Factors Regulating the Growth of the Preovulatory Follicle in the Sheep and Human D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter V FOLLICULAR DYNAMICS and REPRODUCTIVE
Chapter V FOLLICULAR DYNAMICS AND REPRODUCTIVE TECHNOLOGIES IN BUFFALO Giuseppina Maria Terzano Istituto Sperimentale per la Zootecnia (Animal Production Research Institute) Via Salaria 31, 00016 Monterotondo (Rome), Italy The general characteristics of reproduction like seasonality, cyclicity and ovulation differ widely in mammals for the following reasons: a) reproductive activity may take place during the whole year or at defined seasons, according to the species and their adaptation to environmental conditions; thus, photoperiod plays a determinant role in seasonal breeders such as rodents, carnivores and ruminants (sheep, goats, buffaloes, deer, etc.,). An extreme situation is observed in foxes with only one ovulation per year, occurring in January or February; b) mammals may be distinguished according to the absence or presence of spontaneous ovulations: in the first group of mammals ( rabbits, hares, cats, mink, camels, Llama), the ovulation is induced by mating and cyclicity is not obvious; in the second group, ovulation occurs spontaneously in each cycle, separating the follicular phase from the luteal phase; c) the length of cycles is quite different among species: small rodents have short cycles of four or five days, farm animals and primates have longer cycles (sheep: 17 days; cow, goat, buffalo, horse and pig: 21 days; primates: 28 days), and dogs are characterized by long cycles of six to seven months, including a two month luteal phase (Concannon, 1993); d) ovulation rates differ widely among species and breeds within a given species: in sheep for example, Merinos d'Arles or Ile-de-France breeds have only one ovulation per cycle, whereas average rates of two to four ovulations per cycle are observed in prolific breeds like Romanov or Finn (Land et al., 1973). -
Oogenesis in Mammals
OOGENESIS IN MAMMALS In contrast to most other vertebrates , mammals do not replenish the stores of oocytes present in the ovary at birth. At birth the human ovaries contain about 1 million oocytes ( many of which are already degenerating) that have been arrested in the diplotene stage of the first meiotic division . These oocytes are already surrounded by a layer of follicular cells or granulosa cells , and the complex of ovum and its surrounding cellular investments is known as a follicle . Of all the germ cells present in the ovary ,only about 400 (one per menstrual cycle) will reach maturity and become ovulated. The remainder develop to varying degrees and then undergo atresia (degeneration). Oocytes first become associated with follicular cells in the late fetal period , when they are going through early prophase of the first meiotic division . The primary oocyte (so called because it is undergoing the first meiotic division ) plus its incomplete covering of flattened follicular cells is called a primordial follicle . According to Gougeon (1993) a follicle passes through three major phases on its way to ovulation. The first phase is characterized by a large pool of nongrowing follicles , approximately 500,000 per ovary at birth. In this pool are primordial follicles, which develop into primary follicles by surrounding themselves with a complete single layer of cuboidal follicular cells . By this time , the oocytes have entered the first period of meiotic arrest , the diplotene stage . In human , essentially all oocytes , unless Page 1 of 5 : SEM-2 (GEN ) , Unit#6 : OOGENESIS : Pritha Mondal they degenerate ,remain arrested in the diplotene stage until puberty ; some will not progress past the diplotene stage until the woman’s last reproductive cycle (age 45 to 55 years). -
The Effectiveness and Safety of the Early Follicular Phase Full-Dose Down
The effectiveness and safety of the early follicular phase full-dose down- regulation protocol for controlled ovarian hyperstimulation: a randomized, paralleled controlled, multicenter trial 2018-12-29 Background Since the first “tube baby”, Louise Brown, was born in the United Kingdom in 1978, many infertile couples have been benefitted from in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI). It is reported that there are over 5 million babies born with the help of assisted reproductive technology (ART). According to the 2015 national data published by Human Fertility and Embryology Authority (HFEA, 48,147 women received 61,726 IVF/ICSI cycles and gave birth to 17,041 newborns [1]. In the United States, 169,602 IVF/ICSI cycles were performed in 2014 and 68,791 tubal babies were born [2]. China has a huge population base, and therefore has a substantial number of infertile couples. Although a late starter, China is developing rapidly in ART and playing a more and more important role in the area of reproductive medicine. In spite of the continuous development in ART, so far, the overall success rate of IVF/ICSI is still hovering around 25-40%. The live birth rate per stimulated cycle is 25.6% in the UK in 2015, fluctuating from 1.9% in women aged 45 and elder to 32.2% in women younger than 35 years old [1]. The IVF/ICSI success rate in 2014 in the US is similar [2]. In China, according to the data submitted by 115 reproductive medicine centers on the ART data reporting system developed by Chinese Society of Reproductive Medicine, the delivery rate is about 40% [3]. -
