Correlation of Corneal Arcus and Serum Lipid Profile

Total Page:16

File Type:pdf, Size:1020Kb

Correlation of Corneal Arcus and Serum Lipid Profile Original Research Article Correlation of corneal arcus and serum lipid profile Kiran Shetty1, Sarita Gonsalves2*, Shrinivas Gonagi3 1,2Assistant Professor, 3Professor, Dept. of, 1,2Father Muller Medical College, Mangaluru, Karnataka, 3DM WIMS Medical College, Wayanad, Kerala, India *Corresponding Author: Sarita Gonsalves Email: [email protected] Abstract Arcus senilis is depositionin the peripheral cornea and is considered a part of the normal ageing process usually seen in the elderly. However, there is a strong association of altered lipid metabolism and presence of arcus. We conducted a study at our hospital to find out if corneal arcus is an indicator of deranged lipid metabolism or only a consequence of normal ageing process. It was found that almost all patients with 360 degree corneal arcus had deranged lipid metabolism. Since eleveated serum lipids are a strong risk factor for cerebro vascular accidents and cardio vascular disease it is important to study the correlation between arcus and altered lipid profile. As slit lamp examination of arcus nis a simple, easy and inexpensive method to screen patients for hypercholesterolemia. Keywords: Arcus, Corneal arcus, Familial dysbetalipoproteinemia, Familial hypercholesterolemia. Introduction concluding the deposits to be due to lipids. Cornea has a Corneal arcus or arcus senilis is known to be a corneal temperature gradient which can affect the deposition of lipid finding in most of the aging population. It is has been s. It also has a gradient regarding how dense the collagen documented that at the age of 60 about 50-60% of the fibers of the cornea are packed and this effects what size of general human population have arcus and by the age of 80 particle can move towards the center. Furthermore, the almost 100% of the population has corneal arcus. It is found cornea is normally avascular, with only the periphery close to be more common in men than in women. And more to limbal capillary beds, which are the source of the lipid in common in natives of African American races than in other arcus. Arcus and atherosclerotic coronary artery disease ethnic groups. In these ethnic groups it tends to occur much increase with age and the incidence of both is greater in earlier than the rest of the population. When it appears in the males than in females. One major difference between younger population it is called arcus juvenilis and is cholesterol deposition in the cornea and atherosclerotic frequently associated with familial hyperlipidemia lesions is that cholesterol deposition in atherosclerotic syndromes. Arcus may occasionally be seen as a congenital lesions is accompanied by an infiltration of macrophages. anomaly (arcus juvenilis), usually involving only a portion These macrophages secrete substances (e.g., cytokines, of the peripheral cornea and may not associated with proteases, complement factors, coagulation factors) that abnormalities in lipid metabolism.. It is due to the lipid may influence the development of lesions. Some patients deposition in the peripheral cornea. It is known to be made may also have Xanthelasma palpebrarum which are plaque- up of phospholipids, cholesterol and triglycerides. Of the like yellow lesions near the inner canthus of the eyelids that three lipid parameters serum triglyceride levels are are caused by lipid deposition in the dermis of the eyelids. frequently found to be elevated in patients with corneal Studies have linked corneal arcus with alcoholism, diabetes arcus. This suggests a positive correlation between deranged mellitus and atherosclerotic heart disease. Unilateral arcus is lipid metabolism and corneal arcus. Diagnosis with slit lamp a rare entity that is associated with carotid artery disease or examination of the arcus is relatively easy and inexpensive, ocular hypotony. Corneal arcus, along with a central corneal and can be made even in the out patient setting with no opacity, is seen in Schnyder's crystalline stromal distrophy. access to laboratory testing. The arcus has a hazy gray-white Once correlated with an altered lipid profile, intensive appearance, a sharp outer margin with a indistinct inner treatment may be warranted, particularly in patients with margin. A lucid interval of Vogt is usually present between suspected familial dyslipidemias. Hence the need for study. the peripheral edge of the arcus and the limbus. Senile arcus We conducted a study at our institute to find the correlation appears first in the inferior and superior sections of the between corneal arcus and serum lipid levels in the adult cornea, gradually involves the entire circumference of the population attending our out patient department in the rural cornea in later stages. Arcus is only the macroscopic sign of set up. lipid deposition, and amounts of lipid can be deposited in the perivascular ground substance of the eye without