Fluid Power, Rate Training Manual

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Power, Rate Training Manual DOCUMENT RESUME ED 070 578 SE 014 125 TITLE Fluid Power, Rate TrainingManual. INSTITUTION Bureau of Naval Personnel,Washington, D. C. REPORT NO NAVPERS-16193-B PUB DATE 70 NOTE 305p. EDRS PRICE MF-$0.65 HC-$13.16 DESCRIPTORS Force; *Hydraulics; Instructional Materials; *Mechanical Equipment; Military Personnel; *Military Science; *Military Training; Physics; *Supplementary Textbooks; Textbooks ABSTRACT Fundamentals of hydraulics and pneumatics are presented in this manual, prepared for regular navy and naval reserve personnel who are seeking advancement to Petty Officer Third Class. The history of applications of compressed fluids is described in connection with physical principles. Selection of types of liquids and gases is discussed with a background of operating temperature ranges, contamination control techniques, lubrication aspects, and safety precautions. Components in closed- and open-center fluid systems are studied in efforts to familiarize circuit diagrams. Detailed descriptions are made for .the functions of fluidlines, connectors, sealing devices, wipers, backup washers, containers, strainers, filters, accumulators, pumps, and compressors. Control and measurements of fluid flow and pressure are analyzed in terms of different types of flowmeters, pressure gages, and values; and methods of directing flow and converting power into mechanical force and motion, in terms of directional control valves, actuating cylinders, fluid motors, air turbines, and turbine governors. Also included are studies of fluidics, trouble shooting, hydraulic power drive, electrohydraulic steering, and missile and aircraft fluid power systems. Illustrations for explanation use and a glossary of general terms are included in the appendix. (CC) IDLE AV Agile 4'Aly , _ - , 141 ye ,,- I -,, FLUID POWER BUREAU OF OF NAVAL PERSONNEL .1% RATE TRAINING MANUAL NAVPERS 16,1937B PREFACE Fluid Power is written for personnel of the Navy and Naval Reserve whose duties and responsibilities require them to have a knowledge of the fundamentals of hydraulics and pneumatics. The subject matter covers a broad area of the Qualifications for Advancement, NavPers 18068 ISeries), which is common to several rates and ratings. Combined with the necessary practical experience, this training manual will assist nonrated men in preparing for advancement to Petty Officer Third Class in the, specific ratings requiring a knowledge of fluid power. This training manual should also be valuable as a review and reference source for personnel of more senior rates. This basic Rate Training Manual was prepared by the Navy Training Publications Center, NAS Memphis, Millington, Tennessee, for the Bureau of Naval Personnel. Credit is given to the Naval Air Technical Training Center, located at NAS Memphis, Millington, Tennessee, the Naval Ex7 amining Center, Great Lakes, Illinois,and the Naval Air Systems Command for technical reviews. First Edition - 1966 Reprinted - 1969 1970 Edition Stock Ordering No. 0500-393-0110 THE UNITED STATES NAVY GUARDIAN OF OUR COUNTRY The United States Navy is responsible for maintaining control of the sea and is a ready force on watch at home and overseas, capable of strong action to preserve the peace or of instant offensive action to win in war. It is upon the maintenance of this control that our country's glorious future depends; the United States Navy exists to make it so. WE SERVE WITH HONOR Tradition, valor, and victory are the Navy's heritage from the past. To these may be added dedication, discipline, and vigilance as the watchwords of the present and the future. At home or on distant stations we serve with pride, confident in the respect of our country, our shipmates, and our families. Our responsibilities sober us; our adversities strengthen us. Service to God and Country is our special privilege. We serve with honor. THE FUTURE OF THE NAVY The Navy will always employ new weapons, new techniques, and greater power to protect and defend the United States on the sea, under the sea, and in the air. Now and in the future, control of the sea gives the United States her greatest advantage for the maintenance of peace and for victory in war. Mobility, surprise, dispersal, and offensive power are the keynotes of the new Navy.The roots of the Navy lie in a strong belief in the future, in continued dedication to our tasks, and in reflection on our heritage from the past. Never have our opportunities and our responsibilities been greater. 