Luteal Phase Deficiency: What We Now Know
■ OBGMANAGEMENT BY LAWRENCE ENGMAN, MD, and ANTHONY A. LUCIANO, MD Luteal phase deficiency: What we now know Disagreement about the cause, true incidence, and diagnostic criteria of this condition makes evaluation and management difficult. Here, 2 physicians dissect the data and offer an algorithm of assessment and treatment. espite scanty and controversial sup- difficult to definitively diagnose the deficien- porting evidence, evaluation of cy or determine its incidence. Further, while Dpatients with infertility or recurrent reasonable consensus exists that endometrial pregnancy loss for possible luteal phase defi- biopsy is the most reliable diagnostic tool, ciency (LPD) is firmly established in clinical concerns remain about its timing, repetition, practice. In this article, we examine the data and interpretation. and offer our perspective on the role of LPD in assessing and managing couples with A defect of corpus luteum reproductive disorders (FIGURE 1). progesterone output? PD is defined as endometrial histology Many areas of controversy Linconsistent with the chronological date of lthough observational and retrospective the menstrual cycle, based on the woman’s Astudies have reported a higher incidence of LPD in women with infertility and recurrent KEY POINTS 1-4 pregnancy losses than in fertile controls, no ■ Luteal phase deficiency (LPD), defined as prospective study has confirmed these find- endometrial histology inconsistent with the ings. Furthermore, studies have failed to con- chronological date of the menstrual cycle, may be firm the superiority of any particular therapy. caused by deficient progesterone secretion from the corpus luteum or failure of the endometrium Once considered an important cause of to respond appropriately to ovarian steroids. -
Androgens Regulate Ovarian Follicular Development by Increasing Follicle Stimulating Hormone Receptor and Microrna-125B Expression
Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression Aritro Sena,b,1, Hen Prizanta, Allison Lighta, Anindita Biswasa, Emily Hayesa, Ho-Joon Leeb, David Baradb, Norbert Gleicherb, and Stephen R. Hammesa,1 aDivision of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and bCenter for Human Reproduction, New York, NY 10021 Edited by John J. Eppig, Jackson Laboratory, Bar Harbor, ME, and approved January 15, 2014 (received for review October 8, 2013) Although androgen excess is considered detrimental to women’s promoting preantral follicle growth and development into an- health and fertility, global and ovarian granulosa cell-specific an- tral follicles. However, these in vivo studies did not elucidate drogen-receptor (AR) knockout mouse models have been used to specific mechanisms used by androgens and ARs to mediate show that androgen actions through ARs are actually necessary these processes. for normal ovarian function and female fertility. Here we describe Here we performed an in-depth analysis of androgen-induced two AR-mediated pathways in granulosa cells that regulate ovar- signaling pathways that regulate ovarian folliculogenesis. Andro- ian follicular development and therefore female fertility. First, we gens signal via extranuclear (nongenomic) and nuclear (genomic) show that androgens attenuate follicular atresia through nuclear pathways. In fact, previous work by others and ourselves in and extranuclear signaling pathways by enhancing expression of androgen-sensitive prostate cancer cells showed that these two the microRNA (miR) miR-125b, which in turn suppresses proapop- processes are tightly linked, with maximal AR-mediated nuclear totic protein expression. -
Endocrine Control of Lactational Infertility. I