Materials and Methods producing a visible arcus. The overall distribution of lipid A hospital based cross sectional study on 60 consecutive along with the structure and size of the lipid molecules may patients attending the medicine out patient centre at our influence the threshold of deposition for arcus rural hospital were included in the study. Sampling visibility.Opacities in the peripheral cornea due to deposits methodused was simple random sampling. Demographic other than lipids and different forms of corneal data such as name, age, sex and geographical location was degenerations and dystrophies have to be ruled out before collected. The presence of systemic risk diseases like IP International Journal of Aesthetic and Health Rejuvenation, April-June, 2019;2(2):23-25 23 Kiran Shetty et al. Correlation of corneal arcus and serum lipid profile diabetes mellitus, hypertension, ischemic heart disease was that the cases with higher lipid values might develop cardio noted. Any significant past history and family history were vascular disease or diseases like cerebro vascular accidents, noted. History of chronic smoking and alcohol addiction if not treated for properly. Thus, screening of lipid profile was ruled out and these patients were excluded from the can be helpful in early detection of the high-risk cases and study. The age group included was between 40-80 years. recommending preventive measures through lifestyle The fasting plasma concentrations of total cholesterol (TC), modifications for them in order to prevent untoward LDL and high-density lipoprotein (HDL) were determined consequences. by enzymatic assays. Total cholesterol (CHOL), triglyceride (TG) and high density lipoprotein (HDL) were measured. Table 1: Age wise distribuition of arcus senilis An ophthalmic history was taken from all subjects, and the Percentage following examinations were performed: (1) Visual acuity 41-50 12 11 91.6% (VA) was measured with the patient's own optical 51-60 14 14 100% correction. If the acuity was less than 20/20 it was re- 61-70 18 17 94.4% examined with a pinhole in front of each eye. A Snellen Above 70 16 16 100% chart placed at 20 feet (6 m) and a Jaeger reading chart were used for distance and near vision respectively. The presence Table 2: Sex wise distribuition of patients with arcus senilis of arcus was determined by standardised slit lamp Sex Number screened positive Percentage examination technique. It was categorised into three groups Males 35 33 94.28% first being absent arcus, second group those with less than Females 25 24 96% 180 degrees(patial) and third group those with greater than 180 degrees(total). Both eyes were examined and the eye Table 3: Correlating lipid levels with arcus greater than 180 with the higher grade of arcus was taken into consideration. degrees The width of the arcus of the more involved eye at its widest Males Females Total point was taken into account. The exclusion criteria were <300 12 9 21 pregnant and lactatating women. Those with severe 301-400 11 7 18 uncontrolled hypertension or recent myocardial infarction in the last 6 months, those with liver or pancreatic diseases or 401-500 10 8 18 gall bladder disease.. >500 2 1 3 Results Table 4: Correlating ldl levels with arcus The study group was divided into subgroups those with Ldl levels Male Female Total arcus and those without arcus. Of the 60 patients studied 35 70-100 13 8 22 were males and 25 were females (Table 1). Of the 35 males 100-160 8 9 15 30 had co morbidities such as diabetes or hypertension. Of >160 14 8 22 the 25 females 18 had either diabetes or hypertension. Arcus greater than 180 degress was found in 33 males and 24 Discussion females. (Table 2). The total cholesterol was less than 300 Corneal arcus is a common finding in the aging mg/dl in 12 males and 9 females with greater than 180 population.It is a known fact that in people below 50 arcus degree of arcus. Was between 301-400 in 11 males and 7 juvenilis may be associated with familial hyperlipidemia females with arcus greater than 180 degree. Levels between syndromes. Studies done earlier have found a correlation of 401-500 were found in 10 males and 8 females. And levels arcus with age and with low density lipo protein levels. A greater than 500 were found in 2 males and 1 female. All of beneficial effect of raised high density lipoprotein levels in the above had arcus greater than 180(TABLE 3).Correlating protection against cardiovascular disease has been found. LDL levels with arcus levels between 70-100 were found in Also some studies have proven that females have less 13 males and 8 females. Levels between 100-160 were chance of developing arcus when compared to males. The found in 8 males and 9 females. Levels greater than 160 German pathologist Rudolf Virchow is credited with the were found in 14 males and 8 females. (Table 4).Correlating hypothesis that atherosclerosis reflects insudation of hdl cholesterol with arcus all the 50 patients had HDL levels pathogenic agents into tissue.