4 CONTENTS Chapter Page 1. History and development 1 2. Physics of fluids 5 3. Hydraulic and pneumatic fluids 37 4. Basic systems and circuit diagrams 49 5. Fluid lines and connectors 67 6. Sealing devices and materials 86 7. Reservoirs, strainers, filters, and accumulators 98 8. Pumps and compressors 120 9. Control and measurement of flow 153 10. Measurement and control of pressure 171 11. Directional control valves 198 12. Actuators 216 1 13. Hydraulic and pneumatic systems 234 14. Fluidics 261 Appendix I. Glossary 288 Index 295 CHAPTER 1 HISTORY AND DEVELOPMENT Fluid Power, Nav Pers 16193-B, presents Ships Systems Command, Naval Air Systems many of the fundamental concepts in the fields Command, etc. of hydraulics and pneumatics. This maralal is intended as a basic reference for all personnel 3. Maintenance Requirements Cards of the Navy whose duties and responsibilities (MRC' 8). require them to have a knowledge of the fundam- 4. Military Standards and Specifications. entals of fluid power. Consequently, emphasis is placed primarily on the theory of operation of 5. Instructions and Notices. typical fluid power systems and components that have applications in naval equipments.Many FLUID POWER applications of fluid power are presented in this manual to illustrate the functions and operation Fluid power is a relatively new term which of different systems and components. However, was established to include the generation, con- these are only representative of the many appli- trol, and application of smooth, effective power cations of fluid power in naval equipments. Indi- of pumped or compressed fluids (either liquids vidual rate training manuals should be consulted or gases) when this power is used to provide for information concerning the application of force and motion to mechanisms. This force fluid power to specific equipments for which and motion may be in the form of pushing, pul- each rating is responsible. ling, rotating, regulating, or driving. Fluid power includes hydraulics, which involves liquids, and In addition, the examples of systems and com- pneumatics, which involves gases. Liquids and ponents presented in this manual are used to gases are similar in many respects and there- illustrate the functions and operation of certain fore are described as fluids in most sections of types. Since there are many different manufac- this manual. The differences are pointed out in I turers of fluid power systems and components, the appropriate areas. In these areas they are each type presented may represent several dif- treated separately as liquids and gases, or as ferent models or designs. Therefore, this manual in the following sections, as hydraulics and is not intended for use in the maintenance and pneumatics. repair of specific equipments. Applicable tech- nical publications and technical instructions HYDRAULICS should be used for this purpose. These terms, applicable technical publications and applicable The word hydraulics is a derivative of the technical instructions, are frequently referred Greek words hydro (meaning water) and aulis to in this manual. They include such documents (meaning tube or pipe). Originally, the science as the following. of hydraulics covered the physical behavior of 1. Certain chapters of the Naval Ships water at rest and in motion. This dates back Technical Manual. several thousand years ago when water wheels, dams, and sluice gates were first used to con- 2. Operation, maintenance, repair, over- trol the flow of water for domestic use and haul, and parts manuals, which are provided by irrigation. Use has broadened its meaning to the manufacturer of the component, system, include the physical behavior of all liquids. This and/or equipment. These manuals are usually includes that area of hydraulics in which confined approved by the appropriate command Naval liquids are used under controlled pressure to do 1 FLUID POWER work.This area of hydraulics, sometimes re- as the other, and if each is supplied with a piston ferred to as "power hydraulics," is discussed that 'fitsit exactly,' then a man pushing the in this manual. small piston will exert a force that will equi- librate (balance) that of one hundred men pushing . Hydraulics can be defined as that engineering science which pertains to liquid pressure and the large piston and will overcome that of ninety- flow. This science includes, for example, the nine men."(This is the basic principle of hy- manner in which liquids act in tanks and pipes, diarlics and is covered in detail in chapter 2.) dealing with their properties and with ways of For Pascal's law to be made effective for utilizing these properties. It includes the laws of practical applications, it was necessary to have floating bodies and the behavior of liquids on sub- a piston that "fit exactly." It was not until the merged surfaces. It treats the flow of liquids latter mat of the 18th century that methods were under various conditions, and ways of directing fonrol to make these snugly fitted parts required this flow to useful ends, as well as many other in hydraulic systems. This was accomplished by related subjects. the invention of machines which were used to There are several other terms which are cut and shape the necessary closely fitted parts sometimes used to more precisely describe the and, particularly, by the development of gaskets behavior of liquids at rest and in motion. These and packings. Since that time, such components termsaregenerallyconsideredseparate as valves,pumps,actuating cylinders, and branches of science and include: hydrostatics, motors have been developed and refined to make that branch of science pertaining to the energy hydraulics one of the leading methods of trans- of liquids at rest; hydrodynamics, the branch of mitting power.
