Factors Regulating the Growth of the Preovulatory Follicle in the Sheep and Human D

Total Page:16

File Type:pdf, Size:1020Kb

Factors Regulating the Growth of the Preovulatory Follicle in the Sheep and Human D Factors regulating the growth of the preovulatory follicle in the sheep and human D. T. Baird Department of Obstetrics and Gynaecology, University of Edinburgh, Centre for Reproductive Biology, 37 Chalmers Street, Edinburgh EH3 9EW, U.K. Summary. Around the time of luteal regression in monovular species a single dominant follicle, which will eventually ovulate, is selected from the population of antral follicles. The dominant follicle is characterized by its progressive increase in diameter due to increase in antral fluid volume as well as an increased number of granulosa cells. The crucial factor in the continued development of the dominant follicle is its ability to synthesize oestradiol under the influence of LH and FSH. In the sheep FSH secretion continues throughout the luteal phase while LH is suppressed. Thus development of large antral follicles continues so that when luteal regression occurs and LH secretion increases the final stages of development of the pre-antral follicle occur within 3 days. In the human, however, both FSH and LH are suppressed during the luteal phase and only rise when the levels of progesterone and oestradiol fall a few days before menstruation. This rise in FSH and LH which occurs at this time stimulates the further development of a small antral follicle (1\p=n-\2mm diameter). Within 7 days the favoured follicle establishes dominance over the other asynchronously developing follicles probably by inhibiting the secretion of FSH. As in the sheep, once aromatase enzyme(s) has been fully activated the dominant follicle is able to utilize the increased androgen precursor produced by the theca under LH stimulation. Introduction In most mammals the final stage of folliculogenesis is characterized by the emergence of a minority of large antral follicles which will eventually ovulate (Mauléon & Marianna, 1977). The mechanism by which individual follicles are selected for ovulation is unknown although it is now clear that once established these follicles suppress further development of other large antral follicles. Even in those species that usually only have a single ovulation the total number of antral follicles > 1 mm diameter present in the ovary during the cycle greatly exceeds the number which ovulate, e.g. women: 6-46 per ovary; sheep: 5-24 (McNatty, 1982). This paper will consider how the pre¬ ovulatory follicle is selected and the way in which it establishes dominance over the other antral follicles in the human and sheep. The preovulatory dominant follicle Immediately before ovulation the preovulatory follicle in ewes and women is easily recognized macroscopically by its size and vascular appearance. The vascularity is due to a large capillary network supplying the theca interna and is presumably induced by some product of the growing 0022-4251/83/050343-10S02-00/0 © 1983 Journals of Reproduction & Fertility Ltd Downloaded from Bioscientifica.com at 10/03/2021 04:55:09PM via free access antral follicle, e.g. oestrogen. In both species there is usually only one large follicle in the late follicular phase of the cycle which contains a full complement of healthy granulosa cells (McNatty, 1982). The dominant follicle secretes large amounts of oestradiol into the ovarian vein. In the human by Day 7 (mid-follicular phase) the largest healthy antral follicle has already established dominance, as indicated by the asymmetry in the concentration of oestradiol in blood draining the two ovaries (Baird & Fraser, 1975) and by the marked fall in oestradiol concentration in peripheral blood following its surgical removal (Nilsson, Wikland & Hamberger, 1982). Similar evidence in the sheep indicates that over 95% of the oestradiol entering the ovarian vein originates from the largest non-atretic antral follicle in both the luteal and follicular phase of the cycle (Moor, Hay & Seamark, 1975; Baird & Scaramuzzi, 1976a). The cellular origin of follicular oestradiol has been the source of some controversy (Armstrong, Weiss, Selstam & Seamark, 1981 ; McNatty, 1982). In women and ewes androgens are the main steroids synthesized by the theca cells while the aromatase activity of the granulosa cells is much higher than that of the theca cells (Hillier, Reichert & van Hall, 1981). It is generally assumed, therefore, that some form of interaction occurs between the two cell types in the ovarian follicle with LH stimulating the theca cells to synthesize androgens which are then converted to oestrogens by the granulosa cells. Although there is strong evidence that oestrogen synthesis is enhanced when the two cell types are mixed in vitro (e.g. Ryan, Petro & Kaiser, 1968), convincing evidence that this occurs in vivo is provided by experiments in which antiserum to testosterone was infused into the ovarian artery of sheep ovaries bearing the preovulatory follicle (Baird, 1977) (Text-fig. 1). Oestradiol secretion was inhibited by over 50% during and immediately after the infusion of antiserum to testosterone (but not during