International Journal of Molecular Sciences Article Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth Hong Chang 1,2, Jianglong Guo 3, Xiaowei Fu 4, Yongqiang Liu 2, Kris A. G. Wyckhuys 2, Youming Hou 1,* and Kongming Wu 2,* ID 1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
[email protected] 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
[email protected] (Y.L.);
[email protected] (K.A.G.W.) 3 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
[email protected] 4 Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang 453003, China;
[email protected] * Correspondence:
[email protected] (Y.H.);
[email protected] (K.W.); Tel.: +86-10-8210-5551 (K.W.) Received: 18 January 2018; Accepted: 8 February 2018; Published: 13 February 2018 Abstract: Pollen grains are regularly used as markers to determine an insect’s movement patterns or host (plant) feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology) encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea) and identified to many (plant) species level.