1 Ii.023.1.2019.Kw Sprawozdanie Z Działalności Jednostki Za
Total Page:16
File Type:pdf, Size:1020Kb
II.023.1.2019.KW SPRAWOZDANIE Z DZIAŁALNOŚCI JEDNOSTKI ZA ROK 2018 Nazwa jednostki: Instytut Informatyki Skrócona nazwa jednostki np. akronim: II Uprawiane dyscypliny naukowe: informatyka Dane adresowe Ulica: F. Joliot-Curie Telefon: 071 375 7800, 071 325 1271 Nr domu: 15 Kod pocztowy: 50-383 Fax: 071 375 7801 Miejscowość: Wrocław E-mail: [email protected] Kierownik jednostki Nazwisko i imię: Jerzy Marcinkowski Telefon służbowy: 071 375 70 34 Stanowisko służbowe: dyrektor Fax: 071 375 7801 Tytuły i stopnie naukowe: prof. dr hab. E-mail: [email protected] 1 Dane liczbowe o składzie Rady Naukowej Liczba członków ogółem: 18 - w tym członków z tytułem prof. oraz dr hab.: 13 Liczba członków spoza jednostki: 0 Zatrudnienie Zatrudnionych ogółem: 64 - w tym nauczycieli akademickich: 48 z tytułem profesora: 4 na stanowisku profesora nadzwyczajnego: 9 ze stopniem dr. hab.: 2 ze stopniem dr.: 14 asystentów: 1 wykładowców: 9 (dr) + 4 (mgr) adiunkt naukowy: 4 (dr) + 1 (mgr) - w tym nienauczycieli: 16 pracowników technicznych: 5 pracowników administracyjnych: 5 innych: 6 - w tym nienauczycieli z wykształceniem wyższym: 6 średnim: 4 zawodowym i podstawowym: 6 2 Uprawnienia do nadawania stopni naukowych Czy jednostka posiada uprawnienia do nadawania stopni doktora: Tak (w ramach Wydziału) Czy jednostka posiada uprawnienia do nadawania stopni doktora habilitowanego: Tak (w ramach Wydziału) Podać rodzaj i zakres uprawnień Stopnia doktora: nauk matematycznych - w zakresie: informatyki Podać rodzaj i zakres uprawnień Stopnia doktora habilitowanego: nauk matematycznych - w zakresie: informatyki Liczba nadanych stopni dr w okresie sprawozdawczym ogółem (w tym kobiety): 1 (0) w tym: - pracownicy: Michał Różański (25.09.2018) - doktoranci: 0 - osoby spoza Uczelni: 0 Liczba nadanych stopni dr hab. w okresie sprawozdawczym ogółem (w tym kobiety): 1 (0) w tym: - pracownicy: Piotr Wnuk-Lipiński (16.01.2018) - osoby spoza Uczelni: 0 Liczba nadanych tytułów prof. w okresie sprawozdawczym ogółem (w tym kobiety): 0 (0) w tym: - pracownicy: 0 - osoby spoza Uczelni: 0 Liczba uzyskanych stopni dr poza Uczelnią ogółem (w tym kobiety): 0 (0) Liczba uzyskanych stopni dr hab. poza Uczelnią ogółem (w tym kobiety): 0 (0) Liczba uzyskanych tytułów prof. poza Uczelnią ogółem (w tym kobiety): 0 (0) 3 Kilka najważniejszych osiągnięć naukowych Za najważniejsze osiągnięcia naukowe, traktowane równorzędnie, uznaje się następujące prace (kolejność alfabetyczna): Byrka Jarosław, Sornat Krzysztof, Spoerhase Joachim Andreas Constant-factor approximation for ordered k-median / Jarosław Byrka, Krzysztof Sornat, Joachim Andreas Spoerhase // W: STOC'18 : Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing : June 25-29, 2018, Los Angeles, CA, USA / editors: Ilias Diakonikolas, David Kempe, Monika Henzinger. - New York : ACM, 2018. - S. 620-631. - Dostęp do abstraktu: https://doi.org/10.1145/3188745.3188930. Abstract. We study the Ordered k-Median problem, in which the solution is evaluated by first sorting the client connection costs and then multiplying them with a predefined non-increasing weight vector (higher connection costs are taken with larger weights). Since the 1990s, this problem has been studied extensively in the discrete optimization and operations research communities and has emerged as a framework unifying many fundamental clustering and location problems such as k-Median and k-Center. Obtaining non-trivial approximation algorithms was an open problem even for simple topologies such as trees. Recently, Aouad and Segev (2017) were able to obtain an O(log n) approximation algorithm for Ordered k-Median using a sophisticated local-search approach. The existence of a constant-factor approximation algorithm, however, remained open even for the rectangular weight vector. In this paper, we provide an LP-rounding constant-factor approximation algorithm for the Ordered k- Median problem. We achieve this result by revealing an interesting connection to the classic k-Median problem. In particular, we propose a novel LP relaxation that uses the constraints of the natural LP relaxation for k- Median but minimizes over a non-metric, distorted cost vector. This cost function (approximately) emulates the weighting of distances in an optimum solution and can be guessed by means of a clever enumeration scheme of Aouad and Segev. Although the resulting LP has an unbounded integrality gap, we can show that the LP rounding process by Charikar and Li (2012) for k-Median, operating on the original, metric space, gives a constant-factor approximation when relating not only to the LP value but also to a combinatorial bound derived from the guessing phase. To analyze the rounding process under the non-linear, ranking-based objective of Ordered k-Median, we employ several new ideas and technical ingredients that we believe could be of interest in some of the numerous other settings related to ordered, weighted cost functions. Dudek