Contrasting Glacial/Interglacial Regimes in the Western Arctic Ocean As Exempli¢Ed by a Sedimentary Record from the Mendeleev Ridge

Total Page:16

File Type:pdf, Size:1020Kb

Contrasting Glacial/Interglacial Regimes in the Western Arctic Ocean As Exempli¢Ed by a Sedimentary Record from the Mendeleev Ridge Palaeogeography,Palaeoclimatology,Palaeoecology 203 (2004) 73^93 www.elsevier.com/locate/palaeo Contrasting glacial/interglacial regimes in the western Arctic Ocean as exempli¢ed by a sedimentary record from the Mendeleev Ridge Leonid Polyak a;Ã,William B. Curry b,Dennis A. Darby c,Jens Bischof c, Thomas M. Cronin d a Byrd Polar Research Center, Ohio State University, Columbus, OH 43210, USA b Woods Hole Oceanographic Institution, Woods Hole, MA02543, USA c Old Dominion University, Norfolk, VA23529, USA d US Geological Survey, Reston, VA20191, USA Received 1 August 2002; received in revised form 14 August 2003; accepted 19 September 2003 Abstract Distinct cyclicity in lithology and microfaunal distribution in sediment cores from the Mendeleev Ridge in the western Arctic Ocean (water depths ca. 1.5 km) reflects contrasting glacial/interglacial sedimentary patterns. We conclude that during major glaciations extremely thick pack ice or ice shelves covered the western Arctic Ocean and its circulation was restricted in comparison with interglacial,modern-type conditions. Glacier collapse events are marked in sediment cores by increased contents of ice-rafted debris,notably by spikes of detrital carbonates and iron oxide grains from the Canadian Arctic Archipelago. Composition of foraminiferal calcite N18O and N13C also shows strong cyclicity indicating changes in freshwater balance and/or ventilation rates of the Arctic Ocean. Light stable isotopic spikes characterize deglacial events such as the last deglaciation at ca. 12 14C kyr BP. The prolonged period with low N18O and N13C values and elevated contents of iron oxide grains from the Canadian Archipelago in the lower part of the Mendeleev Ridge record is interpreted to signify the pooling of freshwater in the Amerasia Basin,possibly in relation to an extended glaciation in arctic North America. Unique benthic foraminiferal events provide a means for an independent stratigraphic correlation of sedimentary records from the Mendeleev Ridge and other mid-depth locations throughout the Arctic Ocean such as the Northwind and Lomonosov Ridges. This correlation demonstrates the disparity of existing age models and underscores the need to establish a definitive chronostratigraphy for Arctic Ocean sediments. ß 2003 Elsevier B.V. All rights reserved. Keywords: Arctic Ocean; Quaternary; stratigraphy; paleoceanography; glaciation; ice rafting; Foraminifera; Ostracoda; stable isotopes; provenance 1. Introduction * Corresponding author. Tel.: +1-614-292-2602; Fax: +1-614-292-4697. The Arctic Ocean plays a major role in the late E-mail address: [email protected] (L. Polyak). Cenozoic evolution of the Earth’s environmental 0031-0182 / 03 / $ ^ see front matter ß 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0031-0182(03)00661-8 PALAEO 3228 5-1-04 74 L. Polyak et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 73^93 system,including the modern climatic change Ocean sedimentary archives for understanding (e.g., Aagard et al.,1999 ). The most important the Earth’s Quaternary climatic evolution,rela- aspects of the interaction between the Arctic tively few sedimentary records have become avail- Ocean and the global climate are (1) vast ice cover able for detailed investigation because of opera- that increases albedo and controls a signi¢cant tional constraints in the ice-bound Arctic Ocean part of the global energy balance,and (2) the interior. In addition to logistical problems of ob- control on the oceanic thermohaline circulation taining sediment cores,it is di⁄cult to develop an through the water exchange with the Atlantic unequivocal stratigraphy of late Cenozoic sedi- and Paci¢c oceans (Delworth et al.,1997; Smith ments