Tissue Engineering Strategies to Improve Tendon Healing and Insertion Site Integration

Total Page:16

File Type:pdf, Size:1020Kb

Tissue Engineering Strategies to Improve Tendon Healing and Insertion Site Integration Tissue Engineering Strategies to Improve Tendon Healing and Insertion Site Integration A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the of the requirements for the degree of DOCTOR OF PHILOSOPHY (Ph.D.) in the Department of Biomedical Engineering of the College of Engineering and Applied Science 2011 by Kirsten Rose Carol Kinneberg B.S., University of Minnesota, Twin Cities, MN, 2006 Committee Chair: Jason T. Shearn Abstract Tendon and ligament tears and ruptures remain common and significant musculoskeletal injuries. Repairing these injuries continues to be a prominent challenge in orthopaedics and sports medicine. Despite advances in surgical techniques and procedures, traditional repair techniques maintain a high incidence of re-rupture. This has led some researchers to consider using tissue engineered constructs (TECs). Previous studies in our laboratory have demonstrated that TEC stiffness at the time of surgery is positively correlated with repair tissue stiffness 12 weeks post-surgery. This correlation provided the rationale for implanting a soft tissue patellar tendon autograft (PTA) to repair a central-third defect in the rabbit patellar tendon (PT). The PTA was significantly stiffer than previous TECs and matched the stiffness of the normal central-third PT. Accordingly, we expected a significant improvement in repair tissue biomechanics relative to both natural healing (NH) and TEC repair. At 12 weeks, treatment with PTA improved repair tissue stiffness relative to NH. However, PTA and NH tissues did not differ in maximum force, modulus or maximum stress. Additionally, neither repair group regenerated normal zonal insertion sites. To enhance integration at the tendon-to-bone insertion site, PTA repairs were 1) given up to 26 weeks to recover and 2) augmented at the patellar and tibial insertions with mesenchymal stem cell (MSC)-collagen gel biologic augmentations (BAs). The role of the native cell population in PTA healing was also tested by de-cellularizing the PTA at surgery. We found that osteotendinous integration improved with recovery time for both de-cellularized PTA (dcPTA) and PTA repairs. However, biomechanical properties were only affected by recovery time for dcPTA repairs. Despite the changes in biomechanical properties demonstrated by dcPTA repairs, biomechanical properties did not vary between dcPTA and PTA repairs at any time point. We ii also found that MSC-collagen gel BAs did not enhance osteotendinous integration or repair tissue biomechanical properties relative to PTA repairs at 12 weeks post-surgery. Overall, the repair tissue biomechanics of our mechanically pre-conditioned MSC- collagen sponge TECs were approximately twice the biomechanical properties for both PTA repairs and NH. This result warranted additional experiments to further improve in vitro TEC stiffness and mRNA expression with the objective to enhance tendon healing. We investigated the effects of pore size, scaffold composition and mechanical pre-conditioning in vitro on MSC- collagen sponge TEC stiffness and mRNA expression levels for genes of interest. Our initial results indicated that for collagen sponge TECs, pore size did not affect linear stiffness and mechanical stimulation only enhanced stiffness when chondroitin-6-sulfate was incorporated into the collagen sponge. The goals of my research were to 1) understand the effects of the resident cell population and healing time on PTA integration into bone, 2) develop a biologic augmentation that would improve tendon insertion site development, and 3) improve TEC-mediated PT healing. Future studies need to investigate the effects of combining biological and mechanical factors at the insertion site on PTA integration and also validate our in vitro-to-in vivo predictors for MSC- collagen sponge TEC repair using updated sponge materials. iii iv Acknowledgements1 First and foremost, I would like to thank my advisor, Dr. Jason Shearn. I could not have asked for a better advisor. I would like to specifically thank Dr. Shearn for trusting me to work independently but always being there when I had questions or needed advice on how to move a project forward. Dr. Shearn pushed me to my limits and helped