infusion of antiserum to BSA or oestrone). As it seems unlikely that the antibodies could enter the theca cells, these experiments support the hypothesis that androgen precursors leave the theca cells before being aromatized to oestrogens. Control Antiserum Control D Oestrone antiserum Testosterone antiserum 21 60 I120 180 min (12) (12) (12) (12) Text-fig. 1. The effect of antiserum to testosterone on the secretion of oestradiol from the sheep ovary during the follicular phase of the cycle. Control antiserum to BSA was infused via the ovarian artery during 0-60 and 120-180 min in 8 sheep with ovaries autotransplanted to the neck. From 60 to 120 min antiserum to testosterone (4 ewes) or oestrone (4 ewes) was infused. Each bar represents the mean + s.e.m. of 28 or 12 observations in 4 sheep. (Data from Baird, 1977). * Significantly different from basal value and that for animals treated with antiserum to oestrone (P < 005). Downloaded from Bioscientifica.com at 10/03/2021 04:55:09PM via free access In addition to being 'oestrogenic', the preovulatory follicle has other characteristics. The most 'oestrogenic follicle' has more granulosa cells and is more likely to contain measurable amounts of FSH than is the 'non'-oestrogenic' follicle (Text-fig. 2) (McNatty & Baird, 1978; McNatty, 1982). FSH stimulates the aromatase activity of cultured granulosa cells from sheep and human antral follicles. In the few days before ovulation the concentration of androgens (androstenedione and testosterone) falls significantly in the follicular fluid of the dominant follicle in contrast to that of other antral follicles (McNatty et al., 1976). It seems likely, therefore, that the dominant follicle manages to maintain a very high secretion of oestradiol because of the large number of granulosa cells with a maximally activated aromatase system. 5000 1000 100 io Text-fig. 2. Mean ± s.e.m. concentration of oestradiol in follicular fluid throughout the menstrual cycle. The follicles were divided into those with detectable amounts of FSH ( > 1-3 mU/ml: FSH+) and those with undetectable levels (FSH—). The numbers indicate the number of fluid samples in each group. EF, MF and LF, early, mid- and late follicular phases respectively. EL, ML and LL, early, mid- and late luteal phases respectively. (Data from McNatty & Baird, 1978.) In the sheep, receptors for LH are present on thecal cells of healthy and atretic follicles although they are confined to the granulosa cells of large healthy antral follicles (Carson, Findlay, Burger & Trounson, 1979). Evidence from the rat suggests that both oestradiol and FSH play an important role in the acquisition of LH receptors by the granulosa cells (Richards & Midgley, 1976). It seems likely that only those follicles in which the granulosa cells contain LH receptors can ovulate in response to the mid-cycle LH surge. In summary, the dominant preovulatory follicle in both species is characterized by the synthesis of large amounts of oestradiol due to the ability of its granulosa cells to aromatise androgen pre¬ cursors synthesized by the theca interna. Downloaded from Bioscientifica.com at 10/03/2021 04:55:09PM via free access OESTRUS I OVULATION Days 26 1 Stage LL Text-fig. 3. Development of the preovulatory follicle in (a) the sheep and (b) the human. In the sheep, follicular development continues throughout the luteal phase because of the relatively high levels of FSH. In the human, development of large antral follicles is suppressed during the luteal phase and only recommences when the levels of FSH and LH rise at luteal regression. EF = early follicular; MF = mid-follicular; LF = late follicular; EL = early luteal; ML = mid- luteal; LL = late luteal. The broken vertical line indicates the onset of luteal regression. Downloaded from Bioscientifica.com at 10/03/2021 04:55:09PM via free access When is the dominant follicle selected? In both the sheep and the human the preovulatory follicle becomes dominant in the few days following regression of the corpus luteum. In the sheep, ovulation occurs within 3 days of natural or induced luteal regression while the equivalent period in the human is 17 days (Baird & McNeilly, 1981; Nilsson et al., 1982). This difference cannot be explained by differences in the rate of follicular development (Text-fig. 3) but is due to the fact that, in the sheep, in contrast to the human, development of large antral follicles (4-6 mm diameter) continues throughout the luteal phase (Turnbull, Braden & Mattner, 1977; Cahill, Marianna & Mauléon, 1979; Gougeon, 1982). We have previously suggested that this difference in follicular development is related to the different pattern of steroid hormones secreted by the corpora lutea of the two species—with consequent differences in secretion of gonadotrophins (Baird, Baker, McNatty & Neal, 1975). The changes in the concentration of pituitary gonadotrophins and ovarian steroids at luteal regression and the periovulatory period in the sheep are illustrated in Text-fig. 3. The decline in progesterone secretion at luteal regression is followed by a rise in the concentration of LH and oestradiol but no change in the secretion of FSH (Baird, Swanston & McNeilly, 1981).