Recommended publications
  • A Review of Biological Fluid Power Systems and Their Potential Bionic Applications
    The University of Manchester Research A review of biological fluid power systems and their potential bionic applications DOI: 10.1007/s42235-019-0031-6 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Liu, C., Wang, Y., Ren, L., & Ren, L. (2019). A review of biological fluid power systems and their potential bionic applications. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-019-0031-6 Published in: Journal of Bionic Engineering Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 A review of biological fluid power systems and their potential bionic applications Chunbao Liu1,2, Yingjie Wang 1,2, Luquan Ren 2, Lei Ren2,3 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China 2 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 3 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Abstract Nature has always inspired human achievements in industry, and biomimetics is increasingly being applied in fluid power technology.
    [Show full text]
  • Jennings: Two-Stroke Tuner's Handbook
    Two-Stroke TUNER’S HANDBOOK By Gordon Jennings Illustrations by the author Copyright © 1973 by Gordon Jennings Compiled for reprint © 2007 by Ken i PREFACE Many years have passed since Gordon Jennings first published this manual. Its 2007 and although there have been huge technological changes the basics are still the basics. There is a huge interest in vintage snowmobiles and their “simple” two stroke power plants of yesteryear. There is a wealth of knowledge contained in this manual. Let’s journey back to 1973 and read the book that was the two stroke bible of that era. Decades have passed since I hung around with John and Jim. John and I worked for the same corporation and I found a 500 triple Kawasaki for him at a reasonable price. He converted it into a drag bike, modified the engine completely and added mikuni carbs and tuned pipes. John borrowed Jim’s copy of the ‘Two Stoke Tuner’s Handbook” and used it and tips from “Fast by Gast” to create one fast bike. John kept his 500 until he retired and moved to the coast in 2005. The whereabouts of Wild Jim, his 750 Kawasaki drag bike and the only copy of ‘Two Stoke Tuner’s Handbook” that I have ever seen is a complete mystery. I recently acquired a 1980 Polaris TXL and am digging into the inner workings of the engine. I wanted a copy of this manual but wasn’t willing to wait for a copy to show up on EBay. Happily, a search of the internet finally hit on a Word version of the manual.
    [Show full text]
  • Fluent in French
    Fluent in French A Band Director’s Guide to Understanding and Teaching the French Horn Practical Application Project #1 MUSI 6285 Jonathan Bletscher 2 Table of Contents Introduction 4 Part One: Understanding the Horn 5 Horn History 5 Rotary Valves and Anatomy of the Horn 8 - Common Rotary Valve Problems 12 - Disassembling and Reassembling a Rotary Valve 14 - Replacing Rotary Valve String 21 Horn in F and Horn in Bb: Transposing Instruments 26 The Seven Chromatic Brass Fingerings 28 The Overtone Series 30 7 Fingerings, 7 Fundamentals, and 7 Series: Filling in the Gaps 35 The Partial Grouping Method 37 Horn Fingering Tricks 41 Trouble Fitting In: Why Horns Aren’t Like Everyone Else (In the Brass Family) 45 Part Two: Teaching the Horn 47 Picking Your Horn Players 47 Equipping for Success 48 Posture and Holding the Horn 49 Making a Sound on the Horn 53 Common Problems with Horn Embouchure 56 Horn Fingerings 58 Instrument Maintenance 61 Developing as a Horn Player 63 Teaching Strategies 67 More to Learn 70 About the Author 71 Bibliography 72 3 Introduction Consider a student who is about to begin the very frst day of learning a foreign language. The student is pre- sented with very basic vocabulary, is led to dabble in speaking and writing, and very slowly begins absorbing the sound, feel, and structure of the language. This is not unlike the experience of a student learning his or her frst instrument. This slow and steady approach is designed to be the frst step in a years-long sequence of instruction and study for a student who is brand new to the subject.
