A New Species of Tanymecus Germar (Entiminae:Tanymecini
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
Polydrusus Nadaii Meleshko & Korotyaev, a Possible New Pest For
Bulletin de la Société entomologique de France, 119 (3), 2014 : 315-318. Polydrusus nadaii Meleshko & Korotyaev, a possible new pest for Pistachio trees in Iran (Coleoptera, Curculionidae, Entiminae) by Antonio J. VELÁZQUEZ-DE-CASTRO*, Babak GHARALI** & Boris A. KOROTYAEV*** * Departamento de Biología, Instituto IES Malilla, Bernardo Morales Sanmartín s/n, E – 46026 Valencia, Espagne <[email protected]> ** Department of Entomology, Research Center for Agriculture and Natural Resources, Shahid Beheshti Blvd. n°118, P. O. Box 34185-618, Ghazvin, Iran <[email protected]> *** Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russie <[email protected]> Abstract. – Polydrusus nadaii Meleshko & Korotyaev, 2005, is recorded as a potential pest species for Pistachio trees in Iran. This is the second species of Polydrusus recorded damaging Pistachio trees in this country, together with P. davatchii Hoffmann, 1956, a well known pest species. A comparative table to differentiate these two Polydrusus species is given. Résumé. – Polydrusus nadaii Meleshko & Korotyaev, un possible nouveau ravageur du Pistachier en Iran (Coleoptera, Curculionidae, Entiminae). Polydrusus nadaii est répertorié comme une espèce potentiellement ravageuse infestant le Pistachier en Iran. C’est la deuxième espèce de Polydrusus connue pour endommager les pistachiers dans ce pays, avec P. davatchii Hoffmann, 1956, espèce ravageuse bien connue. Un tableau comparatif est donné afin de distinguer ces deux espèces dePolydrusus . Keywords. – Pistachio, Pistacia, Iran, weevils, pest species. _________________ The genus Polydrusus Germar, 1817, comprises over 200 species in the world fauna, 190 of them are Palaearctic (YUNAKOV, 2013), four are Nearctic species, 14 are described from southern North America and from Central America, and three species from Chile (MELESHKO & KOROTYAEV, 2006). -
(Lepidoptera: Noctuidae) in Puerto Rico
Life: The Excitement of Biology 3(1) 15 On the Male and Female Genital Structures of Phyllobius (Metaphyllobius) glaucus (Scopoli, 1763) (Coleoptera: Curculionidae: Phyllobinii) from Turkey1 Mahmut Erbey2, Üzeyir Çağlar3, and Selami Candan3 Abstract: Several structures of the male genitalia (tegmen, parameres, manubrium, endophallus), and ninth abdominal sternite (spiculum gastrale) as well as the female genitalia (genital spicule and eight sternite, ovipositor, and spermatheca) of Phyllobius (Metaphyllobius) glaucus are described and illustrated for the first time as they are useful for separating P. glaucus from other congenerics. Key Words: Coleoptera, Curculionidae, Phyllobius glaucus, male and female genitalia Species of the polyphagous weevil genus Phyllobius generally live on cultivated shrubs and trees, particularly those in the families Urticaceae, Betulaceae, Salicaceae, and Rosaceae (Pesarini 1980). Their larvae often feed on the roots and, upon reaching adulthood, the beetles are seen on the shoots (Dieckmann 1980, Ross 1963). Sometimes, both larvae and adults cause major economic damage, particularly when grazing on young plants. Phyllobius (Metaphyllobius) glaucus (Scopoli, 1763) thrives from plains to mountainous and even subalpine zones (Dieckmann 1980). Figure 1. Phyllobius glaucus. Photo copyright 2005 J .K. Lindsey, http://www.commanster.eu. Used with permission. 1 Submitted on February 11, 2015. Accepted on February 21, 2015. Last revisions received on March9, 2015. 2 Department of Biology, Faculty of Art and Science, Ahi Evran University, Kırşehir, Turkey. E- mail: [email protected] . Corresponding Author. 3 Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey. E-mail: [email protected] , [email protected] , respectively. DOI:10.9784/LEB3(1)Erbey.01 Electronically available on April 18, 2015. -
Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants
Temporal lags and overlap in the diversification of weevils and flowering plants Duane D. McKennaa,1, Andrea S. Sequeirab, Adriana E. Marvaldic, and Brian D. Farrella aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bDepartment of Biological Sciences, Wellesley College, Wellesley, MA 02481; and cInstituto Argentino de Investigaciones de Zonas Aridas, Consejo Nacional de Investigaciones Científicas y Te´cnicas, C.C. 507, 5500 Mendoza, Argentina Edited by May R. Berenbaum, University of Illinois at Urbana-Champaign, Urbana, IL, and approved March 3, 2009 (received for review October 22, 2008) The extraordinary diversity of herbivorous beetles is usually at- tributed to coevolution with angiosperms. However, the degree and nature of contemporaneity in beetle and angiosperm diversi- fication remain unclear. Here we present a large-scale molecular phylogeny for weevils (herbivorous beetles in the superfamily Curculionoidea), one of the most diverse lineages of insects, based on Ϸ8 kilobases of DNA sequence data from a worldwide sample including all families and subfamilies. Estimated divergence times derived from the combined molecular and fossil data indicate diversification into most families occurred on gymnosperms in the Jurassic, beginning Ϸ166 Ma. Subsequent colonization of early crown-group angiosperms occurred during the Early Cretaceous, but this alone evidently did not lead to an immediate and ma- jor diversification event in weevils. Comparative trends in weevil diversification and angiosperm dominance reveal that massive EVOLUTION diversification began in the mid-Cretaceous (ca. 112.0 to 93.5 Ma), when angiosperms first rose to widespread floristic dominance. These and other evidence suggest a deep and complex history of coevolution between weevils and angiosperms, including codiver- sification, resource tracking, and sequential evolution. -
Description of the Mature Larvae of Eight Phyllobius Germar, 1824
WEEVIL News 1. November 2020 No. 89 Description of the mature larvae of eight Phyllobius Germar, 1824 species with notes about life cycles, host plant use and vertical distribution (Curculionidae: Entiminae: Phyllobiini) by Rafał Gosik1 & Peter Sprick2 with 67 photos and 88 drawings Manuscript received: 11. August 2020 Accepted: 25. September 2020 Internet (open access, PDF): 01. November 2020 1Department of Zoology and Nature Protection, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland, [email protected] 2Curculio-Institut e.V., Weckenstraße 15, 30451 Hannover, Germany, psprickcol@t–online.de Both authors are members of the Curculio Institute. Abstract. The mature larvae of eight Phyllobius species are described using advanced optical methods. The larvae of P. pomaceus Gyllenhal, 1834, P. pyri (Linnaeus, 1758), P. virideaeris (Laicharting, 1781), and P viridicollis (Fabricius, 1792) are re-described, and the mature larvae of P. arborator (Herbst, 1797), P. argentatus (Linnaeus, 1758), P. maculicornis Germar, 1824, and P. roboretanus Gredler, 1882 are described for the first time. In P. viridearis only an unillustrated description was available. A key including other species of the genus Phyllobius with sufficient description is given. We used our data and from the literature as well to review and update two special features of Phyllobius biology: the general life cycle and aspects of host plant use and vertical distribution of selected Phyllobius species. Keywords. Phyllobius, Central Europe, weevil biology, illustration, key, bionomics, larvae biology. Introduction In this contribution about premature stages of Central European Entiminae we deal for the first time with larvae of the genus Phyllobius Germar, 1824 from the tribe Phyllobiini. -
Fifty Million Years of Beetle Evolution Along the Antarctic Polar Front