Recommended publications
  • 12 Retina Gabriele K
    299 12 Retina Gabriele K. Lang and Gerhard K. Lang 12.1 Basic Knowledge The retina is the innermost of three successive layers of the globe. It comprises two parts: ❖ A photoreceptive part (pars optica retinae), comprising the first nine of the 10 layers listed below. ❖ A nonreceptive part (pars caeca retinae) forming the epithelium of the cil- iary body and iris. The pars optica retinae merges with the pars ceca retinae at the ora serrata. Embryology: The retina develops from a diverticulum of the forebrain (proen- cephalon). Optic vesicles develop which then invaginate to form a double- walled bowl, the optic cup. The outer wall becomes the pigment epithelium, and the inner wall later differentiates into the nine layers of the retina. The retina remains linked to the forebrain throughout life through a structure known as the retinohypothalamic tract. Thickness of the retina (Fig. 12.1) Layers of the retina: Moving inward along the path of incident light, the individual layers of the retina are as follows (Fig. 12.2): 1. Inner limiting membrane (glial cell fibers separating the retina from the vitreous body). 2. Layer of optic nerve fibers (axons of the third neuron). 3. Layer of ganglion cells (cell nuclei of the multipolar ganglion cells of the third neuron; “data acquisition system”). 4. Inner plexiform layer (synapses between the axons of the second neuron and dendrites of the third neuron). 5. Inner nuclear layer (cell nuclei of the bipolar nerve cells of the second neuron, horizontal cells, and amacrine cells). 6. Outer plexiform layer (synapses between the axons of the first neuron and dendrites of the second neuron).
    [Show full text]
  • Peripheral Ring Opacity of the Cornea
    Brit. jt. Ophthal. (I969) 53, 270 Br J Ophthalmol: first published as 10.1136/bjo.53.4.270 on 1 April 1969. Downloaded from Peripheral ring opacity of the cornea A. J. BRON Moorfields Eye Hospital, City Road, London, E.C. I A bilaterally symmetrical ring-shaped corneal opacity has been observed in two patients. The condition is described here because of its unusual appearance and because of its appar- ent uniqueness in the literature. Case reports (i) A 59-year-old Caucasian male presented at the casualty department complaining of pricking in the right eye. Symptoms were caused by a marginal infiltrate and this resolved on conventional therapy. A recurrence one month later also responded well. Each cornea presented an arcus senilis and, in the zone ofstroma affected by the arcus, an additional opacity could be seen. This was identical in each eye, and took the form of a striking, narrow, dense white ring in the stroma, passing forwards as a band from Descemet's to Bowman's membrane (Fig. l). copyright. ... ........... http://bjo.bmj.com/ k t_ ; ~~~~~~~~~~~~~~~FI (,GIas I. Drawing of right and left corneae. Insets show slit-lamp sec- tions above and belowv, in the right eye on September 26, 2021 by guest. Protected In slit section, except above, each band appeared as a slender wedge-shaped opacity with its base lying on Descemet's membrane and its apex reaching forwards to Bowman's membrane. The opacity was dense at the base and faint at the apex (Fig. 2, opposite). Between the I I to I o'clock positions, the rings were very faint in each eye and sloped inwards and forwards at an angle in each eye, 450 to the normal on the right and at a shallower angle to the normal on the left.
