Best Practice Recommendations for the Use of External Telemetry Devices on Pinnipeds Markus Horning1,2* , Russel D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploitation of Fur Seals and Sea Lions from Australian, New Zealand and Adjacent Subantarctic Islands During the Eighteenth, Nineteenth and Twentieth Centuries
Exploitation of fur seals and sea lions from Australian, New Zealand and adjacent subantarctic islands during the eighteenth, nineteenth and twentieth centuries John K. Ling P.O. Box 271, Clare, South Australia 5459 ABSTRACT Details of skin cargoes of fur seal Arctocephalus spp. and sea lion Neophoca cinerea and Phocarctos hookeri, originating from southern Australia, New Zealand and the adjacent subantarctic islands in the lath, 19th and 20th centuries have been collated from several secondary historicsl sources. These sources quoted quantities of skins in terms of actual tallied numbers, as untallied "cargoes" or as casks, sacks or bundles. Untallied cargoes were Downloaded from http://meridian.allenpress.com/australian-zoologist/article-pdf/31/2/323/1473420/az_1999_036.pdf by guest on 30 September 2021 converted into numbers by averaging tallied cargoes; and casks, sacks and bundles were arbitrarily deemed to contain 40, 20 and 5 skins respectively. Annual and total yields of skins are presented for ten separate areas in the region: Bass Strait, King Island, Kangaroo Island. Western Australia, New Zealand, Bounty Islands, Auckland Islands, Antipodes Islands. Campbell Island and Macquarie island. At least 1 367 000 fur seal skins were harvested between 1792 and 1948149 in the whole of the Australasian region. More than 1309 000 skins - 96% of the total - were taken up to 1830. Records indicate that only about 4 100 Neophoca and 5 800 Phocarctos were obtained from their respective areas. These figures must be regarded as minimal, as it is likely thatmany cargoes were obtained by English, American and French vessels and shipped directly to European or Asian markets. -
List of Marine Mammal Species and Subspecies Written by The
List of Marine Mammal Species and Subspecies Written by the Committee on Taxonomy The Ad-Hoc Committee on Taxonomy , chaired by Bill Perrin, has produced the first official SMM list of marine mammal species and subspecies. Consensus on some issues was not possible; this is reflected in the footnotes. This list will be revisited and possibly revised every few months reflecting the continuing flux in marine mammal taxonomy. This list can be cited as follows: “Committee on Taxonomy. 2009. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/ . The cetaceans genetically and morphologically fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved -- e.g., see Spaulding et al ., 2009) 1. -
Redalyc.Comparison of Behavioral Patterns of South American Sea
Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Pérez-Alvarez, M. José; Carrasco, Pablo; Sepúlveda, Maritza; Quiñones, Renato A. Comparison of behavioral patterns of South American sea lions between breeding and non-breeding seasons Revista de Biología Marina y Oceanografía, vol. 48, núm. 1, abril, 2013, pp. 155-163 Universidad de Valparaíso Viña del Mar, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=47926382011 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista de Biología Marina y Oceanografía Vol. 48, Nº1: 155-163, abril 2013 Article Comparison of behavioral patterns of South American sea lions between breeding and non-breeding seasons Comparación de los patrones conductuales del lobo marino común en época reproductiva y no reproductiva M. José Pérez-Alvarez1,2,3, Pablo Carrasco4, Maritza Sepúlveda2,3 and Renato A. Quiñones4 1Instituto de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile. [email protected] 2Centro de Investigación Eutropia, Ahumada 131 Oficina 912, Santiago, Chile 3Centro de Investigación y Gestión en Recursos Naturales (CIGREN), Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile 4Programa de Investigación Marina de Excelencia (PIMEX), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile Resumen.- Se han descrito tácticas reproductivas para machos y hembras en sistemas reproductivos poligínicos, dentro de las cuales, una respuesta conductual sexo-específico sería esperable para maximizar el éxito reproductivo. -