    [Show full text]
  • What Is Hydraulic and Pneumatic System
    Module-01 : INTRODUCTION TO HYDRAULIC AND PNEUMATIC SYSTEMS Lecture-01 : What is Hydraulic and Pneumatic System: Fluid power systems use fluids to transmit power and motion. Both liquids and gases are called fluids. Hence both these types of fluids are used in fluid power technology. Under liquids mostly mineral oil with suitable additives are used instead of plain water - (which, however, is used also in some cases) and under gases usually atmospheric air is used after cleaning it suitably. However, synthetic fluids with additives and other gasses are also used for specific purposes, such as fire resistance or the fluid itself is the product- milk as an example. That is the state of art behind these two modern technologies of industrial oil-hydraulics and pneumatics. Fluid power technology actually has a long history behind it. From early days of civilization mankind could feel the existence of power in the water currents of rivers and streams, in ocean waves and in the flowing breeze and in the turbulent storms. Early men could even harness some of these natural sources of energy. Wind energy, for example, was utilized in sailing boats and water current to drive water wheels. Hydroelectric power generation still uses the same idea, of course now-a- days in a much more efficient way. Fluid power technology in its earliest forms mostly took advantage of the motion of fluids or scientifically speaking of its kinetic energy. But the present day oil hydraulics mostly depends on the pressure-energy of the fluids rather than its velocity and in some cases it is even called as hydrostatic transmission of power.
    [Show full text]
  • Design, Manufacture and Simulate a Hydraulic Bending Press
    Int. J. Mech. Eng. & Rob. Res. 2013 Manar Abd Elhakim Eltantawie, 2013 ISSN 2278 – 0149 www.ijmerr.com Vol. 2, No. 1, January 2013 © 2013 IJMERR. All Rights Reserved Research Paper DESIGN, MANUFACTURE AND SIMULATE A HYDRAULIC BENDING PRESS Manar Abd Elhakim Eltantawie1* *Corresponding Author: Manar Abd Elhakim Eltantawie, [email protected] A small hydraulic press for V-bending operation is designed, manufactured and modeled. The hydraulic bending press consists of hydraulic circuit, punch, die and PLC control unit. Automation studio and SimHydraulic in Matlab/Simulink library are used to model the hydraulic circuit. Using PLC program, the bending operation is controlled. The press had to be capable of withstanding 2 tons of force. The punch and dies are designed to be rigidly fixed and easily removable, changeable to any kind of forming operation with decreasing of spring back effect of the sheet metal. Keywords: Hydraulic circuit, Bending press, SimHydraulic, Spring-back, PLC INTRODUCTION Hydraulic bending press has many Bending is a metal forming process in which advantages over other type of press, (1) It a force is applied to a piece of sheet metal may cost less than an equivalent mechanical causing bending of it to an angle and forming press. (2) Its production rate is equal to the the desired shape. Bending is typically mechanical press in a small lot of production, performed on a machine called a press brake where hand feeding and single stroking which can be manually or automatically occur. (3) In addition, the die shut heights operated. A press brake contains an upper tool variation do not change the force applied.
    [Show full text]
  • Fluid Power Lab
    Revision 3.0 Fluid Power Lab Name: ___________________________ Set: ____________ Date: ___________ What’s inside? This lab will provide you with experiences with and an understanding of: • Hydraulic Systems • Kinetic and Potential Energy • Pneumatic Systems • Mechanical Advantage • Cylinders • Friction • Pascals Law • Viscosity • Liquids and Gasses • Work ™ • Pressure Copyright © TeacherGeek 2008 Fluid Power Lab ™ Page 2 Fluid Power Fluid power is an area of technology dealing with the generation, control and transmission of pressurized fluids. A fluid can be a gas or a liquid. Pneumatics Hydraulics Pneumatic systems use Compressor Hydraulic systems use a liquid a gas to transmit and (Pump) to transmit power. store power. Pneumatic Hydraulic Hydraulic Pump, Nail Gun Cylinder Reservoir and Controls Hydraulics make heavy equipment incredibility powerful. Hose (Pipeline) Tank to Store Compressed Air Pneumatic Devices 1. List 2 devices that use pneumatics for operation. Describe how they use pneumatics. Device How does it use pneumatics? Hydraulic Devices 2. List 2 devices that use hydraulics for operation. Describe how they use hydraulics. Device How does it use hydraulics? Copyright © TeacherGeek 2008 Fluid Power Lab ™ Page 3 Cylinders Cylinders transform pressure and fluid flow into mechanical force. Anatomy of a Cylinder Fluid Port Fluid Port Chambers A and B are sealed, Piston Piston Rod Mount so fluid can only enter or exit through the ports. Pressure in a A B chamber creates a force on the Piston and rod piston. slide in cylinder Cylinder Double-Acting Cylinders Most cylinders are double-acting. Double acting cylinders allow pressurized fluid to flow on either side of the piston, allowing it to be powered in both directions.