because of the meagerness of biotic re- et al.,2002 ). The Quaternary history of the Arctic mains,low sedimentation rates of mostly below Ocean features multiple dramatic changes associ- 1 cm/kyr,and the unique history of the Arctic ated with glaciations and deglaciations of the arc- Ocean. In recent years,several late Cenozoic sedi- tic periphery and sea level £uctuations. During mentary records with a moderate temporal reso- glacial periods and low sea levels,extensive areas lution have been investigated from the Arctic of shallow arctic shelves were exposed and par- Ocean interior,mainly from intermediate water tially covered by ice sheets,which drastically re- depths,such as on the Northwind and Lomono- duced the circulation within the Arctic Ocean and sov Ridges (Fig. 1; Poore et al.,1993,1994; Phil- the inter-oceanic water exchange. This,together lips and Grantz,1997; Spielhagen et al.,1997; with more severe ice conditions in the ocean in- Jakobsson et al.,2000,2001 ). However,di¡erent terior,had a dramatic e¡ect on sedimentary envi- stratigraphic approaches employed in these stud- ronments. Despite the importance of the Arctic ies result in di¡ering age models and contrasting Fig. 1. (A) Map of the Arctic Ocean with bathymetry in 1-km contour lines. Inset area (B) is shaded. Black circle shows the lo- cation of NP26 cores; un¢lled circles show locations of cores from Northwind and Lomonosov Ridges used for stratigraphic cor- relation (Fig. 10). Arrows show major current systems: Beaufort Gyre and Transpolar Drift. (B) Map of the Mendeleev Ridge and Chukchi Borderland with bathymetry in 500-m contour lines (from Perry and Fleming,1986 ). Black circles show location of NP26 cores 5 and 32; un¢lled circles indicate other cores referred to in the paper; triangles indicate hydrographic pro¢les shown in Fig. 2. PALAEO 3228 5-1-04 L. Polyak et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 73^93 75 paleoceanographic interpretations. This under- layer with a core at depths of ca. 200^500 m scores the necessity to investigate more sedimen- originates from the North Atlantic Drift; this tary records from the Arctic Ocean aiming at mul- water retains fairly high heat content resulting in ti-proxy studies of sea£oor areas with relatively temperatures s 0‡C throughout the Arctic Ocean high sedimentation rates. In this paper,we present (Fig. 2). The water column above this Atlantic- results of a multi-proxy investigation of a sedi- derived layer contains the Paci¢c water that in- ment core record from intermediate water depths £ows via the Bering Strait and is characterized at the Mendeleev Ridge in the western part of the by high nutrient contents and relatively low salin- Arctic Ocean (Amerasia Basin). ity of 6 33 psu. The balance of Atlantic and Pa- ci¢c waters £owing into the Arctic Ocean varies with time (Carmack et al.,1997; Steele and Boyd, 2. Study area 1998). Currently,the front between Atlantic and Paci¢c components in subsurface waters is located Mendeleev Ridge is an elevated portion of the along the Mendeleev Ridge (Jones et al.,1998 ), Arctic Ocean £oor extending from the East Sibe- which underscores the signi¢cance of this area for rian shelf towards the North Pole (Fig. 1). On the studying the long-term changes in the Arctic cir- shallow southern part of the Mendeleev Ridge culation. The surface water of the Arctic Ocean and adjacent Chukchi Borderland (Chukchi Pla- receives the voluminous river runo¡ that keeps teau and Northwind Ridge),sedimentation rates the salinity low and thus maintains the sea ice are higher than in the interior of the Amerasia cover. Ice and the sur¢cial waters are involved Basin (Poore et al.,1993; Phillips and Grantz, in a wind-driven circulation which forms the anti- 1997),probably because of sediment transport cyclonic Beaufort Gyre over the Amerasia Basin from the adjacent shelves and more frequent (Fig. 1). The major gateway for out£owing low- summer ice melt. Modern sedimentation rates salinity surface water is the Fram