Ronald C. Phillips Ernani G. Meriez

Total Page:16

File Type:pdf, Size:1020Kb

Ronald C. Phillips Ernani G. Meriez an Ronald C. Phillips • • 90 -i*^5******^**''''"•'-'•' *M*S. •-.-. ••«-*»• wmtK^sAiff Ernani G. Meriez _l/«rc__tt-i, ,«cs-:. ^ - •••..,..'•. ^W^P^^jaM T> -" SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 34 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover. Robert McC. Adams Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES • NUMBER 34 Seagrasses Ronald C. Phillips and Ernani G. Mehez ISSUED DEC 291988 HS0N1AN INSTITUTE SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1988 ABSTRACT Phillips, Ronald C, and Ernani G. Meriez. Seagrasses. Smithsonian Contributions to the Marine Sciences, number 34, 104 pages, 4 tables, 57 figures, 39 maps, 1988.—This work presents general and current information on seagrass ecology, physiology, biology, distribution and evolution. Additionally, all known taxa of seagrasses are keyed to recognized species. Forty-eight species are described and illustrated, with accompanying maps to indicate their world distribution. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Seascape along the Atlantic coast of eastern North America. Library of Congress Cataloging in Publication Data Phillips, Ronald C. Seagrasses (Smithsonian contributions to the marine sciences ; no. 34) Bibliography p. 1. Seagrasses. 2. Helobiae. I. Menez, Ernani G II. Title. Ill Series QK495.A14P47 1987 584V742 87-23245 Contents Page Introduction 1 Acknowledgments 2 The Nature of the Species 2 Complementarity of Structure and Function 4 Requirements for Life in the Sea 4 Anatomical Features and Growth Patterns 4 Leaves 5 Rhizomes/Roots 5 Physiology 6 Pressure 6 Adaptive Tolerances 6 Carbon Problems 7 Nitrogen 7 Phosphorus 8 Trace Elements 8 Evolution and Geographic Distribution 8 Evolution 8 Geographic Distribution 10 Vegetative and Reproductive Growth Patterns 13 Vegetative Patterns 13 Reproductive Patterns . 15 Flower Production 15 Seed Production 16 Seed Germination 17 The Seagrass Ecosystem 19 Conceptual Model 20 Structure 20 Function 22 Rate of Energy Row 22 Rate of Nutrient Cycling 22 Biological Regulation 23 Dynamics 23 Research Priorities 23 Conservation of Seagrass Ecosystems 23 Impacts 23 Research Priorities 26 Management 27 Alien Species 27 Division ANTHOPHYTA 27 Class MONOCOTYLEDONEAE 27 Order HELOBIAE 27 Key to the Genera of Seagrasses 27 Family POTAMOGETONACEAE 28 Genus Zostera 28 Key to the Subgenera of Zostera 28 Key to Species of Zostera, Subgenus Zostera 28 iii iv SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES Zostera asiatica Miki 28 Zostera caespitosa Miki 28 Zostera caulescens Miki 29 Zostera marina Linnaeus 30 Key to Species of Zostera, Subgenus Zosterella 30 Zostera capensis Setchell 31 Zostera capricorni Ascherson 31 Zostera japonica Ascherson and Graebner 34 Zostera mucronata den Hartog 34 Zostera muelleri Irmisch ex Ascherson 34 Zostera noltii Hornemann 34 Genus Phyllospadix 34 Key to Species of Phyllospadix 34 Phyllospadix iwatensis Makino 39 Phyllospadix japonicus Makino 39 Phyllospadix scouleri Hooker 39 Phyllospadix serrulatus Ruprecht ex Ascherson 40 Phyllospadix torreyi S. Watson 43 Genus Heterozostera 43 Heterozostera tasmanica (Martens ex Ascherson) den Hartog 43 Genus Posidonia 43 Key to Species of Posidonia 43 Posidonia angustifolia Cambridge and Kuo 46 Posidonia australis Hooker 46 Posidonia oceanica (Linnaeus) Delile 46 Posidonia ostenfeldii den Hartog 46 Posidonia sinuosa Cambridge and Kuo 46 Genus Halodule 46 Key to Species of Halodule 52 Halodule pinifolia (Miki) den Hartog 52 Halodule uninervis (Forsskal) Ascherson 52 Halodule wrightii Ascherson 52 Genus Cymodocea 55 Key to Species of Cymodocea 55 Cymodocea angustata Ostenfeld 56 Cymodocea nodosa (Ucria) Ascherson 56 Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson 56 Cymodocea serrulata (R. Brown) Ascherson and Magnus ..60 Genus Syringodium 60 Key to Species of Syringodium 60 Syringodium filiforme Kiitzing 60 Syringodium isoetifolium (Ascherson) Dandy 60 Genus Thalassodendron 60 Key to Species of Thalassodendron 60 Thalassodendron ciliatum (Forsskal) den Hartog 60 Thalassodendron pachyrhizum den Hartog 65 Genus Amphibolis 65 Key to Species of Amphibolis 65 Amphibolis antarctica (Labillardiere) Sonder and Ascherson 65 Amphibolis griffithii (J.M. Black) den Hartog 65 Family HYDROCHARITACEAE 65 Genus Enhalus 65 Enhalus acoroides (Linnaeus f.) Royle 65 NUMBER 34 Genus Thalassia 68 Key to Species of Thalassia 68 Thalassia hemprichii (Ehrenberg) Ascherson 68 Thalassia testudinum Banks ex KOnig 69 Genus Halophila 69 Key to Species of Halophila 69 Halophila baillonis Ascherson 70 Halophila beccarii Ascherson 70 Halophila decipiens Ostenfeld 70 Halophila engelmannii Ascherson 70 Halophila hawaiiana Doty and Stone 70 Halophila johnsonii Eiseman 77 Halophila minor (Zollinger) den Hartog 77 Halophila ovalis (R. Brown) Hooker f 78 Halophila spinulosa (R. Brown) Ascherson 78 Halophila stipulacea (Forsskal) Ascherson 78 Halophila tricostata Greenway 84 Literature Cited 85 Worldwide Distribution Maps 91 We dedicate this work to our colleague, Professor Hilconida P. Calumpong, Assistant Director, Silliman University Marine Laboratory, Philippines, for her devotion and contributions to the study of marine plants in the Philippines. Seagrasses Ronald C. Phillips and Ernani G. Mehez Introduction that fish abundance in Denmark was due to eelgrass was the earliest report of its kind. Ostenfeld (1905, 1908) initiated There are approximately 48 species of grass-like flowering extensive ecological studies on Danish eelgrass. Petersen and plants found in the shallow-water coastal areas of the world Boysen-Jensen (1911) assembled numerous data relating between the Arctic and Antarctic Circles. These plants tend to eelgrass growth, plankton density, and the quantity of develop extensive underwater meadows on muddy or sandy deposited organic matter. Petersen (1913) listed Danish substrates, resembling fields of wheat All seagrasses are eelgrass standing stocks. Boysen-Jensen (1914) reported monocots and are placed in one of two families, viz., eelgrass production and its relation to the organic matter of the Potamogetonaceae (9 genera, 34 species) andHydrocharitaceae Danish sea bottom and made extensive chemical tests on (3 genera, 14 species). eelgrass-based organic matter. Blegvad (1914,1916) published Seagrass meadows form extremely complex ecosystems that two large papers on the food of invertebrates and fish in Danish function through detritus-based food webs as well as herbivore marine waters. Petersen (1915, 1918) summarized the Danish webs. In the latter living seagrass plants as well as epiphytes work and assembled it into food chains and a quantitative food on the plants are grazed. Seagrass meadows have recently been pyramid, all based on eelgrass. The overall concensus was that recognized as an important marine resource. The major detritus formed from eelgrass in Danish waters formed the functions of seagrasses were enumerated by Wood, Odum, and basis for the invertebrate animal communities that ultimately Zieman (1969): (1) the plants stabilize and hold bottom led to several species of food fish important to the Danish sediments even through the enormous stresses of hurricanes economy. and temperate storms; (2) the leaves slow and retard water From 1929 to 1934, Setchell (1929, 1934, 1935) published currents and waves, promoting sedimentation of particulate studies on the phenology of eelgrass and the distribution of matter and inhibiting resuspension of organic and inorganic seagrasses. matter; (3) the meadow serves as a shelter and refuge for From 1933 until approximately 1950 almost all seagrass resident and transient
