Highly Variable Species Distribution Models in a Subarctic Stream

Total Page:16

File Type:pdf, Size:1020Kb

Highly Variable Species Distribution Models in a Subarctic Stream 1 Highly variable species distribution models in a subarctic stream 2 metacommunity: patterns, mechanisms and implications 3 4 Guillermo de Mendoza1,2,*, Riikka Kaivosoja3, Mira Grönroos4, Jan Hjort3, Jari Ilmonen5, 5 Olli-Matti Kärnä3, Lauri Paasivirta6, Laura Tokola3 & Jani Heino7 6 7 1Centre for Advanced Studies of Blanes, Spanish National Research Council (CEAB-CSIC), 8 Accés a la Cala St. Francesc 14, ES-17300 Blanes, Spain. 9 2Laboratoire GEODE, UMR 5602 CNRS, Université Toulouse-Jean Jaurès, 5 allées Antonio 10 Machado, FR-31058 Toulouse, France. 11 3University of Oulu, Geography Research Unit, P.O. Box 3000, FI-90014 Oulu, Finland. 12 4University of Helsinki, Department of Environmental Sciences, Section of Environmental 13 Ecology, Niemenkatu 73, FI-15140 Lahti, Finland. 14 5Metsähallitus, Natural Heritage Services, P.O. Box 94, FI-01301 Vantaa, Finland. 15 6Ruuhikoskenkatu 17, FI-24240 Salo, Finland. 16 7Finnish Environment Institute, Natural Environment Centre, Biodiversity, Paavo Havaksen 17 Tie 3, FI-90570 Oulu, Finland. 18 * Corresponding author: [email protected] 19 20 Summary 21 1. Metacommunity theory focuses on assembly patterns in ecological communities, 22 originally exemplified through four different, yet non-exclusive, perspectives: patch 23 dynamics, species sorting, source-sink dynamics, and neutral theory. More recently, three 24 exclusive components have been proposed to describe a different metacommunity 25 framework: habitat heterogeneity, species equivalence, and dispersal. Here, we aim at 26 evaluating the insect metacommunity of a subarctic stream network under these two 27 different frameworks. 28 2. We first modelled the presence/absence of 47 stream insects in northernmost Finland 29 using binomial generalised linear models (GLMs). The deviance explained by pure local 30 environmental (E), spatial (S), and climatic variables (C) was then analysed across 31 species using beta regression. In this comparative analysis, site occupancy, as well as 32 taxonomic and biological trait vectors obtained from principal coordinate analysis, were 33 used as predictor variables. 34 3. Single-species distributions were better explained by in-stream environmental and spatial 35 factors than by climatic forcing, but in a highly variable fashion. This variability was 36 difficult to relate to the taxonomic relatedness among species or their biological trait 37 similarity. Site occupancy, however, was related to model performance of the binomial 38 GLMs based on spatial effects: as populations are likely to be better connected for 39 common species due to their near ubiquity, spatial factors may also explain better their 40 distributions. 41 4. According to the classical four-perspective framework, the observation of both 42 environmental and spatial effects suggests a role for either mass effects or species sorting 43 constrained by dispersal limitation, or both. Taxonomic and biological traits, including 44 the different dispersal capability of species, were scarcely important, which undermines 45 the patch dynamics perspective, based on differences in dispersal ability between species. 46 The highly variable performance of models makes the reliance on an entirely neutral 47 framework unrealistic as well. According to the three-component framework, our results 48 suggest that the stream insect metacommunity is shaped by the effect of habitat 49 heterogeneity (supporting both species-sorting and mass effects), rather than species 50 equivalence or dispersal limitation. 51 5. While the relative importance of the source-sink dynamics perspective or the species- 52 sorting paradigm cannot be deciphered with the data at our disposal, we can conclude that 53 habitat heterogeneity is an important driver shaping species distributions and insect 54 assemblages in subarctic stream metacommunities. These results exemplify that the use of 55 the three-component metacommunity framework may be more useful than the classical 56 four perspective paradigm in analysing metacommunities. Our findings also provide 57 support for conservation strategies based on the preservation of heterogeneous habitats in 58 a metacommunity context. 59 60 Key-words 61 beta regression, comparative analysis, insects, metacommunity theory, single-species 62 distribution models, stream macroinvertebrates, subarctic streams. 