Strait; addition- were estimated to be as low as 0.2^0.3 mm/kyr throughout the Amerasia Basin by 230Th and pore water chemistry methods (Cranston,1997; Huh et al.,1997 ); however, 14C data from the Chukchi Borderland show up to two orders of magnitude higher sedimentation rates during the deglaciation and the Holocene (Darby et al., 1997). The strati¢ed water mass structure of the Arctic Ocean includes the low-salinity surface water,sev- eral intermediate water layers,and the bottom waters (Aagard et al.,1985 ). Cold and saline bot- tom waters are formed by the exchange with the Norwegian-Greenland Sea via the Fram Strait and by cascading of dense water ejected by ice formation on the shelves. The Amerasia and Eur- asia Basins of the Arctic Ocean are separated by Fig. 2. Hydrographic pro¢les from the Mendeleev Ridge area the Lomonosov Ridge with a sill depth of ca. (Fig. 1; data from Ekwurzel et al.,2001 ). Shown are poten- 1500 m; as a result,their deep waters have some- tial temperature,salinity,and equilibrium calcite N18O (vs. what di¡ering thermohaline properties and resi- PDB) estimated from temperature and water N18O using the dence times. The deep water of the Amerasia Ba- equation of Shackleton (1974). Halocline and thermocline 3 levels are highlighted. Right panel shows details of the upper sin is relatively warm ( 0.5‡C) and may have a portion of the water column. Gradient in surface salinity and notably old age of almost 1000 years (Macdonald N18O re£ects the contribution of runo¡ related to the dis- and Carmack,1991 ). The major intermediate water tance from the shelf. PALAEO 3228 5-1-04 76 L. Polyak et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 203 (2004) 73^93 Table 1 3. Materials and methods Geographic position of sediment cores under study Core No. Latitude Longitude Water depth Sediment cores used in this study were collected (‡N) (‡W) (m) with a gravity corer in 1983 from a Russian drift- NP26-5 78‡58.7P 178‡09P 1435 ing ice camp ‘Severnyj Polyus (North Pole) 26’ NP26-32 79‡19.4P 178‡04P 1610 (further referred to as NP26).
Recommended publications
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • Hot Rocks from Cold Places: a Field, Geochemical and Geochronological Study from the High Arctic Large Igneous P Rovince (HALIP) at Axel Heiberg Island, Nunavut
    ! !"#$%"&'($)*"+$,"-.$/-0&1(2$3$451-.6$71"&81+5&0-$09.$ 71"&8*"9"-":5&0-$;#<.=$)*"+$#81$!5:8$3*&#5&$>0*:1$ ?:91"<($/*"@59&1$A!3>?/B$0#$3C1-$!15D1*:$?(-09.6$ E<90@<#$ $ $ by Cole Girard Kingsbury A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences Ottawa – Carleton Geoscience Centre and Carleton University Ottawa, Ontario © 2016 Cole Girard Kingsbury ! ! !"#$%&'$() ) ) ) ) ) ) ) ) ) ) The geology of the Arctic is greatly influenced by a period of widespread Cretaceous magmatic activity, the High Arctic Large Igneous Province (HALIP). Two major tholeiitic magmatic pulses characterize HALIP: an initial 120 -130 Ma pulse that affected Arctic Canada and formally adjacent regions of Svalbard (Norway) and Franz Josef Land (Russia). In Canada, this pulse fed lava flows of the Isachsen Formation. A second 90-100 Ma pulse that apparently only affected the Canadian side of the Arctic, fed flood basalts of the Strand Fiord Formation. The goal of this thesis is to improve understanding of Arctic magmatism of the enigmatic HALIP through field, remote sensing, geochemical and geochronology investigations of mafic intrusive rocks collected in the South Fiord area of Axel Heiberg Island, Nunavut, and comparison with mafic lavas of the Isachsen and Strand Fiord Formations collected from other localities on the Island. Ground-based and remote sensing observations of the South Fiord area reveal a complex network of mafic sills and mainly SSE-trending dykes. Two new U-Pb baddeleyite ages of 95.18 ± 0.35 Ma and 95.56 ± 0.24 Ma from South Fiord intrusions along with geochemical similarity confirm these intrusions (including the SSE-trending dykes) are feeders for the Strand Fiord Formation lavas.
