Replacement IOLs MEDICAL POLICY POLICY TITLE INTRAOCULAR LENSES, SPECTACLE CORRECTION AND IRIS PROSTHESIS POLICY NUMBER
    [Show full text]
  • Solved/Unsolved
    Supplementary Materials: Supplementary table 1. Demographic details for the 54 individual patients (solved/unsolved) and their clinical features including cataract type, details of ocular co-morbidities, systemic features and whether cataract was the presenting feature (non-isolated cataract patients only). Abbreviations: yes (Y), no (N), not applicable (N/A). Age at Famil Ag M/ Age at Cataract Cataract Cataract Systemic Consanguinit Patient ID Gene Confirmed genetic diagnosis Ethnicity diagnosi Ocular co-morbidities FH y ID e F surgery type RE type LE presenting sign features y s (days) Aniridia, nystagmus, 23 years Posterior Posterior 1-1 1 PAX6 Aniridia White British 25 F - glaucoma, foveal N N N Y 4 months subcapsular subcapsular hypoplasia Cleft palate, epilepsy, high Aphakia Aphakia Macular atrophy, myopia, 7 years 9 7 years 8 arched palate, 2-1 2 COL11A1 Stickler syndrome, type II Not Stated 34 F (post- (post- lens subluxation, vitreous N N N months months flattened surgical) surgical) anomaly maxilla, short stature (5'2ft) Anterior segment dysgenesis, pupillary abnormalities including 12 years Posterior Posterior ectopic pupils, ectropion 3-1 3 CPAMD8 Anterior segment dysgenesis 8 Other, Any other 27 F - N N Y N 5 months subcapsular subcapsular UVAE and irodensis, nystagmus, dysplastic optic discs, large corneal diameters Gyrate atrophy of choroid and 23 years 29 years 1 Posterior Posterior Retinal dystrophy, Bipolar 4-1 4 OAT White British 42 F N N N retina 7 months month subcapsular subcapsular exotropia disorder 1 year 6 1 year
    [Show full text]
  • Feasibility and Outcome of Descemet Membrane Endothelial Keratoplasty in Complex Anterior Segment and Vitreous Disease
    CLINICAL SCIENCE Feasibility and Outcome of Descemet Membrane Endothelial Keratoplasty in Complex Anterior Segment and Vitreous Disease Julia M. Weller, MD, Theofilos Tourtas, MD, and Friedrich E. Kruse, MD escemet membrane endothelial keratoplasty (DMEK), Purpose: Descemet membrane endothelial keratoplasty (DMEK) is Da technique for posterior lamellar keratoplasty, involves becoming the method of choice for treating Fuchs endothelial a graft consisting only of the thin Descemet membrane with dystrophy and pseudophakic bullous keratopathy. We investigated adherent corneal endothelial cells. Introduced in 2006 by whether DMEK can serve as a routine procedure in endothelial Melles et al,1 DMEK is becoming more popular as several decompensation even in complex preoperative situations. studies show its superiority to Descemet stripping automated Methods: Of a total of 1184 DMEK surgeries, 24 consecutive eyes endothelial keratoplasty (DSAEK), regarding visual function 2,3 with endothelial decompensation and complex preoperative situa- and the time of visual rehabilitation after DMEK. However, tions were retrospectively analyzed and divided into 5 groups: group because DMEK grafts are thinner than DSAEK grafts, it is fi 1: irido-corneo-endothelial syndrome (n = 3), group 2: aphakia, more dif cult to handle them and typically takes surgeons subluxated posterior chamber intraocular lens or anterior chamber longer to learn. intraocular lens (n = 6), group 3: DMEK after trabeculectomy (n = In difficult situations, most surgeons prefer DSAEK or 4), group 4: DMEK with simultaneous intravitreal injection (n = 6), penetrating keratoplasty to DMEK because of its possible and group 5: DMEK after vitrectomy (n = 5). Main outcome intraoperative complications. For example, if corneal edema 4 parameters were best-corrected visual acuity, central corneal thick- is advanced, Ham et al recommend performing DSAEK first ness, endothelial cell density, rebubbling rate, and graft failure rate.