63 64 Introduction 65 Metacommunity theory predicts the assembly of ecological communities according to 66 different perspectives. Originally, this idea was illustrated by Leibold et al. (2004) in the form 67 of four metacommunity perspectives: (1) patch dynamics, which is based on a resource 68 competition-colonisation trade-off among species, thus taking into account species’ dispersal 69 potential (Hanski, 1994); (2) species-sorting along environmental gradients, which relies on 70 differences in environmental tolerance among species (Leibold, 1995); (3) mass effects or 71 source-sink dynamics, whereby species may survive in poor-quality habitats owing to 72 constant immigration from the source populations in high quality habitats (Pulliam 1988); 73 and (4) the neutral theory, where demographic stochasticity solely explains assembly patterns 74 (Hubbell, 2001). Deciphering which of these perspectives is more suitable in the context of 75 metacommunity analysis seems difficult and may well depend on the context of analysis (e.g. 76 spatial extent, biogeographic region, ecosystem type and more; Heino et al., 2015). 77 Nevertheless, the examples of metacommunity perspectives depicted in Leibold et al. 78 (2004) are not mutually exclusive, and represent a fraction of possibilities which can be 79 expanded with the inclusion of species dispersal rates, connectivity, species interactions, 80 disturbance, priority effects, rapid local adaptation, meta-ecosystem dynamics and more 81 (Brown, Sokol, Skelton, & Tornwall, 2017; Logue, Mouquet, Peter, & Hillebrand, 2011). The 82 more recent proposal by Logue et al. (2011) claims that the metacommunity concept is better 83 generalised by three major exclusive components, which decompose the metacommunity 84 framework into (1) environmental heterogeneity, whereby habitat patches differ in 85 environmental attributes; (2) species equivalence, in terms of niche characteristics; and (3) 86 dispersal, referred to as the rate of dispersal among patches. Here, we aim at evaluating 87 species distributions in a subarctic stream insect metacommunity under these two different 88 frameworks (i.e., Leibold et al., 2004 versus Logue et al., 2011), specifically so as to evaluate 89 which of the two is more adequate for the interpretation of our observations. 90 Species distribution models have previously been used to predict community-level 91 properties such as biodiversity (Ferrier & Guisan, 2006). Their accuracy in predicting 92 community-level properties appears to be higher than that of community assembly models, 93 although at a high cost in terms of model complexity (Bonthoux, Baselga, & Balent, 2013, 94 Chapman & Purse, 2011). The accuracy of single-species distribution modelling, however, 95 may also be advantageous to test ecological theories about community assembly mechanisms. 96 This is because accurately modelling the distribution of single species, one at a time, provides 97 the opportunity to proceed with a subsequent comparative analysis across species. Using a 98 comparative analysis, the variation in model performance can be related, for example, to 99 species traits and potential phylogenetic constraints. 100 Stream insect species, in particular, are highly suitable to decipher community 101 assembly processes through the comparative analysis of single-species distribution models 102 (Heino & de Mendoza, 2016). This is because of the high variability among species in 103 tolerance of environmental conditions, as well as resource exploitation, dispersal capability, 104 and habit traits (Merritt & Cummins, 1996; Tachet, Richoux, Bournaud, & Usseglio-Polatera, 105 2010; Schmidt-Kloiber & Hering, 2015; Serra, Cobo, Graça, Dolédec, & Feio, 2016). This 106 variability is valuable in evaluating which community assembly mechanism dominates in 107 each particular context of analysis. Basically, such an analysis might shed light into the 108 relevance of environmental variables, spatial variables, and dispersal capability of species on 109 model performance. Subsequently, this information can be used as an indicator of the 110 preponderance of one community assembly mechanism over another (Figure 1). For example, 111 if many species show similar spatial patterns, and if these species share the same dispersal 112 potential, we can presume that the ability to disperse may be underlying the observed general 113 pattern for these species. This would give us hints about the adequacy to consider one 114 particular metacommunity theory perspective over the others. Within the classical four- 115 perspective framework (Leibold et al., 2004), patch dynamics would likely be suitable in this 116 case, as this perspective relies on the different capability of species to both disperse and 117 exploit resources. Within the metacommunity framework based on three exclusive 118 components (Logue et al., 2011), dispersal would be main driver in this case. Moreover, 119 stream insects are also a diverse group of species, which belong to different insect orders and 120 vary widely in physiological and morphological adaptations (Merritt & Cummins, 1996). 