Marine Ecology Progress Series 384:273
Vol. 384: 273–286, 2009 MARINE ECOLOGY PROGRESS SERIES Published May 29 doi: 10.3354/meps08017 Mar Ecol Prog Ser Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis M. Drago1,*, E. A. Crespo2, A. Aguilar1, L. Cardona1, N. García2, S. L. Dans2, N. Goodall3, 4 1Department of Animal Biology, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain 2Laboratory of Marine Mammals, Centro Nacional Patagonico (CENPAT-CONICET), and National University of Patagonia, Blvd. Brown 3600, 9120 Puerto Madryn, Argentina 3Acatushún Museum, 9410 Ushuaia, Tierra del Fuego, Argentina 4Centro Austral de Investigaciones Científicas (CADIC), Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina ABSTRACT: Carbon and nitrogen isotopic analyses of skull bone were used to investigate how seal- ing and the development of industrial fishing have affected the diet of the South American sea lion Otaria flavescens in northern Patagonia. Males from Tierra del Fuego were used as a control, as the species there was decimated by sealing, but industrial fishing is only poorly developed. The δ13C of both males and females from northern Patagonia increased from the 1940s to the 1970s, and then declined steadily. The decline in the slope was similar in both sexes, although females were more depleted in 13C than were males. The δ15N remained unaffected in males throughout the period, whereas that of females decreased from the 1940s to the 1970s and then stabilized. Conversely, no change was found in either the δ13C or δ15N in the skulls from Tierra del Fuego animals. As benthic prey off northern Patagonia are more enriched in 13C than are pelagic prey, the above results indi- cate increased consumption of benthic coastal prey in this region from the 1940s to the 1970s, when sea lions were decimated by commercial hunting, and increased consumption of pelagic prey since the 1970s, simultaneous with sea lion population recovery. -
56. Otariidae and Phocidae
FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig. -
Brucella Antibody Seroprevalence in Antarctic Seals (Arctocephalus Gazella, Leptonychotes Weddellii and Mirounga Leonina)
Vol. 105: 175–181, 2013 DISEASES OF AQUATIC ORGANISMS Published September 3 doi: 10.3354/dao02633 Dis Aquat Org Brucella antibody seroprevalence in Antarctic seals (Arctocephalus gazella, Leptonychotes weddellii and Mirounga leonina) Silje-Kristin Jensen1,2,*, Ingebjørg Helena Nymo1, Jaume Forcada3, Ailsa Hall2, Jacques Godfroid1 1Section for Arctic Veterinary Medicine, Norwegian School of Veterinary Science, Stakkevollveien 23, 9010 Tromsø, Norway; member of the Fram Centre - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Brucellosis is a worldwide infectious zoonotic disease caused by Gram-negative bac- teria of the genus Brucella, and Brucella infections in marine mammals were first reported in 1994. A serosurvey investigating the presence of anti-Brucella antibodies in 3 Antarctic pinniped spe- cies was undertaken with a protein A/G indirect enzyme-linked immunosorbent assay (iELISA) and the Rose Bengal test (RBT). Serum samples from 33 Weddell seals Leptonychotes weddelli were analysed, and antibodies were detected in 8 individuals (24.2%) with the iELISA and in 21 (65.6%) with the RBT. We tested 48 southern elephant seal Mirounga leonina sera and detected antibodies in 2 animals (4.7%) with both the iELISA and the RBT. None of the 21 Antarctic fur seals Arctocephalus gazella was found positive. This is the first report of anti-Brucella antibodies in southern elephant seals. The potential impact of Brucella infection in pinnipeds in Antarctica is not known, but Brucella spp. -
Hunting and Social Behaviour of Leopard Seals (Hydrurga Leptonyx) at Seal Island, South Shetland Islands, Antarctica