Recommended publications
  • Chapter V FOLLICULAR DYNAMICS and REPRODUCTIVE
    Chapter V FOLLICULAR DYNAMICS AND REPRODUCTIVE TECHNOLOGIES IN BUFFALO Giuseppina Maria Terzano Istituto Sperimentale per la Zootecnia (Animal Production Research Institute) Via Salaria 31, 00016 Monterotondo (Rome), Italy The general characteristics of reproduction like seasonality, cyclicity and ovulation differ widely in mammals for the following reasons: a) reproductive activity may take place during the whole year or at defined seasons, according to the species and their adaptation to environmental conditions; thus, photoperiod plays a determinant role in seasonal breeders such as rodents, carnivores and ruminants (sheep, goats, buffaloes, deer, etc.,). An extreme situation is observed in foxes with only one ovulation per year, occurring in January or February; b) mammals may be distinguished according to the absence or presence of spontaneous ovulations: in the first group of mammals ( rabbits, hares, cats, mink, camels, Llama), the ovulation is induced by mating and cyclicity is not obvious; in the second group, ovulation occurs spontaneously in each cycle, separating the follicular phase from the luteal phase; c) the length of cycles is quite different among species: small rodents have short cycles of four or five days, farm animals and primates have longer cycles (sheep: 17 days; cow, goat, buffalo, horse and pig: 21 days; primates: 28 days), and dogs are characterized by long cycles of six to seven months, including a two month luteal phase (Concannon, 1993); d) ovulation rates differ widely among species and breeds within a given species: in sheep for example, Merinos d'Arles or Ile-de-France breeds have only one ovulation per cycle, whereas average rates of two to four ovulations per cycle are observed in prolific breeds like Romanov or Finn (Land et al., 1973).
    [Show full text]
  • Oogenesis in Mammals
    OOGENESIS IN MAMMALS In contrast to most other vertebrates , mammals do not replenish the stores of oocytes present in the ovary at birth. At birth the human ovaries contain about 1 million oocytes ( many of which are already degenerating) that have been arrested in the diplotene stage of the first meiotic division . These oocytes are already surrounded by a layer of follicular cells or granulosa cells , and the complex of ovum and its surrounding cellular investments is known as a follicle . Of all the germ cells present in the ovary ,only about 400 (one per menstrual cycle) will reach maturity and become ovulated. The remainder develop to varying degrees and then undergo atresia (degeneration). Oocytes first become associated with follicular cells in the late fetal period , when they are going through early prophase of the first meiotic division . The primary oocyte (so called because it is undergoing the first meiotic division ) plus its incomplete covering of flattened follicular cells is called a primordial follicle . According to Gougeon (1993) a follicle passes through three major phases on its way to ovulation. The first phase is characterized by a large pool of nongrowing follicles , approximately 500,000 per ovary at birth. In this pool are primordial follicles, which develop into primary follicles by surrounding themselves with a complete single layer of cuboidal follicular cells . By this time , the oocytes have entered the first period of meiotic arrest , the diplotene stage . In human , essentially all oocytes , unless Page 1 of 5 : SEM-2 (GEN ) , Unit#6 : OOGENESIS : Pritha Mondal they degenerate ,remain arrested in the diplotene stage until puberty ; some will not progress past the diplotene stage until the woman’s last reproductive cycle (age 45 to 55 years).
    [Show full text]
  • The Effectiveness and Safety of the Early Follicular Phase Full-Dose Down
    The effectiveness and safety of the early follicular phase full-dose down- regulation protocol for controlled ovarian hyperstimulation: a randomized, paralleled controlled, multicenter trial 2018-12-29 Background Since the first “tube baby”, Louise Brown, was born in the United Kingdom in 1978, many infertile couples have been benefitted from in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI). It is reported that there are over 5 million babies born with the help of assisted reproductive technology (ART). According to the 2015 national data published by Human Fertility and Embryology Authority (HFEA, 48,147 women received 61,726 IVF/ICSI cycles and gave birth to 17,041 newborns [1]. In the United States, 169,602 IVF/ICSI cycles were performed in 2014 and 68,791 tubal babies were born [2]. China has a huge population base, and therefore has a substantial number of infertile couples. Although a late starter, China is developing rapidly in ART and playing a more and more important role in the area of reproductive medicine. In spite of the continuous development in ART, so far, the overall success rate of IVF/ICSI is still hovering around 25-40%. The live birth rate per stimulated cycle is 25.6% in the UK in 2015, fluctuating from 1.9% in women aged 45 and elder to 32.2% in women younger than 35 years old [1]. The IVF/ICSI success rate in 2014 in the US is similar [2]. In China, according to the data submitted by 115 reproductive medicine centers on the ART data reporting system developed by Chinese Society of Reproductive Medicine, the delivery rate is about 40% [3].