    [Show full text]
  • Evidence for Slab Material Under Greenland and Links to Cretaceous
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Evidence for slab material under Greenland 10.1002/2016GL068424 and links to Cretaceous High Key Points: Arctic magmatism • Mid-mantle seismic and gravity anomaly under Greenland identified G. E. Shephard1, R. G. Trønnes1,2, W. Spakman1,3, I. Panet4, and C. Gaina1 • Jurassic-Cretaceous slab linked to paleo-Arctic ocean closure, prior to 1Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway, 2Natural Amerasia Basin opening 3 • Possible arc-mantle signature in History Museum, University of Oslo, Oslo, Norway, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 4 Cretaceous High Arctic LIP volcanism Institut National de l’Information Géographique et Forestière, Laboratoire LAREG, Université Paris Diderot, Paris, France Supporting Information: Abstract Understanding the evolution of extinct ocean basins through time and space demands the • Supporting Information S1 integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications Correspondence to: of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, G. E. Shephard, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred [email protected] interpretation stipulates that anomalous, fast seismic velocities at 1000–1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs Citation: that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and Shephard, G. E., R. G. Trønnes, geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic W.
    [Show full text]
  • Building and Breaking a Large Igneous Province: an Example from The
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Building and breaking a large igneous province: An 10.1002/2016GL072420 example from the High Arctic Key Points: Arne Døssing1 , Carmen Gaina2 , and John M. Brozena3 • An early Aptian giant High-Arctic LIP dyke swarm, >2000 km long, formed 1DTU Space, Lyngby, Denmark, 2Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway, 3United States as part of early rifting of the Amerasia Basin Naval Research Laboratory, Washington, District of Columbia, USA • Middle-to-Late Cretaceous HALIP flood basalts subsequently covered the northern Amerasia Basin, centered Abstract The genesis of the Amerasia Basin in the Arctic Ocean has been difficult to discern due to over the proto-Alpha Ridge overprint of the Cretaceous High-Arctic Large Igneous Province (HALIP). Based on detailed analysis of • Latest Cretaceous to middle Paleocene rifting and seafloor bathymetry data, new Arctic magnetic and gravity compilations, and recently published radiometric and spreading within the Makarov Basin seismic data, we present a revised plate kinematic model of the northernmost Amerasia Basin. We show broke apart the proto-Alpha Ridge that the smaller Makarov Basin is formed by rifting and seafloor spreading during the latest Cretaceous (to middle Paleocene). The opening progressively migrated into the Alpha Ridge structure, which was the Supporting Information: focus of Early-to-Middle Cretaceous HALIP formation, causing breakup of the proto-Alpha Ridge into the • Supporting Information S1 present-day Alpha Ridge and Alpha Ridge West Plateau. We propose that breakup of the Makarov Basin was triggered by extension between the North America and Eurasian plates and possibly North Pacific Correspondence to: A.
    [Show full text]
  • Arctic Policy &
    Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011).
    [Show full text]
  • Geophysical Studies Bearing on the Origin of the Arctic Basin
    ONTHE !"!! #$%#"$#& '"#"%%&"#"& ()( (( *"##% !"###$##% & % %'& &()& * + &( , -. /("##( &0 1 &2 %&1 ( ( !"3(!3 ( (.01/3!4-3-556-!!!-6( & %&1 %&7 * % %&+&8 (0 %& (9&7& / * & & %&()&& %&, : * % & % &+ & 9 ; < %&+ 1 = (: <9+>= & % & ( *& & %& && % ( 0 & *& % &+-0 ' 7 7 & : & %* 7% & %&+&()& %& &()& &&+0 6#7&7? & "#7 * &' 7 1 ()& & & %&' 7 1 & : && * && & &&% &7< "4@A"7= & && %&& ()&&7 & 7 1 % 47 57( :% % %&& &7 %& < 9 ; ; = & & && &(' & & %& <( 0 = % % % %%&, : <*& % 9 ; =?& * & & &<( 7 1 =( :% &2):> "##5 & %&, : & & %&: ()& *&&9+> ()&B % & % & & && * && * *& %()& % % &&, : *& % & %? *& <(6@57C=&& % *- ( % % 2 1 ( !"# $ % $& $'()*$ $%"+,-.* $ D/ , -. "## .00/5-"6 .01/3!4-3-556-!!!-6 $ $$$ -"!5!<& $CC (7(C E F $ $$$ -"!5!= Dedicated to: My dear daughter Irina List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Langinen A.E., Gee D.G., Lebedeva-Ivanova N.N. and Zamansky Yu.Ya. (2006). Velocity Structure and Correlation of the Sedimentary Cover on the Lomonosov Ridge and in the Amerasian Basin, Arctic Ocean. in R.A. Scott and D.K. Thurston (eds.) Proceedings of the Fourth International confer- ence on Arctic margins, OCS study MMS 2006-003, U.S. De- partment of the Interior,