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 1999 Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, [email protected] Michael K. Schwartz National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Peter L. Boveng National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Hiruki, Lisa M.; Schwartz, Michael K.; and Boveng, Peter L., "Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica" (1999). Publications, Agencies and Staff of the U.S. Department of Commerce. 151. https://digitalcommons.unl.edu/usdeptcommercepub/151 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Zool., Lond. (1999) 249, 97±109 # 1999 The Zoological Society of London Printed in the United Kingdom Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica Lisa M. Hiruki*, Michael K. Schwartz{ and Peter L. -
Global Patterns in Marine Mammal Distributions
SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea -
A Specially Protected Species Under Annex II
WP 27 Agenda Item: CEP 8(b) Presented by: SCAR Original: English Current Status of the Ross Seal (Ommatophoca rossii): A Specially Protected Species under Annex II Attachments: atcm30_att030_e.pdf: Summary of status of the Ross seal. 1 WP 27 Current Status of the Ross Seal (Ommatophoca rossii): A Specially Protected Species under Annex II Introduction 1. Resolution 2 (1999) of XXIII ATCM requested SCAR, in consultation with the Parties, CCAMLR and other expert bodies as appropriate, to examine the status of the species currently designated in Appendix A of Annex II to the Environmental Protocol, and with the assistance of IUCN, to determine the conservation status of native Antarctic fauna and flora and advise the CEP on which species should remain or be designated as Specially Protected Species. 2. At XXIII ATCM an Intersessional Contact Group, chaired by Argentina, was established to discuss the criteria that could be used to designate Specially Protected Species. The Final ICG report was presented as XXV ATCM/ WP8. The advice to the ATCM was encapsulated in Resolution 1 (2002), which noted that the CEP had decided to adopt the IUCN criteria on endangerment to establish the degree of threat to species, requested SCAR to assist in reviewing those species which were classed as “vulnerable”, “endangered” or “critically endangered” (taking into consideration regional assessments of populations), as well as reviewing those species classed as “data deficient” or “near threatened” which occurred in the Antarctic Treaty Area. 3. Working Paper XXVIII ATCM WP34 proposed how the IUCN criteria could be applied to Antarctic species. At XXIX ATCM SCAR tabled WP39 proposing that, on this basis and on the grounds of the presently available population data, Antarctic Fur Seals (Arctocephalus spp.) should be delisted as Specially Protected Species. -
The Antarctic Ross Seal, and Convergences with Other Mammals
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Difusión de la Creación Intelectual Evolutionary biology Sensory anatomy of the most aquatic of rsbl.royalsocietypublishing.org carnivorans: the Antarctic Ross seal, and convergences with other mammals Research Cleopatra Mara Loza1, Ashley E. Latimer2,†, Marcelo R. Sa´nchez-Villagra2 and Alfredo A. Carlini1 Cite this article: Loza CM, Latimer AE, 1 Sa´nchez-Villagra MR, Carlini AA. 2017 Sensory Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. CONICET, La Plata, Argentina anatomy of the most aquatic of carnivorans: 2Pala¨ontologisches Institut und Museum der Universita¨tZu¨rich, Karl-Schmid Strasse 4, 8006 Zu¨rich, Switzerland the Antarctic Ross seal, and convergences with MRS-V, 0000-0001-7587-3648 other mammals. Biol. Lett. 13: 20170489. http://dx.doi.org/10.1098/rsbl.2017.0489 Transitions to and from aquatic life involve transformations in sensory sys- tems. The Ross seal, Ommatophoca rossii, offers the chance to investigate the cranio-sensory anatomy in the most aquatic of all seals. The use of non-invasive computed tomography on specimens of this rare animal Received: 1 August 2017 reveals, relative to other species of phocids, a reduction in the diameters Accepted: 12 September 2017 of the semicircular canals and the parafloccular volume. These features are independent of size effects. These transformations parallel those recorded in cetaceans, but these do not extend to other morphological features such as the reduction in eye muscles and the length of the neck, emphasizing the independence of some traits in convergent evolution to aquatic life. -