me realize my full potential and capability as a researcher. I would also like to extend a very special thank you to Dr. David Butler. His methodologies have forever shaped the way I approach research. I feel privileged to have learned research design from Dr. Butler and also thank him for helping me better communicate my research. With the help of both Drs. Shearn and Butler I have learned to appreciate the idea of “keep it simple.” I am also grateful to Dr. Keith Kenter for serving as a member of my dissertation committee. He has brought a unique aspect to my research and helped me to think critically in terms of the clinical problem. His comments and advice will help ensure our continued projects have clinical impact and move the field of tissue engineering in a positive direction. I would also like to acknowledge the significant contributions of Dr. Marc Galloway (Cincinnati Sportsmedicine). His research ideas have had a great impact on this dissertation and I thank both him and Dr. Shearn for the opportunity to work on these projects. Dr. Galloway, along with Dr. Kenter, has helped ensure that our laboratory maintains a focus on clinically relevant problems. I would also like to thank Dr. Galloway for always creating a positive and fun atmosphere. Completing the projects described in this dissertation would not have been possible without the significant contributions of Mrs. Cindi Gooch. She has taught me the invaluable skills of cell culture technique and animal care for surgery. Cindi has not only taught me the „tricks of the trade‟ for cell culture but she has also been a good friend and a good source of advice during my time at the University of Cincinnati. _______________________________ 1 This work was supported by two grants from the National Institutes of Health (NIH AR46574-10 and NIH AR56943-02) and also by a grant from the National Science Foundation (NSF 0333377) awarded to the University of Cincinnati. v A note of gratitude is also due to my colleagues. Specifically, I would like to thank Dr. William Ball, Dr. Natalia Juncosa-Melvin, Dr. Victor Nirmalanandhan, Dr. Kumar Chokalingam, Nathaniel Dyment, Andrea Lalley, Jennifer Hurley and Abdul Sheikh for helping to conduct experiments, understand data or discuss ideas for future studies. Their contributions and ideas were invaluable in completing this dissertation. Sincere thanks also to Lori Beth Derenski, Linda Moeller, Shelly Smith, Kathryn Siefert, and Michelle Montoya. They have come to my rescue on more than one occasion and I am very grateful for their efforts. Finally, I would like to thank my family and Patrick Mihalik. They now know more than they ever wanted to know about mesenchymal stem cells, collagen sponges, and patellar tendon autografts. I appreciate their kindness in being there for me and helping me though the difficulties of research. My mom, dad, sister, grandma and Patrick have always supported and encouraged me even when I doubted myself. I would like to also thank Patrick, especially, for his patience while I completed this dissertation. vi Life is a succession of lessons which must be done to be understood. - Ralph Waldo Emerson vii Table of Contents Abstract ii Acknowledgements v Table of Contents List of Tables 2 List of Figures 3 Chapter 1 Literature Review 4 Chapter 2 Research Objectives and Hypotheses 23 Chapter 3 Effects of Implanting a Soft Tissue Autograft in a Central-Third Patellar Tendon Defect: Biomechanical and Histological Comparisons 38 Chapter 4 Effects of Recovery Time and the Role of the Native Cell Population on Insertion Site Formation and Repair Tissue Biomechanics of the Patellar Tendon Autograft 53 Chapter 5 MSC-Collagen Gel Augmentation to Enhance Osteotendinous Integration of a Patellar Tendon Autograft 70 Chapter 6 Chondroitin-6-Sulfate Incorporation and Mechanical Stimulation Increase MSC-Collagen Sponge Construct Stiffness 95 Chapter 7 Discussion 113 Chapter 8 Recommendations for Future Studies 120 Bibliography 124 1 List of Tables Table 1 Repair Tissue Dimensions [mean (SEM)] for Whole and Central-Third PT 43 Table 2 Biomechanical Properties (Mean ± SEM) of Natural Healing, Patellar Tendon Autograft, Tissue Engineered Construct and Normal Central-Third PT 45 Table 3 Repair Tissue Dimensions (Mean ± SD) for Whole and Central-Third PT Repair Tissues 59 Table 4 Biomechanical Properties (Mean ± SD) of Patellar Tendon Autograft and De-Cellularized Patellar