Maternal Nutrition and Lactational Infertility, edited by I. Dobbing. Nestld Nutrition, Vevey/ Raven Press, New York © 1985. Endocrine Control of Lactational Infertility. I *Alan S. McNeilly, *Anna Glasier, and fPeter W. Howie *MRC Reproductive Biology Unit, Edinburgh EH3 9EW, and 1'Department of Obstetrics and Gynaecology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 951, Scotland Although there is no doubt that breastfeeding suppresses ovarian activity, the reasons for the immense variability in the duration of this suppression and the mechanisms by which the suckling stimulus causes it remain unclear. The interbirth interval in women who breastfeed can be divided into three main components: (a) the period of lactational amenorrhoea, (b) a period when menstruation returns either during or after lactation, and (c) pregnancy. The length of periods a and b will vary considerably depending on the pattern of breastfeeding, and in a few cases pregnancy will occur during the period of lactational amenorrhoea without an intervening period of menstrual cycles. In an attempt to clarify the mechanisms controlling each of periods a and b above, the changes in endocrine and ovarian activities will be explored. GONADOTROPHIC CONTROL OF THE MENSTRUAL CYCLE Before discussing in detail the influences of suckling on ovarian activity, it is first necessary to outline the basic mechanisms controlling the growth and devel- opment of follicles and subsequent formation of the corpus luteum in the normal menstrual cycle. The basic changes in the four principal hormones involved are shown in Fig. 1. At the time of menses following the demise of the corpus luteum of the previous cycle, follicle development starts, and usually a single follicle begins to grow. -
Variability in the Length of Menstrual Cycles Within and Between Women - a Review of the Evidence Key Points
Variability in the Length of Menstrual Cycles Within and Between Women - A Review of the Evidence Key Points • Mean cycle length ranges from 27.3 to 30.1 days between ages 20 and 40 years, follicular phase length is 13-15 days, and luteal phase length is less variable and averages 13-14 days1-3 • Menstrual cycle lengths vary most widely just after menarche and just before menopause primarily as cycles are anovulatory 1 • Mean length of follicular phase declines with age3,11 while luteal phase remains constant to menopause8 • The variability in menstrual cycle length is attributable to follicular phase length1,11 Introduction Follicular and luteal phase lengths Menstrual cycles are the re-occurring physiological – variability of menstrual cycle changes that happen in women of reproductive age. Menstrual cycles are counted from the first day of attributable to follicular phase menstrual flow and last until the day before the next onset of menses. It is generally assumed that the menstrual cycle lasts for 28 days, and this assumption Key Points is typically applied when dating pregnancy. However, there is variability between and within women with regard to the length of the menstrual cycle throughout • Follicular phase length averages 1,11,12 life. A woman who experiences variations of less than 8 13-15 days days between her longest and shortest cycle is considered normal. Irregular cycles are generally • Luteal phase length averages defined as having 8 to 20 days variation in length of 13-14 days1-3 cycle, whereas over 21 days variation in total cycle length is considered very irregular. -
Infertility Investigations for Women
Infertility investigations for women Brooke Building Gynaecology Department 0161 206 5224 © G21031001W. Design Services, Salford Royal NHS Foundation Trust, All Rights Reserved 2021. Document for issue as handout. Unique Identifier: SURG08(21). Review date: May 2023. This booklet is aimed for women undergoing fertility LH (Luteinising Hormone) Progesterone investigations. Its’ aim is to Oligomenorrhoea - When the provide you with some useful periods are occurring three In women, luteinising hormone Progesterone is a female information regarding your or four times a year (LH) is linked to ovarian hormone produced by the hormone production and egg ovaries after ovulation. It investigations. Irregular cycle - Periods that maturation. LH is used to causes the endometrial lining vary in length We hope you !nd this booklet measure a woman’s ovarian of the uterus to get thicker, helpful. The following blood tests are reserve (egg supply). making it receptive for a used to investigate whether You will be advised to have some It causes the follicles to grow, fertilised egg. ovulation (production of an egg) or all of the following tests: mature and release the eggs Progesterone levels increase is occurring each month and also for fertilisation. It reaches its after ovulation, reaching a to help determine which fertility Hormone blood tests highest level (the LH surge) in maximum level seven days treatments to offer. Follicular bloods tests the middle of the menstrual before the start of the next cycle 48 hours prior to ovulation period. The progesterone test is These routine blood tests are FSH (Follicle Stimulating i.e. days 12-14 of a 28 day cycle. -
Effects of Caffeine, Alcohol and Smoking on Fertility
Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility There is an increasing body of evidence that health behaviours affect fertility. As most health behaviours can be modified, providing advice and support in making healthy changes can promote fertility. The evidence relating to the effects on fertility of caffeine, alcohol consumption and smoking is reviewed here. Your Fertility is a national public education campaign funded by the Australian Government Department of Health and Ageing under the Family Planning Grants Program. 1 Updated October 2015 Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility Evidence review Caffeine Smoking Caffeine is widely consumed as it is present in coffee, tea, some soft drinks There is strong evidence that smoking adversely affects male and female and chocolate. Some evidence suggests that the consumption of caffeine, fertility. Smokers are more likely to be infertile [7, 20-21] and women with a possible dose-response effect, may prolong the time to pregnancy who are exposed to smoking take longer to conceive [22]. Furthermore, and affect the health of a developing foetus, although the mechanism for maternal smoking increases the risk of low birth weight and birth defects this is unclear. Caffeine may affect ovulation and corpus luteum functioning [23] and women who smoke reach menopause earlier than non-smokers through alterations to hormone levels [1] and has been shown to be associated [24]. Smoking can also damage sperm DNA. Heavy smoking (≥20 with elevated early follicular E2 levels in females [2]. Although some studies cigarettes per day) by fathers at the time of conception increases the have found a positive relationship between caffeine consumption and time child’s risk of childhood leukaemia and shortens reproductive lifespan to conception [3-6], study results are inconsistent and should be interpreted of daughters [25-26]. -
Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. -
Association Between Increased Expression of Endothelial Isoform of Nitric Oxide Synthase in the Human Fallopian Tube and Tubal Ectopic Pregnancy
Iran J Reprod Med Vol. 12. No. 1. pp: 19-28, January 2014 Original article Association between increased expression of endothelial isoform of nitric oxide synthase in the human fallopian tube and tubal ectopic pregnancy Leyla Fath Bayati1 M.Sc., Marefat Ghaffari Novin1, 2 M.D., Ph.D., Fatemeh Fadaei Fathabadi1 Ph.D., Abbas Piryaei1 Ph.D., Mohammad Hasan Heidari1 Ph.D., Mozhgan Bandehpour2 Ph.D., Mohsen Norouzian1 Ph.D., Mahdi Alizadeh Parhizgar3 M.D., Mahmood Shakooriyan Fard3 B.Sc. 1. Department of Biology and Abstract Anatomical Sciences, Faculty of Medicine, Shahid Beheshti Background: Tubal ectopic pregnancy (tEP) is the most common type of extra- University of Medical Sciences, uterine pregnancy and the most common cause of maternal mortality. Nitric oxide Tehran, Iran. (NO) is a molecule that incorporates in many physiological processes of female 2. Cellular and Molecular Biology reproductive system. Recent studies have demonstrated the possible role of Research Center, Shahid Beheshti University of Medical endothelial isoform of nitric oxide synthase (eNOS) enzyme in the regulation of Sciences, Tehran, Iran. many reproductive events that occur in the fallopian tube (FT). 3. Department of Pathology, Objective: The aim of this study was to evaluate the expression of eNOS in the FTs Kamkar Arab-Niya Hospital, of women with tEP. Qom University of Medical Sciences, Qom, Iran. Materials and Methods: In this case-control study, a total number of 30FTs samples were obtained from three groups including: 10 FTs of women that bearing an EP, 10 FTs from the non-pregnant women at luteal phase of the menstrual cycle, and 10 FTs of healthy pregnant women (n=10). -
Biology of Oocyte Maturation Oogenesis
Biology of Reproduction Unit Biology of Oocyte Maturation Carlos E. Plancha1,2 1 Unidade de Biologia da Reprodução, Inst. Histologia e Biologia do Desenvolvimento, . Faculdade de Medicina de Lisboa, Portugal 2 CEMEARE – Centro Médico de Assistência à Reprodução, Lisboa, Portugal Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis Growth Phase: - Oocyte diameter increases OOCYTE GROWTH - Organelle redistribution - High transcriptional and translational activity - Accumulation of RNA / proteins - Incompetent Æ Competent ooc. Oocyte Maturation: GV Complex series of nuclear and cytoplasmic events with resumption of the 1st meiotic OOCYTE MATURATION division and arrest at MII OVULATION shortly before ovulation MII Ovulation Growth Maturation FERTILIZATION Resumption of meiosis Æ PN formation Embryo development Prophase I Metaphase II Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis in vivo (including oocyte maturation) takes place inside a morfo-functional unit: The Ovarian Follicle Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Factors involved in oogenesis Igf-1,2,3 and folliculogenesis GDF - 9 FSH,LH Cellular interactions Perifolicular matrix Laminin Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September,