    [Show full text]
  • Glaucoma-Related Adverse Events in the Infant Aphakia Treatment Study 1-Year Results
    CLINICAL SCIENCES ONLINE FIRST Glaucoma-Related Adverse Events in the Infant Aphakia Treatment Study 1-Year Results Allen D. Beck, MD; Sharon F. Freedman, MD; Michael J. Lynn, MS; Erick Bothun, MD; Daniel E. Neely, MD; Scott R. Lambert, MD; for the Infant Aphakia Treatment Study Group Objectives: To report the incidence of glaucoma and glau- sistent fetal vasculature and 1.6 times higher for each coma suspects in the IATS, and to evaluate risk factors for month of age younger at cataract surgery. the development of a glaucoma-related adverse event in patients in the IATS in the first year of follow-up. Conclusions: Modern surgical techniques do not elimi- nate the early development of glaucoma following con- Methods: A total of 114 infants between 1 and 6 months genital cataract surgery with or without an intraocular of age with a unilateral congenital cataract were as- lens implant. Younger patients with or without persis- signed to undergo cataract surgery either with or with- tent fetal vasculature seem more likely to develop a glau- out an intraocular lens implant. Standardized defini- coma-related adverse event in the first year of follow- tions of glaucoma and glaucoma suspect were created and up. Vigilance for the early development of glaucoma is used in the IATS. needed following congenital cataract surgery, especially when surgery is performed during early infancy or for a Results: Of these 114 patients, 10 (9%) developed glau- child with persistent fetal vasculature. Five-year fol- coma and 4 (4%) had glaucoma suspect, for a total of 14 low-up data for the IATS will likely reveal more glaucoma- patients (12%) with a glaucoma-related adverse event in related adverse events.
    [Show full text]
  • Bilateral, Anterior Stromal Ring Opacity of the Cornea
    Downloaded from bjo.bmj.com on 11 December 2006 Bilateral, anterior stromal ring opacity of the cornea Gerrit R J Melles, Johan P de Séra, Cathrien A Eggink, Johan R M Cruysberg and Perry S Binder Br. J. Ophthalmol. 1998;82;522-525 Updated information and services can be found at: http://bjo.bmj.com/cgi/content/full/82/5/522 These include: References 1 online articles that cite this article can be accessed at: http://bjo.bmj.com/cgi/content/full/82/5/522#otherarticles Rapid responses You can respond to this article at: http://bjo.bmj.com/cgi/eletter-submit/82/5/522 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article Notes To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform To subscribe to British Journal of Ophthalmology go to: http://www.bmjjournals.com/subscriptions/ Downloaded from bjo.bmj.com on 11 December 2006 522 Br J Ophthalmol 1998;82:522–525 Bilateral, anterior stromal ring opacity of the cornea Gerrit R J Melles, Johan P de Séra, Cathrien A Eggink, JohanRMCruysberg, Perry S Binder Abstract degenerative changes with advancing age. In Aims/background—To describe a bilat- the current report, we describe the presence of eral, mid peripheral, ring-shaped corneal a bilateral, ring-shaped, mid peripheral corneal opacity, not resembling any known cor- opacification as an isolated finding in a young, neal degeneration, dystrophy, or other healthy patient, who did not have a history of disorder, and occurring without ocular or ocular inflammation.
    [Show full text]
  • Lipid Deposition at the Limbus
    Eye (1989) 3, 240-250 Lipid Deposition at the Limbus S. M. CRISPIN Bristol Summary Lipid deposition at the limbus is a feature of familial and non-familial dyslipopro­ teinemias and can also occur without apparent accompanying systemic abnormality. Hyperlipoproteinemia, most notably type II hyperlipoproteinemia, is frequently associated with bilateral corneal arcus, with less common association in types III, IV and V. Diffuse bilateral opacification of the cornea with accentuation towards the limbus is a feature of HDL deficiency syndromes and LCAT deficiency. Whereas the lipid accumulation of hyperlipoproteinemia may be representative of excessive insudation of lipoprotein from plasma into the cornea that of hypoliproteinemia is more likely to be a consequence of defective lipid clearance. The situation is yet further complicated by the modifying influences of secondary factors. both local and systemic. Lipid may be deposited at the limbus in a so. Both local and systemic factors can influ­ variety of situations; most commonly it ence lipid deposition in this region and their accumulates as a consequence of excessive inter-relationships are complex and often lipid entry or defective lipid clearance over a poorly understood. Some of the local factors long period of time, but this is not invariably which have been investigated include normal and abnormal structure and function; the effects of temperature and vasculature; and the modifying influences of certain ocular disorders. LIVER Local lipoprotein metabolism of cornea and limbus has received little study but there is a wealth of information available concerning systemic plasma lipoproteins in health and disease and a number of dyslipoproteinemias VLDLI LDL have been reported in which corneal lipid deposition is one of the clinical features.