Tendon Autograft Repairs 61 Table 5 Gene Names*, TaqMan® Assay Identification (ID) Numbers, and Amplicon Length for All Tested Genes 79 Table 6 Biomechanical Properties (Mean ± SD) of Patellar Tendon Autograft and PTA+BA Repairs and Normal Central-Third PT 83 Table 7 Repair Tissue Dimensions (Mean ± SD) for Whole and Central-Third PT 87 Table 8 Experimental Design 99 Table 9 Biomechanics and Gene Expression Data for MSC-Collagen Sponge TECs [Mean (SEM)] Cultured for Two Weeks Statically and with Mechanical Stimulation 106 2 List of Figures Figure 1 Schematic of tendon hierarchical structure 6 Figure 2 Experimental design flow chart 25 Figure 3 SEM images of small (A), medium (B), and large (C) pore size scaffold materials 36 Figure 4 Force-displacement curves (mean ± SEM) 44 Figure 5 H&E staining and IHC staining for collagen
Recommended publications
  • Università Degli Studi Di Milano
    UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO IN MEDICINA MOLECOLARE CICLO XXVIII Anno Accademico 2014/2015 TESI DI DOTTORATO DI RICERCA MED09 STUDIES OF HEME-REGULATED eIF2α KINASE STRESS SIGNALING ON MATURATION OF MACROPHAGES AND ERYTHROBLASTIC ISLAND FORMATION IN IRON RESTRICTIVE ERYTHROPOIESIS Dottorando : Elena PALTRINIERI Matricola N° R10203 TUTORE : Chiar.ma Prof.ssa Maria Domenica CAPPELLINI CO-TUTORE: Prof.ssa Jane-Jane CHEN DIRETTORE DEL DOTTORATO: Chiar.mo Prof. Mario CLERICI ABSTRACT Iron is the most important metal for the human body. Different states of iron deficiency have long existed and remain very common in today’s population. The vast majority of cases of iron deficiency are acquired as a result from blood loss. Any condition in which dietary iron intake does not meet the body’s demands will result in iron deficiency. Iron and heme are both fundamental in hemoglobin synthesis and erythroid cell differentiation. In addition to act as a prosthetic group for hemoglobin, heme regulates the transcription of globin genes and controls the translational activity in erythroid precursors through modulation of the kinase activity of the eIF2α kinase HRI which is regulated by heme. HRI, the heme-regulated inhibitor of translation, was first discovered in reticulocytes under the conditions of iron and heme deficiencies. During heme deficiency conditions, in the erythroid precursors protein synthesis is inhibited by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α) as the result of the activation of HRI. The role of HRI is to control that the amount of globin chains synthesized are not in excess of what can be utilized for hemoglobin tetramers depending of heme available.
    [Show full text]
  • General Pathology
    Jordan University of Science and Technology Faculty of Medicine 2018-2019 COURSE TITLE : GENERAL PATHOLOGY. COURSE CODE : MED 231. CREDIT HOURS : 3 CREDIT HOURS SEQUENCE : YEAR 2, FIRST SEMESTER COURSE COORDINATOR: Dr. Alia AlMuhtaseb; Dr. Mohammad Orjani CONTACT: [email protected]; [email protected] Course Description: This course deals with the investigation of those pathological mechanisms common to all tissue-cell pathology. Attention is paid to the processes of cellular adaptation, inflammation, repair, immunology, cellular accumulation, and neoplasia. Lecture will attempt first to familiarize the student with our basic layers of defense. Next those vocabulary terms and concepts relevant to the disease process will be introduced. The terminology employed is both medical and chiropractic. Processes and concepts will be developed with the aid of Data show. An interactive format is employed in which the instructor poses questions to enable the student to self-test their knowledge prior to exams and develop skills in communicating these basic pathological concepts to others. During the course and whenever relevant the students are exposed to clinical problems to emphasize the explanations of symptoms, signs, investigations and forms of treatments. Practical sessions are planned to give students the opportunity to expose their knowledge for discussion and confirm concepts learned in lectures. Small group discussions of clinical cases are planned at the end of the course were students are divided into small groups and with the help of an instructor they analyze and discuss the problem. The course will be given through 28 lectures, 7 practical (laboratory) sessions, and one small group discussion activity over 15 weeks and for one whole semester.