1995-2006 Activities Report
WILDLIFE WITHOUT BORDERS WILDLIFE WITHOUT BORDERS WITHOUT WILDLIFE M E X I C O The most wonderful mystery of life may well be EDITORIAL DIRECTION Office of International Affairs U.S. Fish & Wildlife Service the means by which it created so much diversity www.fws.gov PRODUCTION from so little physical matter. The biosphere, all Agrupación Sierra Madre, S.C. www.sierramadre.com.mx EDITORIAL REVISION organisms combined, makes up only about one Carole Bullard PHOTOGRAPHS All by Patricio Robles Gil part in ten billion [email protected] Excepting: Fabricio Feduchi, p. 13 of the earth’s mass. [email protected] Patricia Rojo, pp. 22-23 [email protected] Fulvio Eccardi, p. 39 It is sparsely distributed through MEXICO [email protected] Jaime Rojo, pp. 44-45 [email protected] a kilometre-thick layer of soil, Antonio Ramírez, Cover (Bat) On p. 1, Tamul waterfall. San Luis Potosí On p. 2, Lacandon rainforest water, and air stretched over On p. 128, Fisherman. Centla wetlands, Tabasco All rights reserved © 2007, U.S. Fish & Wildlife Service a half billion square kilometres of surface. The rights of the photographs belongs to each photographer PRINTED IN Impresora Transcontinental de México EDWARD O. WILSON 1992 Photo: NASA U.S. FISH AND WILDLIFE SERVICE DIVISION OF INTERNATIONAL CONSERVATION WILDLIFE WITHOUT BORDERS MEXICO ACTIVITIES REPORT 1995-2006 U.S. FISH AND WILDLIFE SERVICE At their roots, all things hold hands. & When a tree falls down in the forest, SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES MEXICO a star falls down from the sky. CHAN K’IN LACANDON ELDER LACANDON RAINFOREST CHIAPAS, MEXICO FOREWORD onservation of biological diversity has truly arrived significant contributions in time, dedication, and C as a global priority. -
Gene-Tree Species-Tree Discordance in the Eared Seals Is Best Explained By
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246108; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gene-tree Species-tree Discordance in the Eared Seals is best explained by 2 Incomplete Lineage Sorting following Explosive Radiation in the Southern 3 Hemisphere 4 5 Running title: Phylogenomics of Fur Seals and Sea Lions 6 7 Authors: Fernando Lopes1,2*, Larissa R. Oliveira2,3, Amanda Kessler1, Enrique Crespo4, Susana 8 Cárdenas-Alayza5, Patricia Majluf5, Maritza Sepúlveda6, Robert L. Brownell Jr.7, Valentina 9 Franco-Trecu8, Diego Páez-Rosas9, Jaime Chaves10, Carolina Loch11, Bruce C. Robertson12, 10 Karina Acevedo-Whitehouse13, Fernando R. Elorriaga-Verplancken14, Stephen P. Kirkman15, 11 Claire R. Peart16, Jochen B. W. Wolf16, Sandro L. Bonatto1* 12 13 1 Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Av. 14 Ipiranga 6691, 90619-900 Porto Alegre, RS, Brazil 15 2 Laboratório de Ecologia de Mamíferos, Universidade do Vale do Rio dos Sinos, São Leopoldo, 16 Brazil 17 3 GEMARS, Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul 18 4 CONICET, Centro Nacional Patagónico - CENPAT, Puerto Madryn, Argentina 19 5 Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru 20 6 Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Facultad de Ciencias, 21 Universidad de Valparaíso, Valparaíso, Chile 22 7 National Oceanic and Atmospheric Administration, NOAA, La Jolla, United States of America 23 8 Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, 24 Montevideo, Uruguay 25 9 Colegio de Ciencias Biológicas y Ambientales, COCIBA, Universidad San Francisco de Quito, 26 Quito, Ecuador bioRxiv preprint doi: https://doi.org/10.1101/2020.08.11.246108; this version posted August 13, 2020.