Fifty million years of beetle evolution along the Antarctic Polar Front Helena P. Bairda,1, Seunggwan Shinb,c,d, Rolf G. Oberprielere, Maurice Hulléf, Philippe Vernong, Katherine L. Moona, Richard H. Adamsh, Duane D. McKennab,c,2, and Steven L. Chowni,2 aSchool of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; bDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; cCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; dSchool of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; eAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; fInstitut de Génétique, Environnement et Protection des Plantes, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Université de Rennes, 35653 Le Rheu, France; gUniversité de Rennes, CNRS, UMR 6553 ECOBIO, Station Biologique, 35380 Paimpont, France; hDepartment of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431; and iSecuring Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 6, 2021 (received for review August 24, 2020) Global cooling and glacial–interglacial cycles since Antarctica’s iso- The hypothesis that diversification has proceeded similarly in lation have been responsible for the diversification of the region’s Antarctic marine and terrestrial groups has not been tested. While marine fauna. By contrast, these same Earth system processes are the extinction of a diverse continental Antarctic biota is well thought to have played little role terrestrially, other than driving established (13), mounting evidence of significant and biogeo- widespread extinctions. -
Curriculum Vitae Nico M
Nico M. Franz – Vitae, February 2020 1 Curriculum Vitae Nico M. Franz Address Campus School of Life Sciences PO Box 874501 Arizona State University Tempe, AZ 85287-4501, USA Collection Alameda Building – Natural History Collections 734 West Alameda Drive Tempe, AZ 85282-4108, USA Collection – AB 145: (480) 965-2036 Fax: (480) 727-2203 Virtual E-mail: [email protected] Twitter: @taxonbytes BioKIC: https://biokic.asu.edu/ Education 1993 – 1996 Prediploma in Biology, University of Hamburg, Hamburg, Germany Undergraduate Advisor: Klaus Kubitzki 1996 Diploma Studies in Systematic Botany and Ecology, University of Ulm, Ulm, Germany Graduate Advisor: Gerhard Gottsberger 1996 – 1999 M.Sc. in Biology, University of Costa Rica, San José, Costa Rica Graduate Advisor: Paul E. Hanson 1999 Graduate Research Fellow, Behavioral Ecology, Smithsonian Tropical Research Institute (STRI), Balboa, Panama Research Advisor: William T. Wcislo 1999 – 2005 Ph.D. in Systematic Entomology, Cornell University, Ithaca, NY Graduate Advisor: Quentin D. Wheeler 2003 – 2005 Postdoctoral Research Fellow, National Center for Ecological Analysis and Synthesis, University of California at Sta. Barbara, Sta. Barbara, CA Postdoctoral Mentor: Robert K. Peet Languages English, German, Spanish (fluent); French, Latin, Vietnamese (proficient) Nico M. Franz – Vitae, February 2020 2 Faculty Appointments 2006 – 2011 Assistant Professor (tenure-track appointment), Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR 2011 – present Adjunct Professor, Department -
Coleoptera: Curculionidae), with Special Reference to South American Taxa
diversity Article A Combined Molecular and Morphological Approach to Explore the Higher Phylogeny of Entimine Weevils (Coleoptera: Curculionidae), with Special Reference to South American Taxa Adriana E. Marvaldi 1,*, María Guadalupe del Río 1,*, Vanina A. Pereyra 2, Nicolás Rocamundi 3 and Analía A. Lanteri 1 1 División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, La Plata B1900FWA, Argentina; [email protected] 2 Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, C.C. 507, Mendoza 5500, Argentina; [email protected] 3 Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Córdoba X5016GCA, Argentina; [email protected] * Correspondence: [email protected] (A.E.M.); [email protected] (M.G.d.R.) Received: 1 August 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: The Entiminae are broad-nosed weevils constituting the most diverse subfamily of Curculionidae, with over 50 tribes. We performed Bayesian and Maximum Parsimony combined phylogenetic analyses with the main objective of testing higher-level relationships and the naturalness of the major Neotropical and Southern South American (Patagonia and Andes) tribes, including some members from other regions. We compiled a data matrix of 67 terminal units with 63 Entiminae species, as well as four outgroup taxa from Cyclominae, by 3522 molecular (from nuclear 18S rDNA and 28S rDNA, and mitochondrial 16S rDNA and COI gene sequences) and 70 morphological characters. The resulting trees recover a clade Entiminae with a monophyletic Cylydrorhinini and Premnotrypes branching off early. -