    [Show full text]
  • 1 Pathology Week 1 – Cellular Adaptation, Injury and Death
    Pathology week 1 – Cellular adaptation, injury and death Cellular responses to injury Cellular Responses to Injury Nature and Severity of Injurious Stimulus Cellular Response Altered physiologic stimuli: Cellular adaptations: • ↑demand, ↑ trophic stimulation (e.g. growth factors, hormones) • Hyperplasia, hypertrophy • ↓ nutrients, stimulation • Atrophy • Chronic irritation (chemical or physical) • Metaplasia Reduced oxygen supply; chemical injury; microbial infection Cell injury: • Acute and self-limited • Acute reversible injury • Progessive and severe (including DNA damage) • Irreversible injury → cell death Necrosis Apoptosis • Mild chronic injury • Subcellular alterations in organelles Metabolic alterations, genetic or acquired Intracell accumulations; calcifications Prolonged life span with cumulative sublethal injury Cellular aging Hyperplasia - response to increased demand and external stimulation - ↑ number cells - ↑ volume of organ - often occurs with hypertrophy - occurs if cells able to synthesize DNA – mitotic division - physiologic or pathologic Physiological hyperplasia A) hormonal – ↑ functional capacity tissue when needed (breast in puberty, uterus in pregnancy) B) compensatory - ↑ tissue mass after damage/resection (post-nephrectomy) Mechanisms: - ↑ local production growth factors or activation intracellular signaling pathways o both → production transcription factors that turn on cellular genes incl those encoding growth factors, receptors for GFs, cell cycle regulators →→ cellular proli feration - in hormonal hyperplasia
    [Show full text]
  • Cellular Adaptation
    Cellular Adaptation Dr. Adeboye OO (MBBS, Cert. LMIH, FMCPath) Dept of Anatomic Pathology Bowen University Cellular adaptation • Cell death is not the only consequence of cellular injury or stress • Cells can respond to excessive physiologic or pathologic stimuli by undergoing both functional and morphologic change in which a new steady state is achieved that preserves the viability of the cell(Adaptation) . • The adaptive response include- • Adaptation of growth and differentiation • Intracellular accumulation • Pathologic calcification • Hyaline change • Cellular aging Adaptation of growth and differentiation • Adaptations are reversible changes in the size, number,phenotype, metabolic activity, or functions of cells in response to changes in their environment. Such adaptations may take several distinct forms : • 1. hyperplasia • 2. hypertrophy • 3. atrophy • 4. metaplasia hypertrophy • Increase in the size of cells that result in the increase in size of the affected organ. • No new cells just larger cells • May coexist with hyperplasia in cells capable of division( eg epithelial, hematopoesis etc), in non dividing cells (eg the nerve ,cardiac and skeletal muscle) increase tissue mass is due to hypertrophy • Can be physiologic or pathologic Physiologic hypertrophy • Caused by- (a) increased functional demand eg hypertrophy of striated muscle in muscle builder.(b) stimulation by hormones or growth factors eg physiologic hypertrophy of the uterus during pregnancy Hypertrophy of uterus during pregnancy Micrograph showing smooth muscle
    [Show full text]
  • Seventh Congress of the International Bioiron Society (IBIS)
    Seventh Congress of the International BioIron Society (IBIS) Biennial World Meeting (BioIron 2017) May 7 – 11, 2017 UCLA Meyer & Renee Luskin Conference Center | Los Angeles, USA Featuring Special Events: Introductory Course – May 7, 2017 “Essentials of BioIron for Clinicians and Scientists” “Meet the Expert” Sessions for Trainees May 10 – 11, 2017 INTERNATIONAL BIOIRON SOCIETY PROGRAM BOOK Acknowledgments IBIS This conference has received support from the NIH NCATS UCLA CTSI Grant Number UL1TR0001881. This conference has received support from the NIH/NIDDK R-13 Grant. This conference has received support from the NIXHNHLBI-R-13 Grant. Seventh Congress of the International BioIron Society Page 2 Table of Contents IBIS Seventh Congress of the Internationl BioIron Society (IBIS) Biennial World Meeting (BioIron 2017) May 7 - 11, 2017 UCLA Meyer & Renee Luskin Conference Center | Los Angeles, USA Welcome Message ..............................................................................................................................Page 4 Board of Directors ................................................................................................................................Page 5 General Meeting Information ...............................................................................................................Page 6 Special Events .....................................................................................................................................Page 8 Local Activities .....................................................................................................................................Page