121 Thus, modelling the distribution
Recommended publications
  • Description of the Larva of Philopotamus Achemenus Schmid 1959 (Trichoptera: Philopotamidae) and a Larval Key for Species of Philopotamus in Greece
    Zootaxa 3815 (3): 428–434 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3815.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:7F045CE9-D24B-4AB8-ACA1-234C380A6FCE Description of the larva of Philopotamus achemenus Schmid 1959 (Trichoptera: Philopotamidae) and a larval key for species of Philopotamus in Greece IOANNIS KARAOUZAS Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7km Athens-Sounio Av., Anavis- sos 19013, Greece. E-mail: [email protected]; Phone number: +30 22910 76391; Fax: +30 22910 76419 Abstract The larva of Philopotamus achemenus is described for the first time. The diagnostic features of the species are described and illustrated and some information regarding its ecology and world distribution is included. Furthermore, its morpho- logical characters are compared and contrasted in an identification key for larvae of the Greek species of Philopotamus. Key words: Caddisfly, taxonomy, identification, larva, distribution Introduction The family Philopotamidae in Greece is represented by the genera Chimarra Stephens 1829, Philopotamus Stephens 1829, and Wormaldia McLachlan 1865. The genus Philopotamus in Greece is represented by 3 species (Malicky 1993, 2005): P. montanus (Donovan 1813), P. variegatus (Scopoli 1763) and P. achemenus Schmid 1959. Philopotamus montanus is commonly distributed throughout Europe, extending to northwestern Russia (Malicky 1974, 2004; Pitsch 1987), while P. variegatus is widely distributed in central and southern Europe and the Anatolian Peninsula (Gonzalez et al. 1992; Sipahiler & Malicky 1987; Sipahiler 2012). Both species can be found in Greek mountainous running waters and their distribution extends throughout the country, including several islands (i.e., Euboea, Crete, Samos; Malicky 2005).
    [Show full text]
  • New Species and Records of Balkan Trichoptera III
    097_132_Balkan_Trichoptera_III_Olah.qxd 1/29/2015 12:22 PM Page 97 FOLIA HISTORICO-NATURALIA MUSEI MATRAENSIS 2014 38: 97–131 New species and records of Balkan Trichoptera III. JÁNOS OLÁH & TIBOR KOVÁCS ABSTRACT: We report 113 caddisfly species from Albania, Bosnia & Herzegovina, Bulgaria, Croatia, Greece, Macedonia, Montenegro, Serbia, and Slovenia. Ten new species are described: Wormaldia busa Oláh sp. n., W. daga Oláh sp. n., W. graeca Oláh sp. n., W. homora Oláh sp. n., Tinodes karpathos Oláh sp. n., Hydropsyche sarnas Oláh sp. n., Annitella jablanicensis Oláh sp. n., Allogamus zugor Oláh sp. n., Potamophylax alsos Oláh sp. n., and Beraea gurba Oláh sp. n. Two unknown females are described: Potamophylax kesken Oláh, 2012, and P. tagas Oláh et Kovács, 2012. The Potamophylax tagas species cluster is revised by fine structure analysis of the cluster divergence, including cluster history, probable speciation, divergence between sibling pairs, as well as gonopod, paramer, aedeagus, and vaginal sclerite divergences. Introduction Data and information on the Balkan Trichoptera, especially from Albania, Macedonia Monte- negro and Serbia is still very limited in spite of the very high diversity in these countries. High elevation habitats in several mountain ranges are significant endemic hotspots. Our annual field work, although very limited, is producing every year new distributional data and new species (OLÁH 2010, 2011; OLÁH & KOVÁCS 2012a,b, 2013; OLÁH et al. 2012, 2013a,b, 2014). Both spring and autumnal collecting trips were financed by The Sakertour Eastern Europe, the Birdwatching and Hide Photography Company of the Carpathian Basin and Danube Delta. We have applied the collecting, processing, clearing, cleaning and drawing methods described by OLÁH (2011).