    [Show full text]
  • Cornea Plana Associated with Open-Angle Glaucoma: a Case Report
    Cornea plana associated with open-angle glaucoma: a case report Bilge Ozturk Sahin, Goktug Seymenoglu & Esin F. Baser International Ophthalmology The International Journal of Clinical Ophthalmology and Visual Sciences ISSN 0165-5701 Volume 31 Number 6 Int Ophthalmol (2012) 31:505-508 DOI 10.1007/s10792-011-9490-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Int Ophthalmol (2011) 31:505–508 DOI 10.1007/s10792-011-9490-4 CASE REPORT Cornea plana associated with open-angle glaucoma: a case report Bilge Ozturk Sahin • Goktug Seymenoglu • Esin F. Baser Received: 20 October 2011 / Accepted: 22 November 2011 / Published online: 11 December 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Cornea plana is a rare disease in which the Introduction cornea is flattened with a low refractive power. In addition to these features, hypermetropia, deep central Cornea plana is a rare congenital disease characterized corneal opacities, hazy corneal limbus, peripheral by a flattened corneal curvature and low refractive scleralization of the cornea and early arcus senilis can power.
    [Show full text]
  • MOC PORT/DOCK Practice Core Modules Content Outline
    MOC PORT/DOCK Practice Core Modules Content Outline 1 Cataract and Anterior Segment (10%) 1.1 Basic Anatomical and Scientific Aspects 1.1.1 The Normal Lens 1.1.1.1 Anatomy 1.2 Assessment Techniques 1.2.1 History-Taking and Preoperative Examination of Ocular Structures 1.2.1.1 Take patient history 1.2.1.2 Examine ocular structures 1.2.1.3 Signs and symptoms 1.2.1.4 Indications for surgery 1.2.1.6 External examination 1.2.1.7 Slit-lamp examination 1.2.1.8 Fundus evaluation 1.2.1.9 Impact on visual functioning and quality of life 1.2.2 Measurement of Visual and Macular Function 1.2.2.1 Visual acuity testing 1.2.2.2 Test visual acuity 1.2.2.5 Visual field testing 1.2.2.6 Test visual field 1.2.2.7 Cataract's effect on visual acuity 1.2.2.8 Estimate cataract's effect on visual acuity 1.2.2.10 Measure visual (and macular) function 1.2.4.3 Evaluate glare disability: subjective and objective 1.3 Clinical Disease Conditions and Manifestations 1.3.1 Types of Cataract 1.3.1.1 Identify types of cataracts 1.3.2 Anterior Segment Disorders 1.3.2.1 Diagnose anterior segment disorders 1.3.2.2 Cataract associated with uveitis 1.3.2.3 Diabetes mellitus and cataract formation 1.3.2.4 Lens-induced glaucoma 1.3.2.4.1 Lens particle 1.3.2.4.2 Phacolytic 1.3.2.4.3 Phacomorphic Copyright and Use Policy for ABO Content Outlines © 2017 – American Board of Ophthalmology.
    [Show full text]
  • Familial Hypercholesterolemia and Xanthomatosis Associated with Diabetes Mellitus: a Case Report and Review of the Literature Ch
    Familial Hypercholesterolemia and Xanthomatosis Associated with Diabetes Mellitus: A Case Report and Review of the Literature Ching-Hsiang Leung, Tien-Ling Chen*, Chao-Hung Wang, Kun-Wu Tsan, and Daniel T. H. Chin** Division of Endocrinology and Metabolism, Department of Internal Medicine; *Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine; **Department of Pathology; Mackay Memorial Hospital, Taipei, Taiwan Abstract Familial hypercholesterolemia is an autosomal dominant disorder due to mutations in the low-density lipoprotein receptor gene, characterized by skin and tendon xanthomas, xanthelasma and premature arcus corneae. It is associated with an increased risk of premature coronary heart disease, which is further increased if there is co-existing diabetes mellitus. A 35-year-old female who developed cutaneous and tendon xanthomas since the age of 12 was diagnosed as having mixed primary familial hypercholesterolemia and secondary hyperlipidemia due to diabetes mellitus, and osteomyelitis. However, familial hypercholesterolemia remains seriously under-diagnosed, delaying treatment. Screening of first-degree relatives and extended family members plays an important role in early detection and treatment. ( J Intern Med Taiwan 2003;14:23-30 ) Key Words:Familial hypercholesterolemia, Xanthomatosis, Diabetes mellitus, LDL receptor, Osteomyelitis Introduction Familial hypercholesterolemia is a monogenic 1 , autosomal dominant 2 disorder due to mutations in the gene for the LDL receptor 3, characterized by xanthomas 4, xanthelasma and premature arcus corneae 5. Our report concerns a 35-year-old female patient who developed xanthomas since the age of 12 and was diagnosed as having mixed primary familial hypercholesterolemia and secondary hyperlipidemia due to diabetes mellitus, and osteomyelitis. The significance, characteristic features, diagnosis and treatment of familial hypercholesterolemia are discussed.