    [Show full text]
  • Luteal Phase Deficiency: What We Now Know
    ■ OBGMANAGEMENT BY LAWRENCE ENGMAN, MD, and ANTHONY A. LUCIANO, MD Luteal phase deficiency: What we now know Disagreement about the cause, true incidence, and diagnostic criteria of this condition makes evaluation and management difficult. Here, 2 physicians dissect the data and offer an algorithm of assessment and treatment. espite scanty and controversial sup- difficult to definitively diagnose the deficien- porting evidence, evaluation of cy or determine its incidence. Further, while Dpatients with infertility or recurrent reasonable consensus exists that endometrial pregnancy loss for possible luteal phase defi- biopsy is the most reliable diagnostic tool, ciency (LPD) is firmly established in clinical concerns remain about its timing, repetition, practice. In this article, we examine the data and interpretation. and offer our perspective on the role of LPD in assessing and managing couples with A defect of corpus luteum reproductive disorders (FIGURE 1). progesterone output? PD is defined as endometrial histology Many areas of controversy Linconsistent with the chronological date of lthough observational and retrospective the menstrual cycle, based on the woman’s Astudies have reported a higher incidence of LPD in women with infertility and recurrent KEY POINTS 1-4 pregnancy losses than in fertile controls, no ■ Luteal phase deficiency (LPD), defined as prospective study has confirmed these find- endometrial histology inconsistent with the ings. Furthermore, studies have failed to con- chronological date of the menstrual cycle, may be firm the superiority of any particular therapy. caused by deficient progesterone secretion from the corpus luteum or failure of the endometrium Once considered an important cause of to respond appropriately to ovarian steroids.
    [Show full text]
  • Androgens Regulate Ovarian Follicular Development by Increasing Follicle Stimulating Hormone Receptor and Microrna-125B Expression
    Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression Aritro Sena,b,1, Hen Prizanta, Allison Lighta, Anindita Biswasa, Emily Hayesa, Ho-Joon Leeb, David Baradb, Norbert Gleicherb, and Stephen R. Hammesa,1 aDivision of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and bCenter for Human Reproduction, New York, NY 10021 Edited by John J. Eppig, Jackson Laboratory, Bar Harbor, ME, and approved January 15, 2014 (received for review October 8, 2013) Although androgen excess is considered detrimental to women’s promoting preantral follicle growth and development into an- health and fertility, global and ovarian granulosa cell-specific an- tral follicles. However, these in vivo studies did not elucidate drogen-receptor (AR) knockout mouse models have been used to specific mechanisms used by androgens and ARs to mediate show that androgen actions through ARs are actually necessary these processes. for normal ovarian function and female fertility. Here we describe Here we performed an in-depth analysis of androgen-induced two AR-mediated pathways in granulosa cells that regulate ovar- signaling pathways that regulate ovarian folliculogenesis. Andro- ian follicular development and therefore female fertility. First, we gens signal via extranuclear (nongenomic) and nuclear (genomic) show that androgens attenuate follicular atresia through nuclear pathways. In fact, previous work by others and ourselves in and extranuclear signaling pathways by enhancing expression of androgen-sensitive prostate cancer cells showed that these two the microRNA (miR) miR-125b, which in turn suppresses proapop- processes are tightly linked, with maximal AR-mediated nuclear totic protein expression.