    [Show full text]
  • Trichoptera) from Finnmark, Northern Norway
    © Norwegian Journal of Entomology. 5 December 2012 Caddisflies (Trichoptera) from Finnmark, northern Norway TROND ANDERSEN & LINN KATRINE HAGENLUND Andersen, T. & Hagenlund, L.K. 2012. Caddisflies (Trichoptera) from Finnmark, northern Norway. Norwegian Journal of Entomology 59, 133–154. Records of 108 species of Trichoptera from Finnmark, northern Norway, are presented based partly on material collected in 2010 and partly on older material housed in the entomological collection at the University Museum of Bergen. Rhyacophila obliterata McLachlan, 1863, must be regarded as new to Norway and Rhyacophila fasciata Hagen, 1859; Glossosoma nylanderi McLachlan, 1879; Agapetus ochripes Curtis, 1834; Agraylea cognatella McLachlan, 1880; Ithytrichia lamellaris Eaton, 1873; Oxyethira falcata Morton, 1893; O. sagittifera Ris, 1897; Wormaldia subnigra McLachlan, 1865; Hydropsyche newae Kolenati, 1858; H. saxonica McLachlan, 1884; Brachycentrus subnubilis Curtis, 1834; Apatania auricula (Forsslund, 1930); A. dalecarlica Forsslund, 1934; Annitella obscurata (McLachlan, 1876); Limnephilus decipiens (Kolenati, 1848); L. externus Hagen, 1865; L. femoratus (Zetterstedt, 1840); L. politus McLachlan, 1865; L. sparsus Curtis, 1834; L. stigma Curtis, 1834; L. subnitidus McLachlan, 1875; L. vittatus (Fabricius, 1798); Phacopteryx brevipennis (Curtis, 1834); Halesus tesselatus (Rambur, 1842); Stenophylax sequax (McLachlan, 1875); Beraea pullata (Curtis, 1834); Beraeodes minutus (Linnaeus, 1761); Athripsodes commutatus (Rostock, 1874); Ceraclea fulva (Rambur,
    [Show full text]
  • Ref: SCBD /ITS/DC/MC/54802, Letter from SCBD 24Th of May 2006
    Memorandum 27 November 2006 Ministry of Sustainable Development Secretariat of CBD 413 St-Jacques Street West, Suit 800 Division for Natural Resources Montreal, Quebec Senior Adviser Jan Terstad Canada H2Y 1N9 Telephone +46 (0)8 4052079 Fax +46 (0)8 4052079 E-mail [email protected] Information on the Swedish national biodiversity strategies and action plans (ref: SCBD /ITS/DC/MC/54802, letter from SCBD 24 th of May 2006) I have the pleasure to hereby provide the Secretariat with some information on the development, status and implementation of our Swedish strategies and action plans (NBSAP) regarding biodiversity. General background The Swedish government and Parliament have during the years since Sweden in 1994 ratified the Convention on Biological Diversity (CBD) taken decisions at several occasions regarding biodiversity. The earliest decisions after the ratification are the following: - Bill to Parliament 1993/94:30: A Strategy for Biological Diversity (enclosed) - Bills to Parliament in 1996 (1996/97:75) and 1997 (1997/98:2) on action plans for biodiversity. These two Bills were based on four sectoral action plans produced in 1995 by the National Board of Forestry, the Swedish Board of Agriculture, the National Board of Housing, Building and Planning, and the National Board of Fisheries (enclosed), plus an action plan also from 1995 produced by the Swedish Environmental Protection Agency (SEPA) (attached). The biodiversity strategy and action plans from the 90:ies have been, in several but not all parts, superseded by the system of sixteen environmental quality objectives, adopted by Government and Parliament. These objectives express the environmental quality that should be reached within a generation (ca 25 years from 1999).
    [Show full text]
  • Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts
    Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts September 15, 2013 This report is the result of several years of field data collection, analyses and IBI development, and consideration of the opportunities for wetland program and policy development in relation to IBIs and CAPS Index of Ecological Integrity (IEI). Contributors include: University of Massachusetts Amherst Kevin McGarigal, Ethan Plunkett, Joanna Grand, Brad Compton, Theresa Portante, Kasey Rolih, and Scott Jackson Massachusetts Office of Coastal Zone Management Jan Smith, Marc Carullo, and Adrienne Pappal Massachusetts Department of Environmental Protection Lisa Rhodes, Lealdon Langley, and Michael Stroman Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts Abstract The purpose of this study was to develop a fully empirically-based method for developing Indices of Biotic Integrity (IBIs) that does not rely on expert opinion or the arbitrary designation of reference sites and pilot its application in forested wetlands, coastal salt marshes and wadable freshwater streams in Massachusetts. The method we developed involves: 1) using a suite of regression models to estimate the abundance of each taxon across a gradient of stressor levels, 2) using statistical calibration based on the fitted regression models and maximum likelihood methods to predict the value of the stressor metric based on the abundance of the taxon at each site, 3) selecting taxa in a forward stepwise procedure that conditionally improves the concordance between the observed stressor value and the predicted value the most and a stopping rule for selecting taxa based on a conditional alpha derived from comparison to pseudotaxa data, and 4) comparing the coefficient of concordance for the final IBI to the expected distribution derived from randomly permuted data.