    [Show full text]
  • Bishop Rotary Valve Engine
    Advanced Engine Technology The Bishop Rotary Valve by Tony Wallis, Bishop Innovation To demonstrate the credibility of Bishop Innovation’s new rotary valve technology it joined forces with Mercedes-Ilmor to develop the technology for use on their V10 Formula One engine only to have its strategy destroyed by a change in engine regulations. 10% power By the early 1990s Bishop Inno- offered by the rotary valve. Fur- ney Australia. Bishop was respon- advantage vation had completed the initial ther, a successful public demon- sible for the cylinder head design, and improved development of its promising new stration of this technology in the development and demonstration durability rotary valve concept for IC en- extreme operating conditions of of the required durability and per- gines and was looking for a way F1 provided a mechanism to ad- formance. By late 2000 back to to further develop the technology. dress the industry’s prejudice. back testing with the poppet valve The automotive industry, having In 1997 Bishop started work- single cylinder engine demon- observed a succession of failed at- ing with Ilmor Engineering (later strated a 10% power advantage tempts spanning the last century, Mercedes-Ilmor) to develop their and improved durability. In 2002 no longer believed the rotary rotary valve technology for F1 the first V10 engines using this valve concept was mechanically engines. The initial development technology were built and tested viable. It chose Formula One (F1), was carried out on 300cc single exhaustively. A completely new as the criteria for success was well cylinder bottom ends supplied by V10 engine was designed and matched to inherent advantages Ilmor at Bishop’s premises in Syd- manufactured in 2003.
    [Show full text]
  • Introduction to Fluid Power
    This sample chapter is for review purposes only. Copyright © The Goodheart-Willcox Co., Inc. All rights reserved. Chapter 1 Introduction to Fluid Power The Fluid Power Field Since the beginning of time, long before written history, humankind has searched for ways to conveniently transmit energy from its source to where it is needed and then convert the energy into a useful form to do work. This chapter introduces the fluid power field as an approach that provides an effective means of transferring, controlling, and converting energy. Selected Key Terms Internet Resources The following names and terms will be used in www.ideafi nder.com/history/inventors/watt.htm Objectives this chapter. As you read the text, record the mean- The Great Idea Finder After completing this chapter, you will be able to: ing and importance of each. Additionally, you may Provides information on James Watt and other inventors ■ use other sources, such as manufacturer literature, who made major contributions to industrial development Define the terms fluid power, hydraulic system, and pneumatic system. during the Industrial Revolution. ■ an encyclopedia, or the Internet, to obtain more Explain the extent of fluid power use in current society and provide information. www.island-of-freedom.com/pascal.htm several specific examples. actuator Island of Freedom ■ List the advantages and disadvantages of fluid power systems. Archimedes Provides details of the contributions of Blaise Pascal and others to science, mathematics, and philosophy. ■ Discuss scientific discoveries and applications important to the historical Bernoulli, Daniel www.nfpa.com development of the fluid power industry. Boyle, Robert Bramah, Joseph National Fluid Power Association Charles, Jacques A good overall review of the basic aspects of fluid power systems.
    [Show full text]
  • What Hetman Do I Need?