    [Show full text]
  • Chukchi Arctic Continental Margins: Tectonic Evolution, Link to the Opening of the Amerasia Basin
    Chukchi arctic continental margins: tectonic evolution, link to the opening of the Amerasia Basin Sokolov S.D., Ledneva G.V., Tuchkova M.I., Luchitskaya M.V., Ganelin A.V., and Verzhbitsky V.E. ABSTRACT characterized by termination of spreading in the The Arctic margin of Chukotka (Chukotka ProtoArctic Ocean and transformation of the latter fold belt) comprises two tectonic units, namely into the closing South Anyui turbidite basin. The the Anyui-Chukotka fold system (the ACh) and Chukotka microcontinent was subducted beneath the South Anyui suture (the SAS). In terms of the the Siberian active margin (the Oloy volcanic belt) paleotectonic reconstructions, the ACh represents until the Valanginian. In the Hauterivian-Barremian, the Chukotka microcontinent whereas the SAS is an oblique collision was initiated simultaneously the suture, which is the result of collision of the with spreading in the Canada Basin. This collision Chukotka microcontinent with the Siberian active resulted in formation of the South Anyui suture. margin (the Verkhoyansk-Kolyma fold system). As both subduction and collision was terminated, Tectono-stratigraphic units of the South Anyui suture formation of an oceanic crust within the Amerasia were thrust northward over the passive margin of the Basin ceased. microcontinent during the collision. The tectonic evolution of the continental margin INTRODUCTION of Chukotka can be divided into four main tectonic The origin of the Amerasia Basin is broadly stages corresponding to the Late Precambrian-Early debated in discussions of Arctic region tectonics. Paleozoic, the Late Paleozoic- Early Mesozoic, Different viewpoints exist on its origin but the the Middle Jurassic- Early Cretaceous and the rotational hypothesis (Carey, 1955) and its various Aptian-Albian.
    [Show full text]
  • Crustal Architecture of the East Siberian Arctic Shelf and Adjacent Arctic Ocean Constrained by Seismic Data and Gravity Modeling Results
    This is a repository copy of Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129730/ Version: Accepted Version Article: Drachev, SS, Mazur, S, Campbell, S et al. (2 more authors) (2018) Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. Journal of Geodynamics, 119. pp. 123-148. ISSN 0264-3707 https://doi.org/10.1016/j.jog.2018.03.005 Crown Copyright © 2018 Published by Elsevier Ltd. This is an author produced version of a paper published in Journal of Geodynamics. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Zircon Geochronology of Bottom Rocks in the Central Arctic Ocean: Analytical Results and Some Geological Implications
    Zircon geochronology of bottom rocks in the central Arctic Ocean: analytical results and some geological implications Garrik Grikurov1, Oleg Petrov2, Sergey Shokalsky2, Pavel Rekant1, Alexey Krylov1,4, Anatoly Laiba3, Boris Belyatsky1,2, Mikhail Rozinov2 and Sergey Sergeev2,4 1I.S. Gramberg Research Institute for Geology and Mineral Resources of the World Ocean ‘VNIIOkeangeologia’, 1Angliysky Ave., 190121 St. Petersburg, Russia 2A.P. Karpinsky Russian Research Geological Institute ‘VSEGEI’, 74 Sredny Prospect, 199106 St. Petersburg, Russia 3Polar Marine Geosurvey Expedition, 24 Pobedy St., 188512 Lomonosov – St. Petersburg, Russia 4St. Petersburg State University,7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia ABSTRACT in sub-pelagic sediment along with dropstones of In the past few years sampling of deepwater variably metamorphosed Precambrian mafic and seabed gained an increasingly important role in granitoid rocks. studying geological structure of the Arctic Ocean. A common concept of virtually uninterrupted pelagic INTRODUCTION drape in the Amerasia Basin and exclusively ice-rafted Great progress in acquisition of new bathymet- nature of all clastic components that occur in bottom ric and geophysical data relevant to understanding sediments was challenged by recent discoveries of the geological structure and history of the Arctic bedrock exposures in the sea floor, while correlation Ocean, including the tectonic nature of enigmatic of results of analytical study of bottom samples Central-Arctic bathymetric highs, was achieved