    [Show full text]
  • Cellular Adaptation
    ALTERATIONS IN CELLULAR AND TISSUE FUNCTION Lois E. Brenneman, MSN, APN, CELLULAR ADAPTATION Atrophy - decrease or shrinkage in cell size - Can (if sufficient numbers) result in shrinkage of entire organ Example: muscular atrophy after cast is removed Example: sports steroid abuse causes atrophy of penis - Physiologic atrophy - normal process Example: atrophy of thymus during childhood - Pathologic atrophy - disease process Example: Addison’s disease -> atrophy adrenal glands - Disuse Atrophy Example: Prolonged bed rest causes muscle atrophy Example: Casting limb causes atrophy Atrophic cells have fewer mitochondria and myofilaments Autophagic vacuoles occurs with malnutrition Lipofuscin - yellow-brown age pigment (may resist destruction) - Persists as membrane-bound residue bodies - Accumulates w age: liver, myocardial and atrophic cells - Results in “age spots” to skin “Age spots” Lipofuscin accumulation to skin © 2004 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved - www.npceu.com 1 Hypertrophy - increase in cell size (vs cell number with hyperplasia) Results in increased size of organ Cardiac and kidney esp prone to hypertrophy Increased size -> increased cellular protein and not increased fluid Physiologic hypertrophy - normal process Example: muscle increase with exercise Example: genital size increase with hormones of puberty Pathologic hypertrophy - disease process Example - Left ventricular hypertrophy from hypertension -> congestive heart failure Triggers for hypertrophy Mechanical: stretch, exercise Trophic: growth factors, hormones, vasoactive agents CELLULAR HYPERTROPY Left: dependent edema in CHF Right: dilated cardiomyopathy Left ventricular hypertrophy (bottom) vs normal (top) © 2004 Lois E. Brenneman, MSN, CS, ANP, FNP all rights reserved - www.npceu.com 2 Hyperplasia - increase in number of cells (increased rate of cell division) - Can occur in response to injury esp with cell death - Can occur together with hypertrophy note: if organ with non-dividing cells (e.g.
    [Show full text]
  • Chapter 1 Cellular Reaction to Injury 3
    Schneider_CH01-001-016.qxd 5/1/08 10:52 AM Page 1 chapter Cellular Reaction 1 to Injury I. ADAPTATION TO ENVIRONMENTAL STRESS A. Hypertrophy 1. Hypertrophy is an increase in the size of an organ or tissue due to an increase in the size of cells. 2. Other characteristics include an increase in protein synthesis and an increase in the size or number of intracellular organelles. 3. A cellular adaptation to increased workload results in hypertrophy, as exemplified by the increase in skeletal muscle mass associated with exercise and the enlargement of the left ventricle in hypertensive heart disease. B. Hyperplasia 1. Hyperplasia is an increase in the size of an organ or tissue caused by an increase in the number of cells. 2. It is exemplified by glandular proliferation in the breast during pregnancy. 3. In some cases, hyperplasia occurs together with hypertrophy. During pregnancy, uterine enlargement is caused by both hypertrophy and hyperplasia of the smooth muscle cells in the uterus. C. Aplasia 1. Aplasia is a failure of cell production. 2. During fetal development, aplasia results in agenesis, or absence of an organ due to failure of production. 3. Later in life, it can be caused by permanent loss of precursor cells in proliferative tissues, such as the bone marrow. D. Hypoplasia 1. Hypoplasia is a decrease in cell production that is less extreme than in aplasia. 2. It is seen in the partial lack of growth and maturation of gonadal structures in Turner syndrome and Klinefelter syndrome. E. Atrophy 1. Atrophy is a decrease in the size of an organ or tissue and results from a decrease in the mass of preexisting cells (Figure 1-1).
