173 a New Species of Parascythopus

Total Page:16

File Type:pdf, Size:1020Kb

173 a New Species of Parascythopus Fragmenta entomologica, Roma, 45 (1-2): 173-179 (2013) A NEW SPECIES OF PARASCYTHOPUS DESBROCHERS FROM SYRIA (Coleoptera, Curculionidae) ENZO COLONNELLI (*) INTRODUCTION Among the material recently collected in Syria by Lucio Saltini was found the new species of Parascythopus Desbrochers, 1875 described in this note, which gave me the opportunity to clarify some problems aros- en with the taxonomy of this genus and of the close Phyllobius Germar, 1824. Parascythopus is now comprised of 8 species primarily distributed in the eastern Mediterranean basin (Alonso-Zarazaga 2013). MATERIAL AND METHODS Measures of the specimens were taken with a Wild M5 microscope associated with an ocular grid as follows. Total length: from base of ros- trum to apex of elytra, as customary for Curculionidae. Pronotal length: from anterior margin of pronotum to tip of its base in front of scutellum. Elytral length: from the middle of an ideal line tangent to shoulders to elytral apex. Pictures were taken with a microscope Leica Z16 APO and the as- sociated program Leica Application Suite 3.1, and then elaborated using the program Adobe Photoshop PS4. Labels of specimens are quoted as written, a semicolon separating lines on the same label. TAXONOMIC REMARKS After the revision by Pesarini (1981), who included in Parascytho­ pus four species, two additional ones have been described, the first of them from the Netherlands where it has been introduced (Heijerman & (*) Via delle Giunchiglie, 56 - 00172 Roma (Italy). E-mail: [email protected] 173 Magnano 2000), and the second from Syria, Lebanon and Israel (Borovec & Magnano 2005). In both these last papers were proposed new keys to replace that by Pesarini (1981), with the scope of correcting some er- rors by this author and including the newly described taxa. To Paras­ cythopus were assigned by Alonso-Zarazaga (2013) the following spe- cies: P. abeillei (Guillebeau, 1897) from Turkey, P. apollinis (Miller, 1862) from Greece and Bulgaria, P. baudii Stierlin, 1892 from southern Italy, P. kadleci Borovec & Magnano, 2004 from Lebanon, Syria and Is- rael, P. mirandus Desbrochers, 1875 from Turkey and Lebanon, P. pini­ cola (Kiesenwetter, 1864) from the Balkans, and P. exulans Heijerman & Magnano, 2000, an alien weevil introduced into Germany and the Neth- erlands. This last species, however, had been previously synonymyzed by Bahr et al. (2012) with the Japanese Phyllobius intrusus Kôno, 1948, an invasive pest known as “arborvitae weevil” apparently imported since long time in North America (Kôno 1948, O’Brien & Wibmer 1982, Dun- can 1996, Morimoto et al. 2006) and now spreading across north Europe (Heijerman & Magnano 2000; Ødegaard & Berggren 2010). This last species was comprised by Morimoto et al. (2006) in Phyllobius Germar, 1824 sensu stricto despite P. intrusus differs from all other known Phyl­ lobius already by its smooth nasal plate and conifers as host plants in- stead of broadleaves, as customary for all members of the genus (Hoff- mann 1950, Frieser 1981, Rheinheimer & Hassler 2000, Morimoto et al. (2006). These are exactly the features of all known members of Paras­ cythopus, so that Parascythopus intrusus (Kôno, 1948), new combina- tion is here moved from Phyllobius to Parascythopus. Of course such a combination implies some questions, being all other known members of the latter genus distributed from central to eastern Mediterranean: is P. intrusus really a native species in Japan or has it been introduced also in this country with some cultivated conifers? The relative polyfagy of P. intrusus can be an ecological factor favorising extensions of ist range, and one can wonder from where this species is native. The close relation- ship between the new Lebanese species described below and P. intrusus is also noteworthy, and leads one to think to an eastern Mediterranean country, where due to harsh conditions grow several kinds of conifers, and in this case it is natural to think to a mountain species seen that P. in­ trusus appears well adapted to cool climate. 