    [Show full text]
  • Visual Management of Aphakia with Concomitant Severe Corneal Irregularity by Mini-Scleral Design Contact Lenses
    HOSTED BY Available online at www.sciencedirect.com ScienceDirect Journal of Current Ophthalmology 28 (2016) 27e31 http://www.journals.elsevier.com/journal-of-current-ophthalmology Original research Visual management of aphakia with concomitant severe corneal irregularity by mini-scleral design contact lenses Fateme Alipur, Seyedeh Simindokht Hosseini* Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran Received 30 October 2015; accepted 28 January 2016 Available online 30 March 2016 Abstract Purpose: To evaluate visual results, comfort of use, safety, and efficacy of mini scleral contact lenses in optical management in patients with traumatic aphakia and severe concomitant irido-corneal injury. Methods: In a case series, eight eyes with post traumatic aphakia and severe concomitant irido-corneal injury that were evaluated at the Contact Lens Clinic of Farabi Eye Hospital, Tehran, Iran for contact lens fitting and could not be corrected with conventional corneal RGP contact lenses were fitted with miniscleral contact lenses. Uncorrected visual acuity (UCVA), best spectacle corrected visual acuity (BSCVA), and BCVA (Best corrected visual acuity) with miniscleral lens were recorded. Slit lamp examination, comfortable daily wearing time, and any contact lens-related complication were documented in each follow-up visit. Results: The mean UCVA and BSCVA of the cases was >2.7 and 0.41 LogMAR, respectively (BSCVA could not be assessed in one case due to severe corneal irregularity). The mean final BCVA with the miniscleral lens was 0.05 LogMAR (range from 0.4 to À0.04 LogMAR). The mean follow-up period was 14.6 months. The mean comfortable daily wearing time (CDWT) was 11.6 h, ranging from 8 to 16 h.
    [Show full text]
  • Ocular Colobomaâ
    Eye (2021) 35:2086–2109 https://doi.org/10.1038/s41433-021-01501-5 REVIEW ARTICLE Ocular coloboma—a comprehensive review for the clinician 1,2,3 4 5 5 6 1,2,3,7 Gopal Lingam ● Alok C. Sen ● Vijaya Lingam ● Muna Bhende ● Tapas Ranjan Padhi ● Su Xinyi Received: 7 November 2020 / Revised: 9 February 2021 / Accepted: 1 March 2021 / Published online: 21 March 2021 © The Author(s) 2021. This article is published with open access Abstract Typical ocular coloboma is caused by defective closure of the embryonal fissure. The occurrence of coloboma can be sporadic, hereditary (known or unknown gene defects) or associated with chromosomal abnormalities. Ocular colobomata are more often associated with systemic abnormalities when caused by chromosomal abnormalities. The ocular manifestations vary widely. At one extreme, the eye is hardly recognisable and non-functional—having been compressed by an orbital cyst, while at the other, one finds minimalistic involvement that hardly affects the structure and function of the eye. In the fundus, the variability involves the size of the coloboma (anteroposterior and transverse extent) and the involvement of the optic disc and fovea. The visual acuity is affected when coloboma involves disc and fovea, or is complicated by occurrence of retinal detachment, choroidal neovascular membrane, cataract, amblyopia due to uncorrected refractive errors, etc. While the basic birth anomaly cannot be corrected, most of the complications listed above are correctable to a great 1234567890();,: 1234567890();,: extent. Current day surgical management of coloboma-related retinal detachments has evolved to yield consistently good results. Cataract surgery in these eyes can pose a challenge due to a combination of microphthalmos and relatively hard lenses, resulting in increased risk of intra-operative complications.
    [Show full text]
  • DIAGNOSIS and TREATMENT GOALS Review the Layers of The
    GOALS CORNEAL DYSTROPHIES AND DEGENERATIONS: Differentiate dystrophy vs. degeneration DIAGNOSIS AND TREATMENT Normal vs. abnormal Classify the disease by location Layers of the cornea Louise A. Sclafani, OD, FAAO Central vs. peripheral AAO Diplomate, Cornea & Contact Lens Determine appropriate treatment Associate Professor of Ophthalmology University of Chicago Medical Center Review the Layers of the Cornea CORNEAL DYSTROPHY Tear film 7-11 um Rare conditions Epithelium 50 um Slowly progressive, bilateral, central location Primary involvement of single corneal layer * Epithelial BM <128 nm Variable penetration and severity Bowman 8-14 um No associated systemic or ocular disease Stroma 500 um No sex predilection. Descemet 5-10 um Onset by age 20, stabilize by age 40 (except Fuchs) Autosomal dominant (50%) Endothelium 5 um CORNEAL DYSTROPHY CORNEAL DEGENERATION Stromal Epithelial Lattice Dystrophy Map/dot/fingerprint Non-familial, late onset Map/dot/fingerprint Granular Dystrophy Non-familial, late onset Meesman’s Avellino Dystrophy Macular Dystrophy Asymmetric, unilateral, central or peripheral Subepithelial/ Bowman’s Gelatinous Drop-Like Reis-Bücklers Dystrophy (CDB 1) Dystrophy Changes to the tissue caused by inflammation, Thiel-Behnke Honeycomb Schnyder Crystalline Dystrophy (CDB 2) Dystrophy age, or systemic disease. Subepithelial Mucinous Central Cloudy Dystrophy of Francois Fleck Dystrophy Characterized by a deposition of material, a Endothelial Cornea Farinata Fuchs’ dystrophy Pre-Descemet’s
    [Show full text]