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury And
    B.PHARMACY2nd SEMESTER SUBJECT: PATHOPHYSIOLOGY UNIT-1 .Basic Principles of Cell Injury and Adaptation Cell Injury: Introduction • Cell injury is defined as a variety of stresses a cell encounters as a result of changes in its internal and external environment. • The cellular response to stress may vary and depends upon the following: – The type of cell and tissue involved. – Extent and type of cell injury. ETIOLOGY OF CELL INJURY: 1. Genetic causes • Developmental defects: Errors in morphogenesis • Cytogenetic (Karyotypic) defects: chromosomal abnormalities • Single-gene defects: Mendelian disorders • Multifactorial inheritance disorders. 2. Acquired causes • Hypoxia and ischaemia • Physical agents • Chemical agents and drugs • Microbial agents • Immunologic agents • Nutritional derangements • Aging • Psychogenic diseases • Iatrogenic factors • Idiopathic diseases. 2.1. Oxygen deprivation: HYPOXIA Ischemia (loss of blood supply). Inadequate oxygenation (cardio respiratory failure). Loss of oxygen carrying capacity of the blood (anemia or CO poisoning). 2.2. PHYSICAL AGENTS: Trauma Heat Cold Radiation Electric shock 2.3. CHEMICAL AGENTS AND DRUGS: Endogenous products: urea, glucose Exogenous agents Therapeutic drugs: hormones Nontherapeutic agents: lead or alcohol. 2.4. INFECTIOUS AGENTS: Viruses Rickettsiae Bacteria Fungi Parasites 2.5. Abnormal immunological reactions: The immune process is normally protective but in certain circumstances the reaction may become deranged. Hypersensitivity to various substances can lead to anaphylaxis or to more localized lesions such as asthma. In other circumstances the immune process may act against the body cells – autoimmunity. 2.6. Nutritional imbalances: Protein-calorie deficiencies are the most examples of nutrition deficiencies. Vitamins deficiency. Excess in nutrition are important causes of morbidity and mortality. Excess calories and diet rich in animal fat are now strongly implicated in the development of atherosclerosis.
    [Show full text]
  • Cellular Adaptation to Stress
    CELLULAR ADAPTATION TO STRESS Adaptations are reversible changes in the number, size , phenotype, metabolic activity, or functions of the cells in response to changes in their environment. Physiological adaptations : usually represent responses of cells to normal stimulation by hormones or endogenous chemical mediators e.g. (hormone – induced enlargement of the breast and uterus during pregnancy). Pathologic adaptations: are responses to stress that allow cells to modulate their structure and functions and thus escape injury. Such adaptation can take several distinct forms ; Hypertrophy. Hyperplasia. Atrophy. Metaplasia. HYPERTROPHY Hypertrophy is an increase in the size of cells resulting in increase in the size of the organ. In pure hypertrophy there are no new cells, just bigger cells, enlarged by an increased amount of structural proteins and organelles. It occurs when cells are incapable of dividing. Hypertrophy can be physiologic or pathologic and is caused either by increased functional demand or by specific hormonal stimulation e.g. hypertrophy of the uterus during pregnancy. HYPERPLASIA Hyperplasia is an increase in cell number; it is an adaptive response in cells capable of replications. Hyperplasia can be divided into two main groups: 1. Physiologic hyperplasia: Hormonal hyperplasia such as proliferation of glandular epithelium of the female breast at puberty and during pregnancy. Compensatory hyperplasia; is occurred when a portion of the tissue is removed or diseased such as partially resected liver. 2. Pathologic hyperplasia: Are caused by excessive hormonal or growth factor stimulation e.g. after normal menstrual period there is a burst of uterine epithelial proliferation that is normally tightly regulated by stimulation through pituitary hormones and ovarian oestrogen and by inhibition through progesterone.