174 Parascythopus s a l t i n i i n. sp. DIAGNOSIS. A reliquis speciebus generis facile distinguitur apice ro­ stri ferrugineo, oculis prominuli, pronoto linea longitudinali elevata ca­ rente, funiculi articulis valde elongatis. TYPE SERIES. Holotype ♀ labeled: “W. Syria; env. Slinfah m 1000-1300; 29/05/07; leg. L. Saltini” (Saltini collection, Modena, Italy). Paratype ♀ labeled: “W. Syria; env. Slinfah m 1000-1300; 29/05/07; leg. L. Saltini” (Colonnelli collection, Rome, Italy). HOLOTYPE. Length 7.67 mm. Derm pitchy-brown, mandibles, tip of rostrum, antennae, posterior third of suture, apical margin of elytra and legs ferrous-red. Elytra, pronotum and head densely covered by ov- al bright metallic green recumbent scales some of which show a golden lustre, and of raised whitish to golden semierect rather thick setae point- ing forward on epistome and a little backward on head, pronotum and elytra where they are not arranged in rows. Slightly lifted setae on an- tennae and legs. Rostrum 1.1 times wider than long, with almost straight sides. Epifrons about as wide as half of rostrum, with rather deep longi- tudinal groove delimited by two moderate longitudinal keels. U-shaped epistome bordered between the scobes by a crescent keel, and with a nar- rowly semicircular incision at apex. Scrobes pit-shaped, entirely visible in dorsal view. Eyes moderately large and convex. Head hardly convex, depressed and foveate between eyes, in profile dorsally separated from rostrum by moderate impression. Vertex convex, bare. Antennae quite slender, scape moderately curved, barely thickening towards apex. Fu- nicular segments 1 and 2 elongate, third about twice as long as wide, 4 to 7 slightly diminishing in length, all at least 1.3 times longer than wide. Club fusiform, slightly shorter than the three preceding segments. Pro- thorax 1.25 times wider than long, sides rounded, widest at middle, quite convex in lateral view, anterior margin hardly narrower than basal one and somewhat concave, disc with very faint longitudinal impression at each side of midline. Scutellum triangular. Elytra 1.96 times longer than wide and 1.6 times as wide as pronotum, sides almost straight from hu- meri to apical fourth, then curved and converging towards rather acute apex. Intervals almost flat, more than twice as wide as striae, suture con- vex on posterior third. Striae on basal third formed by subquadrate punc- tures, which next become fine and so approached each other to give rise to subtle lines. Femora strongly clubbed and with an acute large tooth. Tibiae quite elongate, almost straight and only weakly dilated towards 175 apex. Tarsi elongate, first segment more than twice longer than wide, second triangular and slightly longer than wide, third bilobed and trans- verse, fourth projecting from third by a slightly more than the length of third. Segments 3 and 4 of posterior left tarsus are missing. Claws fused on basal half. Habitus: fig. 1. PARATYPE. Length 7.33 mm. Very similar to the holotype, its vesti- ture is somewhat abraded and less dense. Left antenna, fourth segment of mesotarsi and of left metatarsus are missing. Habitus: fig. 2. Spermathe- ca: fig. 3. ETYMOLOGY. The new species is named after Lucio Saltini who col- lected in Syria the only two specimens known. REMARKS. It is impossible to confuse the new species with any other described to date because of the combination of reddish epistome, ab- sence of smooth longitudinal subcarinate line at the centre of pronotum and comparatively elongate segments of funicle and tarsi. Other Paras­ cytopus lacking of longitudinal keel on pronotum have always entirely black rostrum, except some specimens of P. intrusus, from which how- ever the new species immediately differs by its pronotal disk quite flat instead of subcarinate (although not smooth) and much more elongate funicular and tarsal segments. All remaining Parascythopus with reddish apex of rostrum show an obviously carinate pronotum. Study of quite long series of adults of all the species hitherto de- scribed, comprised paratypes of P. kadleci Borovec & Magnano, 2005, and Japanese examples of P. intrusus and Dutch paratypes of its syno- nym P. exulans Heijerman & Magnano, 2000, allows to propose the key below which should facilitate recognition of all Parascythopus described to date, taking into account the great variability of some of its members. 1 Pronotum with a smooth and shiny median longitudinal area ................................. 2 1’ Pronotum withouth such an area .............................................................................. 6 2 Reddish apical plate of rostrum contrasting with the blackish colour of the remaining part of it .................................................................................................................... 3 2’ Apical plate of rostrum of the same blackish or brownish colour of the remaining part of it .................................................................................................................... 5 3 Elytral interval 8 clothed by bright green scales similar to those on intervals 1 to 7, and strongly contrasting with the almost bare basal half of interval 10 and interval 9 which bear sparse piliform recumbent setae. Striae formed by fairly large subquad- rate punctures. Length: 6.10-7.20 mm. Turkey .................... P. abeillei (Guillebeau) 176 3’ Elytral interval 8 clothed by the same piliform or slender lanceolate recumbent scales covering the intervals 9 and 10.