    [Show full text]
  • Bilateral, Anterior Stromal Ring Opacity of the Cornea
    Downloaded from bjo.bmj.com on 11 December 2006 Bilateral, anterior stromal ring opacity of the cornea Gerrit R J Melles, Johan P de Séra, Cathrien A Eggink, Johan R M Cruysberg and Perry S Binder Br. J. Ophthalmol. 1998;82;522-525 Updated information and services can be found at: http://bjo.bmj.com/cgi/content/full/82/5/522 These include: References 1 online articles that cite this article can be accessed at: http://bjo.bmj.com/cgi/content/full/82/5/522#otherarticles Rapid responses You can respond to this article at: http://bjo.bmj.com/cgi/eletter-submit/82/5/522 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article Notes To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform To subscribe to British Journal of Ophthalmology go to: http://www.bmjjournals.com/subscriptions/ Downloaded from bjo.bmj.com on 11 December 2006 522 Br J Ophthalmol 1998;82:522–525 Bilateral, anterior stromal ring opacity of the cornea Gerrit R J Melles, Johan P de Séra, Cathrien A Eggink, JohanRMCruysberg, Perry S Binder Abstract degenerative changes with advancing age. In Aims/background—To describe a bilat- the current report, we describe the presence of eral, mid peripheral, ring-shaped corneal a bilateral, ring-shaped, mid peripheral corneal opacity, not resembling any known cor- opacification as an isolated finding in a young, neal degeneration, dystrophy, or other healthy patient, who did not have a history of disorder, and occurring without ocular or ocular inflammation.
    [Show full text]
  • Lipid Deposition at the Limbus
    Eye (1989) 3, 240-250 Lipid Deposition at the Limbus S. M. CRISPIN Bristol Summary Lipid deposition at the limbus is a feature of familial and non-familial dyslipopro­ teinemias and can also occur without apparent accompanying systemic abnormality. Hyperlipoproteinemia, most notably type II hyperlipoproteinemia, is frequently associated with bilateral corneal arcus, with less common association in types III, IV and V. Diffuse bilateral opacification of the cornea with accentuation towards the limbus is a feature of HDL deficiency syndromes and LCAT deficiency. Whereas the lipid accumulation of hyperlipoproteinemia may be representative of excessive insudation of lipoprotein from plasma into the cornea that of hypoliproteinemia is more likely to be a consequence of defective lipid clearance. The situation is yet further complicated by the modifying influences of secondary factors. both local and systemic. Lipid may be deposited at the limbus in a so. Both local and systemic factors can influ­ variety of situations; most commonly it ence lipid deposition in this region and their accumulates as a consequence of excessive inter-relationships are complex and often lipid entry or defective lipid clearance over a poorly understood. Some of the local factors long period of time, but this is not invariably which have been investigated include normal and abnormal structure and function; the effects of temperature and vasculature; and the modifying influences of certain ocular disorders. LIVER Local lipoprotein metabolism of cornea and limbus has received little study but there is a wealth of information available concerning systemic plasma lipoproteins in health and disease and a number of dyslipoproteinemias VLDLI LDL have been reported in which corneal lipid deposition is one of the clinical features.