    [Show full text]
  • The Cellular Basis of Disease Cell Injury 1
    The Cellular Basis of Disease Cell Injury 1 Adaptation and Reversible Injury Patterns of Tissue Necrosis (Irreversible Injury) Christine Hulette MD The Cellular Basis of Disease Cell Injury 1: Adaptation and Reversible Injury Patterns of Irreversible Injury (Necrosis) Cell Injury 2: Mechanisms of Cell Injury Cell Injury 3: Apoptosis and Necrosis Cellular Aging Cell Injury 4A: Sub lethal Cell Injury John Shelburne MD PhD Cell Injury 4B: Intracellular accumulations ! Objectives • Understand the cellular response to injury and stress. • Understand the differences between hyperplasia, hypertrophy, atrophy and metaplasia at the cellular and organ level. • List and understand the causes of cell injury and death including oxygen deprivation; physical and chemical agents including drugs; infections and immunologic reactions; genetic derangements and nutritional imbalances • Discriminate cell adaptation, reversible cell injury and irreversible cell injury (cell death) based on etiology, pathogenesis and histological and ultrastructural appearance. • Define and understand the morphologic patterns of lethal cell injury and the clinical settings in which they occur. Cellular Adaptation to Injury or Stress Injury or Stress Adaptation • Increased demand • Hyperplasia or hypertrophy • Decreased • Atrophy stimulation or nutrients • Chronic irritation • Metaplasia Adapted - Normal - Injured Cells Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia Hypertrophy Increase in the size of cells results in increased size of the organ May be Physiologic or Pathologic Examples of Physiologic Hypertrophy Increased workload - skeletal muscle cardiac muscle Hormone induced –pregnant uterus Physiologic hypertrophy Gravid uterus and Normal uterus Biochemical Mechanisms of Myocardial Hypertrophy Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia Hyperplasia Increase in the number of cells results in increase in size of the organ. May be Physiologic or Pathologic.
    [Show full text]
  • General Concepts in Pathophysiology
    http://www.youtube.com/watch?feature=pla yer_detailpage&v=DmfgMu2ElS4 Homeostasis Cell physiology Mechanism of diseases “A dynamic, steady state of internal balance”. “Homeostasis is maintained by self-regulating feedback mechanisms”. (+ feedback or – feedback) “The body’s ability to physiologically regulate, to adapt to minor fluctuations”. “Small fluctuations in the environment don’t normally impact the body because it has many mechanisms for maintaining homeostasis”. Cell Components Cell Functions Cell Types Organelle that creates proteins Organelle that creates ATP Barrier, receptors Organelles that maintain the cells shape Organelle that contains digestive enzymes Control center (RNA, DNA) Organelle that creates lipids Organelle that creates carbohydrates Welcome to the highly guarded - air-tight Nuclear Vault…Like the Fort Knox, its barricaded from an assault Like the Dura Mater - double-nuclear envelope. It's the home of the Library of Chromosomes Securely protected - like bullions of gold… Like City Blueprints - DNA originals When it's transcribing messages in form of codes…In the nucleolus - RNA to ribosomes. The nucleus of a cell contains genetic information in the form of DNA. DNA is arranged in a loose and diffuse state called Chromatins which are later condensed before cell division into chromosomes. The Nuclear Membrane is a double-walled structure (the double lipid bi-layer aka nuclear envelope) within a cell to protect even those things within the cytoplasm of the cell. It protects the genetic information from damage - damage that can cause programmed cell death (apoptosis) or even worse - cancer - if it damages the contents of the nucleus. Ribosomes and RNA are also in the nucleus… Ribosomes are used in translation of messenger RNA into proteins which occurs in the cytoplasm, but ribosomes are assembled in the nucleus via rRNA.
    [Show full text]