Recommended publications
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and
    [Show full text]
  • Polydrusus Nadaii Meleshko & Korotyaev, a Possible New Pest For
    Bulletin de la Société entomologique de France, 119 (3), 2014 : 315-318. Polydrusus nadaii Meleshko & Korotyaev, a possible new pest for Pistachio trees in Iran (Coleoptera, Curculionidae, Entiminae) by Antonio J. VELÁZQUEZ-DE-CASTRO*, Babak GHARALI** & Boris A. KOROTYAEV*** * Departamento de Biología, Instituto IES Malilla, Bernardo Morales Sanmartín s/n, E – 46026 Valencia, Espagne <[email protected]> ** Department of Entomology, Research Center for Agriculture and Natural Resources, Shahid Beheshti Blvd. n°118, P. O. Box 34185-618, Ghazvin, Iran <[email protected]> *** Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russie <[email protected]> Abstract. – Polydrusus nadaii Meleshko & Korotyaev, 2005, is recorded as a potential pest species for Pistachio trees in Iran. This is the second species of Polydrusus recorded damaging Pistachio trees in this country, together with P. davatchii Hoffmann, 1956, a well known pest species. A comparative table to differentiate these two Polydrusus species is given. Résumé. – Polydrusus nadaii Meleshko & Korotyaev, un possible nouveau ravageur du Pistachier en Iran (Coleoptera, Curculionidae, Entiminae). Polydrusus nadaii est répertorié comme une espèce potentiellement ravageuse infestant le Pistachier en Iran. C’est la deuxième espèce de Polydrusus connue pour endommager les pistachiers dans ce pays, avec P. davatchii Hoffmann, 1956, espèce ravageuse bien connue. Un tableau comparatif est donné afin de distinguer ces deux espèces dePolydrusus . Keywords. – Pistachio, Pistacia, Iran, weevils, pest species. _________________ The genus Polydrusus Germar, 1817, comprises over 200 species in the world fauna, 190 of them are Palaearctic (YUNAKOV, 2013), four are Nearctic species, 14 are described from southern North America and from Central America, and three species from Chile (MELESHKO & KOROTYAEV, 2006).
    [Show full text]
  • Vaquita," Diaprepes Abbreviates (L.) (Curculionidae: Otiorrhynchinae: Phyllobiini)1 Niilo Virkki2 and Julia M
    Chromosomes of the Puerto Rican "vaquita," Diaprepes abbreviates (L.) (Curculionidae: Otiorrhynchinae: Phyllobiini)1 Niilo Virkki2 and Julia M. Sepulveda' ABSTRACT Diaprepes obbreviatus has typical chromosomes of the bisexual weevils of the subfamily Otiorrhynchinae: 2n - 22; 2X (9); 2n = 22; X, y (d), the male meioformula being 10 4- Xy . The autosomes form an evenly-di­ minishing series of near-mediocentrics. Some speculations are presented regarding how a meiotic drive, suitable for control purposes, might be established in such a trivial karyotype. RESUMEN Los cromosomas de Diaprepes abbreviates La vaquita, Diaprepes obbreviatus, tiene cromosomas tipicos de los picudos bisexuales de la subfamilia Otiorrhynchinae: 2n = 22; 2X (9); 2n = 22; X, y (8). La meioformula del macho es 10 + Xyp. Los autosomas forman una serie de tamanos que varia gradualmente de mas grandes a mas pequenos. Se presenta un plan como un mecanismo meiotico (meiotic drive) podria utilizarse en el control de la vaquita. INTRODUCTION The phyllobiine weevil Diaprepes abbreviatus is an injurious and ecologically versatile pest insect of Puerto Rican agriculture and silvicul­ ture. Its hosts comprise at least 70 species of wild and cultivated plants (8). It occupies the entire island. The larvae, sheltered in the host roots, are perhaps more injurious than the adults. Despite native and intro­ duced enemies (4, 29), this ecological versatility of the vaquita has pre­ vented its effective control. Original studies on genetics and cytology of the vaquita in Puerto Rico were begun in 1982. We now visualize its population as a continuous "carpet" of interbreeding denies covering the entire island. The popula­ tion is locally modified by discrete color (6) and chiasma-frequency (11) patterns.