    [Show full text]
  • Erdheim-Chester Disease and Eyes
    Erdheim-Chester Disease and Eyes OMAR OZGUR, MD OCTOBER 10, 2015 9:30- 10:00AM OPHTHALMIC PLASTIC AND RECONSTRUCTIVE SURGERY AND ORBITAL ONCOLOGY FELLOW DEPARTMENT OF PLASTIC SURGERY THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER HOUSTON, TX, UNITED STATES Outline Anatomy and function of the eye and orbit Background and overview of ECD What can ECD do to the eye? DoubleDouble visionvision Pain Exophthalmos Overview of an eye exam General eye conditions that may also occur Droopy eyelids Dry eye syndrome Cataracts Refractive error Questions Please ask anytime! www.nasa.gov – Cat’s Eye Nebula Background anatomy https://c2.staticflickr.com/2/1363/542580866_940d2f9a02.jpg http://fiftylives.org/blog/wp- content/uploads/2012/08/Cornea.jpg Eye anatomy https://c2.staticflickr. com/2/1363/5425808 66_940d2f9a02.jpg http://www.retina-doctors.com/galleries/splash_patients/Eye%20anatomy%20-%20AN0003.jpg Optic nerves http://antranik.org/wp-content/uploads/2011/11/optic-nerve-lateral- geniculate-nucleus-of-thalamus-optic-radiation-visual-cortex.jpg?9873a6 http://www.vision-and-eye-health.com/images/GCA-AION.jpg Orbital anatomy http://www.leventefe.com.au/portfolio /mi-tec-medical-media-3/ http://msk- anatomy.blogspot.com/2014/12/ cranial-nerves-anatomy.html Eyelid structure http://eyestrain.sabhlokcity.com/2011/ 09/meibomian-gland-disease-mgd/ http://www.mastereyeassociates.com/blepharitis http://www.medindia.net/patients/patientinfo/gran ulated-eyelids.htm CT and MRI http://www.ijri.org/articles/2012/2 2/3/images/IndianJRadiolImaging_
    [Show full text]
  • Diagnosis and Management of Primary Biliary Cholangitis Ticle
    REVIEW ArtICLE 1 see related editorial on page x Diagnosis and Management of Primary Biliary Cholangitis TICLE R Zobair M. Younossi, MD, MPH, FACG, AGAF, FAASLD1, David Bernstein, MD, FAASLD, FACG, AGAF, FACP2, Mitchell L. Shifman, MD3, Paul Kwo, MD4, W. Ray Kim, MD5, Kris V. Kowdley, MD6 and Ira M. Jacobson, MD7 Primary biliary cholangitis (PBC) is a chronic, cholestatic, autoimmune disease with a variable progressive course. PBC can cause debilitating symptoms including fatigue and pruritus and, if left untreated, is associated with a high risk of cirrhosis and related complications, liver failure, and death. Recent changes to the PBC landscape include a REVIEW A name change, updated guidelines for diagnosis and treatment as well as new treatment options that have recently become available. Practicing clinicians face many unanswered questions when managing PBC. To assist these healthcare providers in managing patients with PBC, the American College of Gastroenterology (ACG) Institute for Clinical Research & Education, in collaboration with the Chronic Liver Disease Foundation (CLDF), organized a panel of experts to evaluate and summarize the most current and relevant peer-reviewed literature regarding PBC. This, combined with the extensive experience and clinical expertise of this expert panel, led to the formation of this clinical guidance on the diagnosis and management of PBC. Am J Gastroenterol https://doi.org/10.1038/s41395-018-0390-3 INTRODUCTION addition, diagnosis and treatment guidelines are changing and a Primary biliary cholangitis (PBC) is a chronic, cholestatic, auto- number of guidelines have been updated [4, 5]. immune disease with a progressive course that may extend over Because of important changes in the PBC landscape, and a num- many decades.
