Atmos. Chem. Phys., 20, 14757–14768, 2020 https://doi.org/10.5194/acp-20-14757-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Validation of reanalysis Southern Ocean atmosphere trends using sea ice data William R. Hobbs1,3,5, Andrew R. Klekociuk2,3, and Yuhang Pan4 1Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS 7001, Australia 2Antarctica and the Global System Program, Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia 3Australian Antarctic Program Partnership, IMAS, University of Tasmania, Hobart, TAS 7001, Australia 4School of Earth Sciences, McCoy Building, The University of Melbourne, Parkville, VIC 3010, Australia 5ARC Centre of Excellence for Climate Extremes, IMAS, University of Tasmania, Hobart, TAS 7001, Australia Correspondence: William R. Hobbs (
[email protected]) Received: 11 June 2020 – Discussion started: 29 July 2020 Revised: 5 October 2020 – Accepted: 23 October 2020 – Published: 2 December 2020 Abstract. Reanalysis products are an invaluable tool for rep- ing of West Antarctic ice shelves (Lenaerts et al., 2017; Paolo resenting variability and long-term trends in regions with et al., 2018; Dotto et al., 2019), with implications for global limited in situ data, and especially the Antarctic. A compar- barystatic sea level rise (Dupont and Alley, 2005; Pritchard ison of eight different reanalysis products shows large dif- et al., 2012; Paolo et al., 2015), and polar winds are clearly ferences in sea level pressure and surface air temperature related to observed Antarctic sea ice trends (Holland and trends over the high-latitude Southern Ocean, with implica- Kwok, 2012).