    [Show full text]
  • Makrozoobentos Kao Pokazatelj Ekološkog Potencijala Umjetnih Stajaćica
    Makrozoobentos kao pokazatelj ekološkog potencijala umjetnih stajaćica Vučković, Natalija Doctoral thesis / Disertacija 2021 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:251464 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-10-11 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb PRIRODOSLOVNO-MATEMATIČKI FAKULTET BIOLOŠKI ODSJEK Natalija Vučković MAKROZOOBENTOS KAO POKAZATELJ EKOLOŠKOG POTENCIJALA UMJETNIH STAJAĆICA DOKTORSKI RAD Zagreb, 2020 PRIRODOSLOVNO-MATEMATIČKI FAKULTET BIOLOŠKI ODSJEK Natalija Vučković MAKROZOOBENTOS KAO POKAZATELJ EKOLOŠKOG POTENCIJALA UMJETNIH STAJAĆICA DOKTORSKI RAD Mentor: Prof. dr. sc. Zlatko Mihaljević Zagreb, 2020 FACULTY OF SCIENCE DIVISION OF BIOLOGY Natalija Vučković MACROZOOBENTHOS AS AN INDICATOR OF THE ECOLOGICAL POTENTIAL OF CONSTRUCTED LAKE DOCTORAL DISSERTATION Supervisor: Prof. dr. sc. Zlatko Mihaljević Zagreb, 2020 Ovaj je doktorski rad izrađen na Zoologijskom zavodu Prirodoslovno- matematičkog fakulteta, pod vodstvom Prof. dr. sc. Zlatka Mihaljevića, u sklopu Sveučilišnog poslijediplomskog doktorskog studija Biologije pri Biološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu. MENTOR DOKTORSKE DISERTACIJE Prof. dr. sc. Zlatko Mihaljević Rođen je 21. siječnja 1966. godine u Varaždinu. Studij biologije (ekologija), upisuje 1986.
    [Show full text]
  • Analýza Společného Výskytu Vybraných Druhů Pakomárů Ve Vztahu K Parametrům Prostředí
    Masarykova universita Přírodovědecká fakulta Ústav botaniky a zoologie Analýza společného výskytu vybraných druhů pakomárů ve vztahu k parametrům prostředí Diplomová práce 2010 Bc. Iva Martincová školitel: Mgr. Karel Brabec PhD. 1 Obsah Abstrakt……………………………………………………………………………………. .1. 1. Úvod……………………………………………………………………………………. 2. 1.1. Ekologický koncept koexistence taxonů………………………………………….. 2. 1.2. Vazba taxonů na podmínky prostředí………………………………………….... .3. 1.3. Klasifikace společenstev......................................................................................... ..4. 1.4. Nika……………………………………………………………………………….. ..4. 1.5. Zonace toků………………………………………………………………………....5. 1.6. Chironomidae…………………………………………………………………….…6. 2. Materiál……………………………………………………………………………....…..7. 3. Metody……………………………………………………………………………….….11. 4. Výsledky…………………………………………………………………………….….12. 4.1. Klasifikace taxocenóz Chironomidae………………………………………….…12. 4.2. Určení hlavních faktorů distribuce pakomárovitých…………………………....19. 4.3. Autekologické charakteristiky vybraných taxonů…………………………….....21. 4.4. Koexistence v taxocenózách pakomárů..................................................................28. 4.4.1. Použití klasifikačních stromů………………………………………….……28. 4.4.2. Vybrané koexistence ve vztahu k environmentálním faktorům………….....30. 4.5. Index biocenotického regionu………………………………………………….….36. 4.5.1. Index biocenotického regionu ve vztahu k parametrům prostředí…….…….36. 4.5.2. Vztah pakomárovitých k indexu biocenotického regionu…………………...39. 4.5.3. Vztah vybraných taxonů k zonálním
    [Show full text]
  • Bibliographia Trichopterorum