    What Hetman Do I Need? French Horn Trumpet Trombone Tuba Euphonium Baritone #1 Light Piston Schmidt-wrap piston valves* piston valves* piston valves* piston valves* piston valves with little wear horns* #2 Piston Schmidt-wrap piston valves piston valves piston valves piston valves piston valves with some wear horns #3 Classic Piston Schmidt-wrap piston valves piston valves piston valves piston valves piston valves with significant wear horns #4 Light Slide Oil 1st and 3rd slides with little wear valve slide #5 Slide Oil 1st and 3rd slides with some wear valve slide #6 Heavy Slide Oil 1st and 3rd slides with significant wear valve slide #6.5 Light Slide Gel tuning slides tuning slides tuning slides tuning slides tuning slides tuning slides slides with little wear #7 Slide Gel tuning slides tuning slides tuning slides tuning slides tuning slides tuning slides slides with some wear #8 Premium Slide Grease tuning slides tuning slides tuning slides tuning slides tuning slides tuning slides slides with significant wear #9 Ultra Slide Grease vintage horns with corroded slide tuning slides tuning slides tuning slides tuning slides tuning slides tuning slides tubes that might split or crack * #1 can be used instead of #11 or #12 in brand-new rotary valves with extremely tight clearances. French Horn Trumpet Trombone Tuba Euphonium Baritone #11 Light Rotor Oil rotary valves rotary valves rotary valves rotary valves rotary valves with little wear #12 Rotor Oil rotary valves rotary valves rotary valves rotary valves rotary valves with some wear #13
    [Show full text]
  • ENRESO WORLD - Ilab
    ENRESO WORLD - ILab Different Car Engine Types Istas René Graduated in Automotive Technologies 1-1-2019 1 4 - STROKE ENGINE A four-stroke (also four-cycle) engine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed: 1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston. 2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage. 3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. (the end of the compression stroke) the compressed air-fuel mixture is ignited by a spark plug (in a gasoline engine) or by heat generated by high compression (diesel engines), forcefully returning the piston to B.D.C.
    [Show full text]
  • Lecture 1 INTRODUCTION to HYDRAULICS and PNEUMATICS
    Lecture 1 INTRODUCTION TO HYDRAULICS AND PNEUMATICS Learning Objectives Upon completion of this chapter, the student should be able to: Explain the meaning of fluid power. List the various applications of fluid power. Differentiate between fluid power and transport systems. List the advantages and disadvantages of fluid power. Explain the industrial applications of fluid power. List the basic components of the fluid power. List the basic components of the pneumatic systems. Differentiate between electrical, pneumatic and fluid power systems. Appreciate the future of fluid power in India. 1.1 Introduction In the industry we use three methods for transmitting power from one point to another. Mechanical transmission is through shafts, gears, chains, belts, etc. Electrical transmission is through wires, transformers, etc. Fluid power is through liquids or gas in a confined space. In this chapter, we shall discuss a structure of hydraulic systems and pneumatic systems. We will also discuss the advantages and disadvantages and compare hydraulic, pneumatic, electrical and mechanical systems. 1.2 Fluid Power and Its Scope Fluid power is the technology that deals with the generation, control and transmission of forces and movement of mechanical element or system with the use of pressurized fluids in a confined system. Both liquids and gases are considered fluids. Fluid power system includes a hydraulic system (hydra meaning water in Greek) and a pneumatic system (pneuma meaning air in Greek). Oil hydraulic employs pressurized liquid petroleum oils and synthetic oils, and pneumatic employs compressed air that is released to the atmosphere after performing the work. Perhaps it would be in order that we clarify our thinking on one point.
    [Show full text]
  • 2018 Annual Report on the US Fluid Power Industry
    a 2018 ANNUAL REPORT ON THE U.S. FLUID POWER INDUSTRY Foreword Welcome to our sixth annual report on the U.S. fluid power industry—one of the most important yet least understood industries in the U.S. economy. Most people do not know that: • Fluid power (hydraulics and pneumatics) is a workhorse across the U.S. economy, the technology of choice for dozens of industries and hundreds of applications. • In 2018, the manufacture of fluid power components was a $23.5 billion industry in the United States. It was also competitive worldwide, with 2018 exports valued at $6.5 billion. Fluid power systems transmit more power • It is estimated that 862 companies in the United States employ more than 67,149 people in the manufacture of fluid power components, representing an annual payroll of more than $4.3 billion. in a smaller space than other forms of power • Fluid power has a major downstream economic impact. Ten key industries that depend on fluid power include an estimated 23,200 companies in the United States, employing more than 778,056 people for an annual transmission, making fluid power payroll of more than $49.5 billion. • Fluid power and the industries it serves depend on a highly educated workforce, leading to investment in new the technology of choice across dozens fluid power education and training resources. More two-year and four-year colleges are teaching fluid power. of industries and hundreds of applications. • Fluid power systems consume a major portion of our nation’s energy. Existing technologies and best practices have been shown to reduce energy use in some fluid power systems by 30% or more.
    [Show full text]