Bartłomiej Universal protocols for information dissemination using emergent signals / Bartłomiej Dudek, Adrian Kosowski // W: STOC'18 : Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing : June 25-29, 2018, Los Angeles, CA, USA / Editors Ilias Diakonikolas, David Kempe, Monika Henzinger. - New York : ACM, 2018. - S. 87-99. - Dostęp do abstraktu: https://doi.org/10.1145/3188745.3188818. Abstract. We consider a population of n agents which communicate with each other in a decentralized manner, through random pairwise interactions. One or more agents in the population may act as authoritative sources of information, and the objective of the remaining agents is to obtain information from or about these source agents. We study two basic tasks: broadcasting, in which the agents are to learn the bit-state of an authoritative source which is present in the population, and source detection, in which the agents are required to decide if at least one source agent is present in the population or not. We focus on designing protocols which meet two natural conditions: (1) universality, i.e., independence of population size, and (2) rapid convergence to a correct global state after a reconfiguration, such as a change in the state of a source agent. Our main positive result is to show that both of these constraints can be met. For both the broadcasting problem and the source detection problem, we obtain solutions with an expected convergence time of O(logn), from any starting configuration. The solution to broadcasting is exact, which means that all agents reach the state broadcast by the source, while the solution to source detection admits one-sided error on a ε-fraction of the population (which is unavoidable for this problem). Both protocols are easy to implement in practice and are self-stabilizing, in the sense 4 that the stated bounds on convergence time hold starting from any possible initial configuration of the system. Our protocols exploit the properties of self-organizing oscillatory dynamics. On the hardness side, our main structural insight is to prove that any protocol which meets the constraints of universality and of rapid convergence after reconfiguration must display a form of non-stationary behavior (of which oscillatory dynamics are an example). We also observe that the periodicity of the oscillatory behavior of the protocol, when present, must necessarily depend on the number #X of source agents present in the population. For instance, our protocols inherently rely on the emergence of a signal passing through the population, whose period is Θ(log(n/#X)) rounds for most starting configurations. The design of phase clocks with tunable frequency may be of independent interest, notably in modeling biological networks. Gawrychowski Paweł, Łopuszański Jakub Labeling schemes for nearest common ancestors through minor-universal trees / Paweł Gawrychowski, Fabian Kuhn, Jakub Łopuszański, Konstantinos Panagiotou, Pascal Su // W: Proceedings of the Twenty- Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018 / Artur Czumaj (ed.). - Philadelphia : Society for Industrial and Applied Mathematics, 2018. - (Proceedings).- S. 2604-2619 : il. - Bibliogr. - Streszcz. w jęz. ang. - Dostęp do abstraktu: https://doi.org/10.1137/1.9781611975031.166. Abstract. Preprocessing a tree for finding the nearest common ancestor of two nodes is a basic tool with multiple applications. Quite a few linear-space constant-time solutions are known and the problem seems to be well-understood. This is however not so clear if we want to design a labeling scheme. In this model, the structure should be distributed: every node receives a distinct binary string, called its label, so that given the labels of two nodes (and no further information about the topology of the tree) we can compute the label of their nearest common ancestor. The goal is to make the labels as short as possible. Alstrup, Gavoille, Kaplan, and Rauhe [Theor. Comput. Syst. 37(3):441–456 2004] showed that O(log n)-bit labels are enough, with a somewhat large constant. More recently, Alstrup, Halvorsen, and Larsen [SODA 2014] refined this to only 2.772 log n, and provided a lower bound of 1.008 log n. We connect the question of designing a labeling scheme for nearest common ancestors to the existence of a tree, called a minor-universal tree, that contains every tree on n nodes as a topological minor. Even though it is not clear if a labeling scheme must be based on such a notion, we argue that all already existing schemes can be reformulated as such. Further, we show that this notion allows us to easily obtain clean and good bounds on the length of the labels. As the main upper bound, we show that 2.318 log n-bit labels are enough. Surprisingly, the notion of a minor-universal tree for binary trees on n nodes has been already used in a different context by Hrubes et al. [CCC 2010], and Young, Chu, and Wong [J. ACM 46(3):416–435, 1999] introduced a very closely related (but not equivalent) notion of a universal tree.