    [Show full text]
  • Endocrine Control of Lactational Infertility. I
    Maternal Nutrition and Lactational Infertility, edited by I. Dobbing. Nestld Nutrition, Vevey/ Raven Press, New York © 1985. Endocrine Control of Lactational Infertility. I *Alan S. McNeilly, *Anna Glasier, and fPeter W. Howie *MRC Reproductive Biology Unit, Edinburgh EH3 9EW, and 1'Department of Obstetrics and Gynaecology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 951, Scotland Although there is no doubt that breastfeeding suppresses ovarian activity, the reasons for the immense variability in the duration of this suppression and the mechanisms by which the suckling stimulus causes it remain unclear. The interbirth interval in women who breastfeed can be divided into three main components: (a) the period of lactational amenorrhoea, (b) a period when menstruation returns either during or after lactation, and (c) pregnancy. The length of periods a and b will vary considerably depending on the pattern of breastfeeding, and in a few cases pregnancy will occur during the period of lactational amenorrhoea without an intervening period of menstrual cycles. In an attempt to clarify the mechanisms controlling each of periods a and b above, the changes in endocrine and ovarian activities will be explored. GONADOTROPHIC CONTROL OF THE MENSTRUAL CYCLE Before discussing in detail the influences of suckling on ovarian activity, it is first necessary to outline the basic mechanisms controlling the growth and devel- opment of follicles and subsequent formation of the corpus luteum in the normal menstrual cycle. The basic changes in the four principal hormones involved are shown in Fig. 1. At the time of menses following the demise of the corpus luteum of the previous cycle, follicle development starts, and usually a single follicle begins to grow.
    [Show full text]
  • Variability in the Length of Menstrual Cycles Within and Between Women - a Review of the Evidence Key Points
    Variability in the Length of Menstrual Cycles Within and Between Women - A Review of the Evidence Key Points • Mean cycle length ranges from 27.3 to 30.1 days between ages 20 and 40 years, follicular phase length is 13-15 days, and luteal phase length is less variable and averages 13-14 days1-3 • Menstrual cycle lengths vary most widely just after menarche and just before menopause primarily as cycles are anovulatory 1 • Mean length of follicular phase declines with age3,11 while luteal phase remains constant to menopause8 • The variability in menstrual cycle length is attributable to follicular phase length1,11 Introduction Follicular and luteal phase lengths Menstrual cycles are the re-occurring physiological – variability of menstrual cycle changes that happen in women of reproductive age. Menstrual cycles are counted from the first day of attributable to follicular phase menstrual flow and last until the day before the next onset of menses. It is generally assumed that the menstrual cycle lasts for 28 days, and this assumption Key Points is typically applied when dating pregnancy. However, there is variability between and within women with regard to the length of the menstrual cycle throughout • Follicular phase length averages 1,11,12 life. A woman who experiences variations of less than 8 13-15 days days between her longest and shortest cycle is considered normal. Irregular cycles are generally • Luteal phase length averages defined as having 8 to 20 days variation in length of 13-14 days1-3 cycle, whereas over 21 days variation in total cycle length is considered very irregular.
    [Show full text]
  • Infertility Investigations for Women
    Infertility investigations for women Brooke Building Gynaecology Department 0161 206 5224 © G21031001W. Design Services, Salford Royal NHS Foundation Trust, All Rights Reserved 2021. Document for issue as handout. Unique Identifier: SURG08(21). Review date: May 2023. This booklet is aimed for women undergoing fertility LH (Luteinising Hormone) Progesterone investigations. Its’ aim is to Oligomenorrhoea - When the provide you with some useful periods are occurring three In women, luteinising hormone Progesterone is a female information regarding your or four times a year (LH) is linked to ovarian hormone produced by the hormone production and egg ovaries after ovulation. It investigations. Irregular cycle - Periods that maturation. LH is used to causes the endometrial lining vary in length We hope you !nd this booklet measure a woman’s ovarian of the uterus to get thicker, helpful. The following blood tests are reserve (egg supply). making it receptive for a used to investigate whether You will be advised to have some It causes the follicles to grow, fertilised egg. ovulation (production of an egg) or all of the following tests: mature and release the eggs Progesterone levels increase is occurring each month and also for fertilisation. It reaches its after ovulation, reaching a to help determine which fertility Hormone blood tests highest level (the LH surge) in maximum level seven days treatments to offer. Follicular bloods tests the middle of the menstrual before the start of the next cycle 48 hours prior to ovulation period. The progesterone test is These routine blood tests are FSH (Follicle Stimulating i.e. days 12-14 of a 28 day cycle.