A New Species of the Weevil Genus Phyllobius Germar, 1824 (Coleoptera: Curculionidae: Entiminae) from the Pleistocene of Northeastern Siberia
Invertebrate Zoology, 2019, 16(2): 154–164 © INVERTEBRATE ZOOLOGY, 2019 A new species of the weevil genus Phyllobius Germar, 1824 (Coleoptera: Curculionidae: Entiminae) from the Pleistocene of northeastern Siberia S.A. Kuzmina1*, B.A. Korotyaev2 1 Laboratory of Arthropods, Borissiak Paleontological Institute RAS, Profsoyuznaya St. 123, Moscow, 117868 Russia. 2 Zoological Institute RAS, Universitetskaya nab. 1, St. Petersburg, 199034 Russia. E-mail: [email protected], [email protected] * corresponding author ABSTRACT: Weevils of the genus Phyllobius Germar, 1824 (Coleoptera, Curculionidae: Entiminae) are frequent in the Quaternary deposits of northeastern Siberia. A detailed study of the well-preserved Pleistocene fossils (including scales of the vestiture) from the Bolshoy Khomus-Yuryakh River in the Yana-Indigirka lowland (Sakha Republic – Yakutia) results in the recognition of a number of rare weevils including a new species of the genus Phyllobius Germar, 1824 — Ph. (Angarophyllobius) sheri sp.n. which is described in this paper. The new species is closely related to the recent Ph. kolymensis Korotyaev et Egorov, 1977 currently known from only a few localities in the area of the middle section of the Kolyma River, which had a wider distribution range in the Pleistocene. Phyllobius sheri sp.n. is probably extinct. How to cite this article: Kuzmina S.A., Korotyaev B.A. 2019. A new species of the weevil genus Phyllobius Germar, 1824 (Coleoptera: Curculionidae: Entiminae) from the Plei- stocene of northeastern Siberia // Invert. Zool. Vol.16. No.2. P.154–164. doi: 10.15298/ invertzool.16.2.04 KEY WORDS: Curculionidae, Phyllobius, Angarophyllobius, new species, Pleistocene, Siberia. Новый вид долгоносиков рода Phyllobius Germar, 1824 (Coleoptera: Curculionidae: Entiminae) из плейстоцена северо-восточной Сибири С.А. -
(Lepidoptera: Noctuidae) in Puerto Rico
Life: The Excitement of Biology 2(2) 94 Morphological and Molecular (18S rDNA) Phylogeny of Five Species of Weevils in the Tribe Phyllobiini (Coleoptera: Curculionidae: Entiminae) from Turkey1 Mahmut Erbey2, Vahap Eldem3 and Yakup Bakır4 Abstract: Five species of weevils in the tribe Phyllobiini (Coleoptera: Curculionidae: Entiminae) [Phyllobius glaucus (Scopoli, 1763); Phyllobius virideaeris (Laicharting, 1781); Parascythropus mirandus Desbrochers, 1875; Oedecnemidius pictus (Steven, 1829); Oedecnemidius saltuarius (Heyden, 1888)] were studied to generate analyses of their relationships. Those interspecific relationships were inferred from morphological characters as well as 18S rDNA sequencing data. Phylogenetic trees based on sequencing data were built with Neighbor Joining (NJ), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms; morphology-based trees were created using UPGMA (Unweighted Pair Group Method with Arithmetic Mean). The trees have a similar topology. Key Words: Curculionidae, Phyllobiini, Phyllobiini, morphological characters, molecular characters, phylogeny, congruence of phylogenetic methods, 18S rDNA Members of weevil tribe Phyllobiini Schoenherr, 1833 feed on a variety of plant species placed in the orders Urticales, Salicales, Betulales and Rosales (Pesarini, 1980). Larvae and adults feed on roots, stems, leaves, and fruits. Consequently, they can have a detrimental effect on agricultural crops and forest trees causing significant economic losses (Pesarini, 1980). The Phyllobiini are widespread beetles distributed in the Palearctic biogeographic region. This group of curculionids has been investigated by Hoffmann (1950), Angelov (1976), Korotyaev and Egorov (1977), Dieckmann (1980), Pesarini (1980), Pişer (2001) as well as Yunakov and Korotyaev (2007). Currently, 120 species belonging to eight genera are recognized. Thirty-four species belonging to eight genera are known to occur in Anatolia (Pesarini, 1980; Lodos, et al., 2003). -