    Entry numbers checked/adjusted: 23/10/12 Bibliographia Trichopterorum Volume 4 1991-2000 (Preliminary) ©Andrew P.Nimmo 106-29 Ave NW, EDMONTON, Alberta, Canada T6J 4H6 e-mail: [email protected] [As at 25/3/14] 2 LITERATURE CITATIONS [*indicates that I have a copy of the paper in question] 0001 Anon. 1993. Studies on the structure and function of river ecosystems of the Far East, 2. Rep. on work supported by Japan Soc. Promot. Sci. 1992. 82 pp. TN. 0002 * . 1994. Gunter Brückerman. 19.12.1960 12.2.1994. Braueria 21:7. [Photo only]. 0003 . 1994. New kind of fly discovered in Man.[itoba]. Eco Briefs, Edmonton Journal. Sept. 4. 0004 . 1997. Caddis biodiversity. Weta 20:40-41. ZRan 134-03000625 & 00002404. 0005 . 1997. Rote Liste gefahrdeter Tiere und Pflanzen des Burgenlandes. BFB-Ber. 87: 1-33. ZRan 135-02001470. 0006 1998. Floods have their benefits. Current Sci., Weekly Reader Corp. 84(1):12. 0007 . 1999. Short reports. Taxa new to Finland, new provincial records and deletions from the fauna of Finland. Ent. Fenn. 10:1-5. ZRan 136-02000496. 0008 . 2000. Entomology report. Sandnats 22(3):10-12, 20. ZRan 137-09000211. 0009 . 2000. Short reports. Ent. Fenn. 11:1-4. ZRan 136-03000823. 0010 * . 2000. Nattsländor - Trichoptera. pp 285-296. In: Rödlistade arter i Sverige 2000. The 2000 Red List of Swedish species. ed. U.Gärdenfors. ArtDatabanken, SLU, Uppsala. ISBN 91 88506 23 1 0011 Aagaard, K., J.O.Solem, T.Nost, & O.Hanssen. 1997. The macrobenthos of the pristine stre- am, Skiftesaa, Haeylandet, Norway. Hydrobiologia 348:81-94.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • ACTA BIANCO 1 2014.Qxp
    ACTA ENTOMO LOGICA SL OVENICA LJUBLJANA, JUNIJ 2018 Vol. 26, øt. 1: 83 –88 FIRST RECORD OF BERAEA PULLATA (CURTIS, 1834) (INSECTA, TRICHOPTERA) FOR ALBANIA Halil IBRAHIMI 1* and Mladen KUČINIĆ 2 1Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina “Hasan Prishtina”, “Mother Teresa” p.n., 10 000 Prishtina, Republic of Kosovo 2 Department of Biology (Laboratory of Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia * Corresponding author [email protected] Abstract - Beraea pullata, a species of the family Beraeidae, is present all over Eu - ropean continent but with only few records from the Balkan Peninsula. We report this species for the first time from Albania, more precisely from Bjeshkët e Nemuna Mountains. Other sympatric species with Beraea pullata in investigated locality are: Rhyacophila fasciata, Philopotamus montanus and Hydropsyche spp. Beraea pullata is the fifth species of the family Beraeidae currently known for Albania. KEY WORDS : Beraeidae ; rare species; aquatic insects; Balkan Peninsula Izvleček – PRVA NAJDBA VRSTE BERAEA PULLATA (CURTIS, 1834) (IN - SECTA, TRICHOPTERA) V ALBANIJI Beraea pullata, vrsta iz družine Beraeidae, je prisotna vsepovsod po evropski celini, a le z malo podatki z balkanskega polotoka. Prvič poročamo o tej vrsti v Albaniji, natančneje v gorovju Bjeshkët e Nemuna. Druge z vrsto Beraea pullata simpatrične vrste na preiskanem najdišču so Rhyacophila fasciata, Philopotamus montanus in Hydropsyche spp. Beraea pullata je peta vrsta družine Beraeidae, znana za Albanijo doslej. KLJUČNE BESEDE : Beraeidae ; redke vrste; vodne žuželke; Balkanski polotok 83 Acta entomologica slovenica, 26 (1), 2018 Introduction The family Beraeidae is a small family composed of 7 genera and more than 50 species.