    [Show full text]
  • Effects of Caffeine, Alcohol and Smoking on Fertility
    Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility There is an increasing body of evidence that health behaviours affect fertility. As most health behaviours can be modified, providing advice and support in making healthy changes can promote fertility. The evidence relating to the effects on fertility of caffeine, alcohol consumption and smoking is reviewed here. Your Fertility is a national public education campaign funded by the Australian Government Department of Health and Ageing under the Family Planning Grants Program. 1 Updated October 2015 Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility Evidence review Caffeine Smoking Caffeine is widely consumed as it is present in coffee, tea, some soft drinks There is strong evidence that smoking adversely affects male and female and chocolate. Some evidence suggests that the consumption of caffeine, fertility. Smokers are more likely to be infertile [7, 20-21] and women with a possible dose-response effect, may prolong the time to pregnancy who are exposed to smoking take longer to conceive [22]. Furthermore, and affect the health of a developing foetus, although the mechanism for maternal smoking increases the risk of low birth weight and birth defects this is unclear. Caffeine may affect ovulation and corpus luteum functioning [23] and women who smoke reach menopause earlier than non-smokers through alterations to hormone levels [1] and has been shown to be associated [24]. Smoking can also damage sperm DNA. Heavy smoking (≥20 with elevated early follicular E2 levels in females [2]. Although some studies cigarettes per day) by fathers at the time of conception increases the have found a positive relationship between caffeine consumption and time child’s risk of childhood leukaemia and shortens reproductive lifespan to conception [3-6], study results are inconsistent and should be interpreted of daughters [25-26].
    [Show full text]
  • Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
    Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum.
    [Show full text]
  • Association Between Increased Expression of Endothelial Isoform of Nitric Oxide Synthase in the Human Fallopian Tube and Tubal Ectopic Pregnancy
    Iran J Reprod Med Vol. 12. No. 1. pp: 19-28, January 2014 Original article Association between increased expression of endothelial isoform of nitric oxide synthase in the human fallopian tube and tubal ectopic pregnancy Leyla Fath Bayati1 M.Sc., Marefat Ghaffari Novin1, 2 M.D., Ph.D., Fatemeh Fadaei Fathabadi1 Ph.D., Abbas Piryaei1 Ph.D., Mohammad Hasan Heidari1 Ph.D., Mozhgan Bandehpour2 Ph.D., Mohsen Norouzian1 Ph.D., Mahdi Alizadeh Parhizgar3 M.D., Mahmood Shakooriyan Fard3 B.Sc. 1. Department of Biology and Abstract Anatomical Sciences, Faculty of Medicine, Shahid Beheshti Background: Tubal ectopic pregnancy (tEP) is the most common type of extra- University of Medical Sciences, uterine pregnancy and the most common cause of maternal mortality. Nitric oxide Tehran, Iran. (NO) is a molecule that incorporates in many physiological processes of female 2. Cellular and Molecular Biology reproductive system. Recent studies have demonstrated the possible role of Research Center, Shahid Beheshti University of Medical endothelial isoform of nitric oxide synthase (eNOS) enzyme in the regulation of Sciences, Tehran, Iran. many reproductive events that occur in the fallopian tube (FT). 3. Department of Pathology, Objective: The aim of this study was to evaluate the expression of eNOS in the FTs Kamkar Arab-Niya Hospital, of women with tEP. Qom University of Medical Sciences, Qom, Iran. Materials and Methods: In this case-control study, a total number of 30FTs samples were obtained from three groups including: 10 FTs of women that bearing an EP, 10 FTs from the non-pregnant women at luteal phase of the menstrual cycle, and 10 FTs of healthy pregnant women (n=10).
    [Show full text]
  • Biology of Oocyte Maturation Oogenesis
    Biology of Reproduction Unit Biology of Oocyte Maturation Carlos E. Plancha1,2 1 Unidade de Biologia da Reprodução, Inst. Histologia e Biologia do Desenvolvimento, . Faculdade de Medicina de Lisboa, Portugal 2 CEMEARE – Centro Médico de Assistência à Reprodução, Lisboa, Portugal Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis Growth Phase: - Oocyte diameter increases OOCYTE GROWTH - Organelle redistribution - High transcriptional and translational activity - Accumulation of RNA / proteins - Incompetent Æ Competent ooc. Oocyte Maturation: GV Complex series of nuclear and cytoplasmic events with resumption of the 1st meiotic OOCYTE MATURATION division and arrest at MII OVULATION shortly before ovulation MII Ovulation Growth Maturation FERTILIZATION Resumption of meiosis Æ PN formation Embryo development Prophase I Metaphase II Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis in vivo (including oocyte maturation) takes place inside a morfo-functional unit: The Ovarian Follicle Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Factors involved in oogenesis Igf-1,2,3 and folliculogenesis GDF - 9 FSH,LH Cellular interactions Perifolicular matrix Laminin Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September,
    [Show full text]