    [Show full text]
  • Management of Hyperlipidemias: an Update
    Review MManagementanagement ofof hyperlipidemias:hyperlipidemias: AnAn updateupdate Article NNitinitin RRanjananjan Department of Dermatology, ABSTRACT Jawaharlal Nehru Medical College, Aligarh Muslim The discovery of the key enzymes, receptors, and transporters in cholesterol biosynthesis University, Aligarh, India has enabled us to assemble fragments of knowledge concerning lipids and lipoproteins into dynamic pathways, leading to the development of a multitude of lipid-lowering drugs. AAddressddress forfor ccorrespondence:orrespondence: Dr. Nitin Ranjan, Department After a brief recapitulation of the pathways of cholesterol metabolism and the dermatologic of Dermatology, Jawaharlal manifestations of lipid derangement, we shall review drugs which modify intestinal cholesterol Nehru Medical College, and bile-acid reabsorption, and hepatic lipoprotein biosynthesis and catabolism. The current Aligarh Muslim University literature is examined to determine future therapeutic targets in lipid metabolism, as well as (AMU), Aligarh - 202 001, the role of traditional foods as lipid-lowering agents. The latest National Cholesterol Education Uttar Pradesh, India. E-mail: [email protected] Program guidelines for managing hypercholesterolemia are also discussed. DOI: 10.4103/0378-6323.55387 Key words: Guidelines, Lipid metabolism, Low-density lipoprotein cholesterol, Statins PMID: ***** IINTRODUCTIONNTRODUCTION nascent CMs acquire cholesteryl esters (ChE), apo-C, and apo-E from HDL to form CMs. These CMs come Cholesterol serves not only as an essential component in contact with lipoprotein lipase (LPL) located on the of the cell membrane but also as the precursor luminal surface of vascular endothelium of skeletal molecule from which steroid hormones, bile salts, muscle and adipose tissue. LPL breaks down the and vitamin D are synthesized. It is both derived from triglyceride component of CMs into free fatty acids the diet and synthesized within the body, mainly in (FFA) and monoglycerides, in the process converting the liver.
    [Show full text]
  • DIAGNOSIS and TREATMENT GOALS Review the Layers of The
    GOALS CORNEAL DYSTROPHIES AND DEGENERATIONS: Differentiate dystrophy vs. degeneration DIAGNOSIS AND TREATMENT Normal vs. abnormal Classify the disease by location Layers of the cornea Louise A. Sclafani, OD, FAAO Central vs. peripheral AAO Diplomate, Cornea & Contact Lens Determine appropriate treatment Associate Professor of Ophthalmology University of Chicago Medical Center Review the Layers of the Cornea CORNEAL DYSTROPHY Tear film 7-11 um Rare conditions Epithelium 50 um Slowly progressive, bilateral, central location Primary involvement of single corneal layer * Epithelial BM <128 nm Variable penetration and severity Bowman 8-14 um No associated systemic or ocular disease Stroma 500 um No sex predilection. Descemet 5-10 um Onset by age 20, stabilize by age 40 (except Fuchs) Autosomal dominant (50%) Endothelium 5 um CORNEAL DYSTROPHY CORNEAL DEGENERATION Stromal Epithelial Lattice Dystrophy Map/dot/fingerprint Non-familial, late onset Map/dot/fingerprint Granular Dystrophy Non-familial, late onset Meesman’s Avellino Dystrophy Macular Dystrophy Asymmetric, unilateral, central or peripheral Subepithelial/ Bowman’s Gelatinous Drop-Like Reis-Bücklers Dystrophy (CDB 1) Dystrophy Changes to the tissue caused by inflammation, Thiel-Behnke Honeycomb Schnyder Crystalline Dystrophy (CDB 2) Dystrophy age, or systemic disease. Subepithelial Mucinous Central Cloudy Dystrophy of Francois Fleck Dystrophy Characterized by a deposition of material, a Endothelial Cornea Farinata Fuchs’ dystrophy Pre-Descemet’s
    [Show full text]
  • Ophthalmology
    RAPID Ophthalmology mage i b e a in l n k n o Zahir Mirza Editorial Advisor: Andrew Coombes Rapid Ophthalmology To my supportive and ever thoughtful wife. Zahir Mirza Rapid Ophthalmology Dr Zahir Mirza, BSc, MBChB Ophthalmic Specialist Trainee Western Eye Hospital, Imperial NHS Trust London, UK Editorial Advisor Mr Andrew Coombes, BSc, MBBS FRCOphth Consultant Eye Surgeon Barts and the London NHS Trust London, UK A John Wiley & Sons, Ltd., Publication This edition first published 2013 C John Wiley & Sons, Ltd Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]