    [Show full text]
  • The Sedimentary and Crustal Velocity Structure of Makarov Basin and Adjacent Alpha Ridge
    Tectonophysics 696–697 (2017) 99–114 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge John Evangelatos a,⁎, Thomas Funck b, David C. Mosher c,1 a Department of Earth Sciences, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4J1, Canada b Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark c Geological Survey of Canada (Atlantic), Natural Resources Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada article info abstract Article history: This study examines the velocity structure of Makarov Basin and the adjacent Alpha Ridge to determine the tec- Received 14 May 2016 tonic origins of these features and link them to the larger Amerasia Basin. Seismic data from sonobuoys distrib- Received in revised form 12 December 2016 uted along a 650 km-long line extending from Alpha Ridge and across Makarov Basin to the Lomonosov Ridge Accepted 26 December 2016 were analyzed for this purpose. Forward modelling of traveltimes, supported by coincident multi-channel seis- Available online 28 December 2016 mic reflection and shipborne gravity data, were used to determine the P-wave velocity structure along the line. The sedimentary cover averages 0.5 km-thick on Alpha Ridge and 1.9 km-thick in Makarov Basin, but Keywords: Makarov Basin reaches up to 5 km-thick at the base of Lomonosov Ridge. Velocities in the sedimentary section range from 1.6 −1 Alpha Ridge to 4.3 km s . As suggested by relatively high velocities, interbedded volcaniclastic or volcanic rock may occur − Seismic refraction in the deep sedimentary section.
    [Show full text]
  • Continental Affinities of the Alpha Ridge
    Geophysical Research Abstracts Vol. 19, EGU2017-17741-1, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License. Continental Affinities of the Alpha Ridge H. Ruth Jackson (1), Qingmou Li (1), John Shimeld (1), and Deping Chian (2) (1) Geological Survey of Canada Atlantic, 1 Challenger Dr., P.O. Box 1006, Dartmouth, N.S. B2Y 4A2 Canada, (2) Chian Consulting, 6238 Regina Terrane, Halifax N.S., B3H 1N5 Canada Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns.
    [Show full text]
  • Reconstruction of Paleo-Circulation in the Western
    Reconstruction of Quaternary Paleo-circulation in the Western Arctic Ocean Based on a Neodymium Isotope Record from the Northwind Ridge Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Rachael Elizabeth Gray, B.S. Graduate Program in Geological Sciences The Ohio State University 2012 Thesis Committee: Lawrence Krissek, Advisor Leonid Polyak W. Berry Lyons Copyright by Rachael Elizabeth Gray 2012 Abstract An understanding of past ocean circulation in the Arctic is critical for interpretations of past global ocean and atmospheric circulation, as well as predictions of future conditions. The Arctic Ocean plays a major role in global climate, due to its contributions to both the North Atlantic Deep Water (and subsequently the Atlantic Meridional Overturning Circulation) and the planet's albedo (due to sea ice cover). A sediment core from the Northwind Ridge in the western Arctic Ocean, ~800 km north of Alaska, has been sampled for measurement of radiogenic isotope ratios of neodymium and strontium. Sediment grain coatings were leached from the bulk sediment and measured for 87/86Sr and εNd, a proxy for seawater source. Two leaching solutions, one using buffered acetic acid and the second using hydroxylamine hydrochloride, were applied to sediments. Strontium data suggests that acetic acid best captures the seawater signal, while hydroxylamine hydrochloride leaching likely caused clay contamination of the hydrogenous data. εNd ratios were compared with independent lithologic proxies measured on the core and with results of earlier radiogenic-isotope studies in the Arctic Ocean. Data obtained suggest that radiogenic waters dominated the western Arctic Ocean during the estimated Early Pleistocene, probably due to increased Pacific water inputs and/or enhanced brine exclusion from sea ice formation on the Siberian shelves.
    [Show full text]