Coleoptera, Curculionidae, Entiminae)
Biodiversity Data Journal 9: e66452 doi: 10.3897/BDJ.9.e66452 Research Article Barcoding pest species in a biodiversity hot-spot: the South African polyphagous broad-nosed weevils (Coleoptera, Curculionidae, Entiminae) Steffan Hansen‡§, Pia Addison , Laure Benoit|, Julien M Haran | ‡ Stellenbosch University, Stellenbosch, South Africa § University of Stellenbosch, Stellenbosch, South Africa | CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Montpellier University, Montpellier, France Corresponding author: Steffan Hansen ([email protected]) Academic editor: Jennifer C. Girón Duque Received: 24 Mar 2021 | Accepted: 09 Jun 2021 | Published: 30 Jun 2021 Citation: Hansen S, Addison P, Benoit L, Haran JM (2021) Barcoding pest species in a biodiversity hot-spot: the South African polyphagous broad-nosed weevils (Coleoptera, Curculionidae, Entiminae). Biodiversity Data Journal 9: e66452. https://doi.org/10.3897/BDJ.9.e66452 Abstract Polyphagous broad nosed weevils (Curculionidae: Entiminae) constitute a large and taxonomically challenging subfamily that contains economically significant agricultural pests worldwide. South Africa is a hot-spot for biodiversity and several species of indigenous and endemic genera of Entiminae have shifted on to cultivated plants, with some being phytosanitary pests. The sporadic pest status of many species (where the species has an occasional economic impact on the agricultural industry, but is not encountered often enough that is is readily recognisable by researchers and agricultural extension workers) and the presence of pest complexes and cryptic species represent an identification challenge to non-specialists. Furthermore, no comprehensive identification tools exist to identify immature stages that may be found in crops/soil. In this paper, a curated barcoding database with 70 COI sequences from 41 species (39 Entiminae, 2 Cyclominae) is initiated, to assist with the complexity of identification of species in this group. -
Subfamily Entiminae (Curculionidae)
Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2020, 10(2), 332-346, doi: 10.15421/2020_105 RESEARCH ARTICLE Annotated key to weevils of the world: Part 5 - Subfamily Entiminae (Curculionidae) A.A. Legalov1,2 1Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street, 11, Novosibirsk 630091, Russia 2Tomsk State University, Lenina Prospekt 36, Tomsk, 634050, Russia Corresponding author E-mail: [email protected] Received: 19.03.2020. Accepted 26.04.2020 Taxonomic entities included in the present key are: new tribe Isanirini Legalov, trib. n. (type genus Isaniris J. Thomson, 1858), three new subtribes Deracanthina Legalov, subtrib. n. (type genus Deracanthus Schoenherr, 1823) of the tribe Ophryastini, Rhigiina Legalov, subtrib. n. (type genus Rhigus Schoenherr, 1823) of the tribe Entimini and Mesagroicina Legalov, subtrib. n. (type genus Mesagroicus Schoenherr, 1840) of the tribe Naupactini. The systematic position of Gonipterina Lacordaire, 1863, placem. n., Auchmeresthinae Reitter, 1913, placem. n., Omilei Horn, 1876, placem. n., Brachycamacina Poinar, Legalov et Brown, 2013, placem. n., Trigonoscutae LeConte, 1874, placem. n. and Calyptilli Horn, 1876, placem. n. are changed. Changes of status for Strangaliodidina Lacordaire, 1863, stat. n., Phyxeliina Horn, 1876, stat. n., Byrsopagina Lacordaire, 1863, stat. n., Canonopsina Dreux et Voisin, 1989, stat. n., Metacinopini Reitter, 1913, stat. n., Simoina Pierce, 1913, stat. n., Pseudocneorrhinina Kono, 1930, stat. n., Gonipterina Lacordaire, 1863, stat. n., Pandeleteina Pierce, 1913, stat.n. are made. Statuses of Eurylobiini Jekel, 1856, stat. res., Cepurina Capiomont, 1867, stat. res., Coniatina Legalov, 2007, stat. res., Phaeopholina Legalov, 2011, stat. res., Macrotarrhusina Legalov, 2007, stat.