    [Show full text]
  • A New Species of Tanymecus Germar (Entiminae:Tanymecini
    INT. J. BIOL. BIOTECH., 7 (4): 365-369, 2010. A NEW SPECIES OF TANYMECUS GERMAR (COLEOPTERA: CURCULIONIDAE: ENTIMINAE: TANYMECINI) FROM SINDH, PAKISTAN Zubair Ahmed1*, S. Anser Rizvi2, Imran Khatri3, Naeemuddin Arien1 1Department of Zoology, Federal Urdu University of Arts, Sciences &Technology, Karachi, Pakistan1 2Department of Zoology, University of Karachi, Karachi-75270, Pakistan2. 3Department of Entomology, Sindh Agricultiure University Tandojam, Sindh, Pakistan3. *Corresponding author. ABSTRACT A new species of Tanymecus Germar described as Allotype from Omarkot, Sindh. The present new taxon is described with male and female components of genitalia and their comparison with closest allies. Keywords: Tanymecini, Tanymecus sindhensis n.sp., male and female genitalia. INTRODUCTION Marshall (1916) carried out a major work on Indian weevils found in Indian subcontinent. He described 23 species of Tanymecus in which only three species Tanymecus simplex, T.mandibularis and T.indicus recorded from those areas which are now included in Pakistan. Hashmi and Tashfeen (1992) listed only thirteen species of Tanymecus from Pakistan. Later few genera were reviewed by other workers with their faunistic studies viz., Myllocerus Schoenherr (Ramamurthy and Ghai, 1988), Tanymecus Germar (Supare et al., 1990), Indomias Marshall (Ramamurthy and Ayri, 2010). In Pakistan, initiated work was done by Aslam (1966a, 1966b), he described some weevils of the tribe Tanymecini from Pakistan and later Rizvi et al. (2003) and Ahmed et al. (2006) added two new species of Tanymecus from Pakistan. Due to the large family size, number of invalid taxa needed revision and authenticity, for that Zarazaga and Lyal (2002) synonymized many genera and placed many in different subfamilies and families.
    [Show full text]
  • (Lepidoptera: Noctuidae) in Puerto Rico
    Life: The Excitement of Biology 3(1) 15 On the Male and Female Genital Structures of Phyllobius (Metaphyllobius) glaucus (Scopoli, 1763) (Coleoptera: Curculionidae: Phyllobinii) from Turkey1 Mahmut Erbey2, Üzeyir Çağlar3, and Selami Candan3 Abstract: Several structures of the male genitalia (tegmen, parameres, manubrium, endophallus), and ninth abdominal sternite (spiculum gastrale) as well as the female genitalia (genital spicule and eight sternite, ovipositor, and spermatheca) of Phyllobius (Metaphyllobius) glaucus are described and illustrated for the first time as they are useful for separating P. glaucus from other congenerics. Key Words: Coleoptera, Curculionidae, Phyllobius glaucus, male and female genitalia Species of the polyphagous weevil genus Phyllobius generally live on cultivated shrubs and trees, particularly those in the families Urticaceae, Betulaceae, Salicaceae, and Rosaceae (Pesarini 1980). Their larvae often feed on the roots and, upon reaching adulthood, the beetles are seen on the shoots (Dieckmann 1980, Ross 1963). Sometimes, both larvae and adults cause major economic damage, particularly when grazing on young plants. Phyllobius (Metaphyllobius) glaucus (Scopoli, 1763) thrives from plains to mountainous and even subalpine zones (Dieckmann 1980). Figure 1. Phyllobius glaucus. Photo copyright 2005 J .K. Lindsey, http://www.commanster.eu. Used with permission. 1 Submitted on February 11, 2015. Accepted on February 21, 2015. Last revisions received on March9, 2015. 2 Department of Biology, Faculty of Art and Science, Ahi Evran University, Kırşehir, Turkey. E- mail: [email protected] . Corresponding Author. 3 Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey. E-mail: [email protected] , [email protected] , respectively. DOI:10.9784/LEB3(1)Erbey.01 Electronically available on April 18, 2015.
    [Show full text]
  • Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants
    Temporal lags and overlap in the diversification of weevils and flowering plants Duane D. McKennaa,1, Andrea S. Sequeirab, Adriana E. Marvaldic, and Brian D. Farrella aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bDepartment of Biological Sciences, Wellesley College, Wellesley, MA 02481; and cInstituto Argentino de Investigaciones de Zonas Aridas, Consejo Nacional de Investigaciones Científicas y Te´cnicas, C.C. 507, 5500 Mendoza, Argentina Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 3, 2009 (received for review October 22, 2008) The extraordinary diversity of herbivorous beetles is usually at- tributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversi- fication remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on Ϸ8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning Ϸ166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and ma- jor diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive EVOLUTION diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiver- sification, resource tracking, and sequential evolution.