    [Show full text]
  • THE CHIRONOMIDAE of OTSEGO LAKE with KEYS to the IMMATURE STAGES of the SUBFAMILIES TANYPODINAE and DIAMESINAE (DIPTERA) Joseph
    THE CHIRONOMIDAE OF OTSEGO LAKE WITH KEYS TO THE IMMATURE STAGES OF THE SUBFAMILIES TANYPODINAE AND DIAMESINAE (DIPTERA) Joseph P. Fagnani Willard N. Harman BIOLOGICAL FIELD STATION COOPERSTOWN, NEW YORK OCCASIONAL PAPER NO. 20 AUGUST, 1987 BIOLOGY DEPARTMENT STATE UNIVERSITY COLLEGE AT ONEONTA THIS MANUSCRIPT IS NOT A FORMAL PUBLICATION. The information contained herein may not be cited or reproduced without permission of the author or the S.U.N.Y. Oneonta Biology Department ABSTRACT The species of Chironomidae inhabiting Otsego Lake, New York, were studied from 1979 through 1982. This report presents the results of a variety of collecting methods used in a diversity of habitats over a considerable temporal period. The principle emphasis was on sound taxonomy and rearing to associate immatures and adults. Over 4,000 individual rearings have provided the basis for description of general morphological stages that occur during the life cycles of these species. Keys to the larvae and pupae of the 4 subfamilies and 10 tribes of Chironomidae collected in Otsego Lake were compiled. Keys are also presented for the immature stages of 12 Tanypodinae and 2 Diamesinae species found in Otsego Lake. Labeled line drawings of the majority of structures and measurements used to identify the immature stages of most species of chironomids were adapted from the literature. Extensive photomicrographs are presented along with larval and pupal characteristics, taxonomic notes, synonymies, recent literature accounts and collection records for 17 species. These include: Chironominae­ Paratendipes albimanus (Meigen) (Chironomini); Ortl10cladiinae ­ Psectrocladius (Psectrocladius) simulans (Johannsen) and I!ydrobaenus johannseni (Sublette); Diamesinae - Protanypus ramosus Saether (Protanypodini) and Potthastia longimana Kieffer (Diamesini); and Tanypodinae - Clinotanypus (Clinotanypus) pinguis (Loew) (Coelotanypodini), Tanypu~ (Tanypus) punctipennis Meigen (Tanypodini), Procladius (Psilotanypus) bellus (Loew); Var.
    [Show full text]
  • Appendices Include ICRMP? Comment Involved in the Management ….” Management the in Involved TNARNG
    APPENDIX A ENVIRONMENTAL ASSESSMENT FOR THE IMPLEMENTATION OF THE REVISED INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN FOR THE VOLUNTEER TRAINING SITE – CATOOSA TENNESSEE ARMY NATIONAL GUARD CATOOSA COUNTY, GEORGIA PREPARED BY Tennessee Military Department Environmental Office February 2012 Integrated Natural Resources Management Plan A-1 VTS-Catoosa Appendix A Environmental Assessment This page intentionally left blank. Integrated Natural Resources Management Plan A-2 VTS-Catoosa Appendix A Environmental Assessment ENVIRONMENTAL ASSESSMENT FOR IMPLEMENTATION OF THE REVISED INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, VOLUNTEER TRAINING SITE CATOOSA TENNESSEE ARMY NATIONAL GUARD REVIEWED BY: DATE: __________________________________________ ________________________ TERRY M. HASTON MG, TNARNG The Adjutant General __________________________________________ ________________________ ISAAC G. OSBORNE, JR. BG, TNARNG Assistant Adjutant General, Army __________________________________________ ________________________ DARRELL D. DARNBUSH COL, TNARNG Deputy Chief of Staff, Operations __________________________________________ ________________________ GARY B. HERR LTC, TNARNG Training Site Commander _________________________________________ ________________________ STEPHEN B. LONDON COL, TNARNG Environmental Officer Integrated Natural Resources Management Plan A-3 VTS-Catoosa Appendix A Environmental Assessment Integrated Natural Resources Management Plan A-4 VTS-Catoosa Appendix A Environmental Assessment TABLE OF CONTENTS Table of Contents A-5
    [Show full text]