    [Show full text]
  • Weevils) of the George Washington Memorial Parkway, Virginia
    September 2020 The Maryland Entomologist Volume 7, Number 4 The Maryland Entomologist 7(4):43–62 The Curculionoidea (Weevils) of the George Washington Memorial Parkway, Virginia Brent W. Steury1*, Robert S. Anderson2, and Arthur V. Evans3 1U.S. National Park Service, 700 George Washington Memorial Parkway, Turkey Run Park Headquarters, McLean, Virginia 22101; [email protected] *Corresponding author 2The Beaty Centre for Species Discovery, Research and Collection Division, Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, ON. K1P 6P4, CANADA;[email protected] 3Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia 24112; [email protected] ABSTRACT: One-hundred thirty-five taxa (130 identified to species), in at least 97 genera, of weevils (superfamily Curculionoidea) were documented during a 21-year field survey (1998–2018) of the George Washington Memorial Parkway national park site that spans parts of Fairfax and Arlington Counties in Virginia. Twenty-three species documented from the parkway are first records for the state. Of the nine capture methods used during the survey, Malaise traps were the most successful. Periods of adult activity, based on dates of capture, are given for each species. Relative abundance is noted for each species based on the number of captures. Sixteen species adventive to North America are documented from the parkway, including three species documented for the first time in the state. Range extensions are documented for two species. Images of five species new to Virginia are provided. Keywords: beetles, biodiversity, Malaise traps, national parks, new state records, Potomac Gorge. INTRODUCTION This study provides a preliminary list of the weevils of the superfamily Curculionoidea within the George Washington Memorial Parkway (GWMP) national park site in northern Virginia.
    [Show full text]
  • Description of the Mature Larvae of Eight Phyllobius Germar, 1824
    WEEVIL News 1. November 2020 No. 89 Description of the mature larvae of eight Phyllobius Germar, 1824 species with notes about life cycles, host plant use and vertical distribution (Curculionidae: Entiminae: Phyllobiini) by Rafał Gosik1 & Peter Sprick2 with 67 photos and 88 drawings Manuscript received: 11. August 2020 Accepted: 25. September 2020 Internet (open access, PDF): 01. November 2020 1Department of Zoology and Nature Protection, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland, [email protected] 2Curculio-Institut e.V., Weckenstraße 15, 30451 Hannover, Germany, psprickcol@t–online.de Both authors are members of the Curculio Institute. Abstract. The mature larvae of eight Phyllobius species are described using advanced optical methods. The larvae of P. pomaceus Gyllenhal, 1834, P. pyri (Linnaeus, 1758), P. virideaeris (Laicharting, 1781), and P viridicollis (Fabricius, 1792) are re-described, and the mature larvae of P. arborator (Herbst, 1797), P. argentatus (Linnaeus, 1758), P. maculicornis Germar, 1824, and P. roboretanus Gredler, 1882 are described for the first time. In P. viridearis only an unillustrated description was available. A key including other species of the genus Phyllobius with sufficient description is given. We used our data and from the literature as well to review and update two special features of Phyllobius biology: the general life cycle and aspects of host plant use and vertical distribution of selected Phyllobius species. Keywords. Phyllobius, Central Europe, weevil biology, illustration, key, bionomics, larvae biology. Introduction In this contribution about premature stages of Central European Entiminae we deal for the first time with larvae of the genus Phyllobius Germar, 1824 from the tribe Phyllobiini.
    [Show full text]
  • Fifty Million Years of Beetle Evolution Along the Antarctic Polar Front
    Fifty million years of beetle evolution along the Antarctic Polar Front Helena P. Bairda,1, Seunggwan Shinb,c,d, Rolf G. Oberprielere, Maurice Hulléf, Philippe Vernong, Katherine L. Moona, Richard H. Adamsh, Duane D. McKennab,c,2, and Steven L. Chowni,2 aSchool of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; bDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; cCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; dSchool of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; eAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; fInstitut de Génétique, Environnement et Protection des Plantes, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Université de Rennes, 35653 Le Rheu, France; gUniversité de Rennes, CNRS, UMR 6553 ECOBIO, Station Biologique, 35380 Paimpont, France; hDepartment of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431; and iSecuring Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 6, 2021 (received for review August 24, 2020) Global cooling and glacial–interglacial cycles since Antarctica’s iso- The hypothesis that diversification has proceeded similarly in lation have been responsible for the diversification of the region’s Antarctic marine and terrestrial groups has not been tested. While marine fauna. By contrast, these same Earth system processes are the extinction of a diverse continental Antarctic biota is well thought to have played little role terrestrially, other than driving established (13), mounting evidence of significant and biogeo- widespread extinctions.
    [Show full text]
  • Curriculum Vitae Nico M
    Nico M. Franz – Vitae, February 2020 1 Curriculum Vitae Nico M. Franz Address Campus School of Life Sciences PO Box 874501 Arizona State University Tempe, AZ 85287-4501, USA Collection Alameda Building – Natural History Collections 734 West Alameda Drive Tempe, AZ 85282-4108, USA Collection – AB 145: (480) 965-2036 Fax: (480) 727-2203 Virtual E-mail: [email protected] Twitter: @taxonbytes BioKIC: https://biokic.asu.edu/ Education 1993 – 1996 Prediploma in Biology, University of Hamburg, Hamburg, Germany Undergraduate Advisor: Klaus Kubitzki 1996 Diploma Studies in Systematic Botany and Ecology, University of Ulm, Ulm, Germany Graduate Advisor: Gerhard Gottsberger 1996 – 1999 M.Sc. in Biology, University of Costa Rica, San José, Costa Rica Graduate Advisor: Paul E. Hanson 1999 Graduate Research Fellow, Behavioral Ecology, Smithsonian Tropical Research Institute (STRI), Balboa, Panama Research Advisor: William T. Wcislo 1999 – 2005 Ph.D. in Systematic Entomology, Cornell University, Ithaca, NY Graduate Advisor: Quentin D. Wheeler 2003 – 2005 Postdoctoral Research Fellow, National Center for Ecological Analysis and Synthesis, University of California at Sta. Barbara, Sta. Barbara, CA Postdoctoral Mentor: Robert K. Peet Languages English, German, Spanish (fluent); French, Latin, Vietnamese (proficient) Nico M. Franz – Vitae, February 2020 2 Faculty Appointments 2006 – 2011 Assistant Professor (tenure-track appointment), Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR 2011 – present Adjunct Professor, Department
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0068335 A1 Mettus Et Al
    US 2003.0068335A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0068335 A1 Mettus et al. (43) Pub. Date: Apr. 10, 2003 (54) POLYNUCLEOTIDE COMPOSITIONS TOXC Related U.S. Application Data TO DIABROTICA INSECTS, AND METHODS OF USE (62) Division of application No. 09/184,748, filed on Nov. 2, 1998. (75) Inventors: Anne-Marie Light Mettus, Publication Classification Feasterville, PA (US); James A. Baum, (51) Int. Cl." ......................... A01N 63/00; A61K 39/07; Doylestown, PA (US) CO7K 14/325 (52) U.S. Cl. .................. 424/246.1; 530/350; 424/93.461 Correspondence Address: (57) ABSTRACT Patricia A. Kammerer HOWREY SIMON ARNOLD & WHITE, LLP Disclosed is a novel Lepidopteran- and Coleopteran-active 750 Bering Drive Ö-endotoxin polypeptide, and compositions comprising the Houston, TX 77.057-2198 (US) polypeptide, peptide fragments thereof, and antibodies spe cific therefor. Also disclosed are vectors, transformed host cells, and transgenic plants that comprise nucleic acid Seg Assignee: Monsanto Technology LLC. ments encoding the polypeptide. Also disclosed are methods (73) of identifying related polypeptides and polynucleotides, methods of making and using transgenic cells comprising (21) Appl. No.: 10/120,255 the novel Sequences of the invention, as well as methods for controlling an insect population, Such as the Western Corn Rootworm and Colorado potato beetle, and for conferring to (22) Filed: Apr. 10, 2002 a plant population resistance to the target insect Species. Patent Application Publication Apr. 10, 2003 US 2003/0068335 A1 1 kb pEG1648 (Ssp/Bal) (Hp/B) (K/Ssp) HE H Hp E E KXXX N o N Ori1030 ery pUC19BMb) CryET70 (Mb/B) pEG1657 US 2003/0068335 A1 Apr.
    [Show full text]