Recommended publications
  • New Record of the Seagrass Species Halophila Major (Zoll.) Miquel in Vietnam: Evidence from Leaf Morphology and ITS Analysis
    DOI 10.1515/bot-2012-0188 Botanica Marina 2013; 56(4): 313–321 Nguyen Xuan Vy*, Laura Holzmeyer and Jutta Papenbrock New record of the seagrass species Halophila major (Zoll.) Miquel in Vietnam: evidence from leaf morphology and ITS analysis Abstract: The seagrass Halophila major (Zoll.) Miquel (i) the number of cross veins, which ranges from 18 to 22, is reported for the first time from Vietnam. It was found and (ii) the ratio of the distance between the intramar- growing with other seagrass species nearshore, 4–6 m ginal vein and the lamina margin at the half-way point deep at Tre Island, Nha Trang Bay. Leaf morphology and along the leaf length, which is 1:20–1:25 (Kuo et al. 2006). phylogenetic analysis based on ribosomal internal tran- Recently, genetic markers, including plastid and nuclear scribed spacer sequences confirmed the identification. sequences, have been used to reveal the genetic relation- There was very little sequence differentiation among sam- ships among members of the genus Halophila. Among the ples of H. major collected in Vietnam and other countries molecular markers used, neither single sequence analysis in the Western Pacific region. A very low evolutionary of the plastid gene encoding the large subunit of ribulose- divergence among H. major populations was found. 1,5-bisphosphate-carboxylase-oxygenase (rbcL) and of the plastid maturase K (matK) nor analysis of the concat- Keywords: Halophila major; internal transcribed spacer; enated sequences of the two plastid markers has resolved new record; seagrass; Vietnam. the two closely related species H. ovalis and H. ovata (Lucas et al.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bioone? RESEARCH
    RESEARCH BioOne? EVOLVED Proximate Nutrient Analyses of Four Species of Submerged Aquatic Vegetation Consumed by Florida Manatee (Trichechus manatus latirostris) Compared to Romaine Lettuce (Lactuca sativa var. longifolia) Author(s): Jessica L. Siegal-Willott, D.V.M., Dipl. A.C.Z.M., Kendal Harr, D.V.M., M.S., Dipl. A.C.V.P., Lee-Ann C. Hayek, Ph.D., Karen C. Scott, Ph.D., Trevor Gerlach, B.S., Paul Sirois, M.S., Mike Renter, B.S., David W. Crewz, M.S., and Richard C. Hill, M.A., Vet.M.B., Ph.D., M.R.C.V.S. Source: Journal of Zoo and Wildlife Medicine, 41(4):594-602. 2010. Published By: American Association of Zoo Veterinarians DOI: 10.1638/2009-0118.1 URL: http://www.bioone.org/doi/full/10.1638/2009-0118.1 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms of use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
    [Show full text]
  • Buccoo Reef/ Bon Accord Lagoon Complex
    BUCCOO REEF/ BON ACCORD LAGOON COMPLEX Geographical Location: Tobago Name of the Ramsar site: Buccoo Reef/Bon Accord Lagoon Complex Ramsar Site No.: 1496 Geographical coordinates (latitude/longitude): 11° 10′ N, 60° 57′ W, Total site area: 1287 hectares 2 Area: 12.87 km (1287 ha). Mean sea level to 30 m below sea level Mangroves 2 2 2 account for 1.3 km (130 ha) of which 0.1 km (10 ha) are ponds and 0.5 km (50 ha) are seagrass beds General location: The wetland is located on the leeward coast of south-western Tobago and approximately 6 miles (in a straight line) from the administrative town of Scarborough, which is in the parish of St. Andrew. Adjacent to the wetland are the villages of Buccoo and Canaan/Bon Accord which are considered population growth poles in Tobago (IMA, 1996). Summary description: Buccoo Reef / Bon Accord Lagoon Complex. 1,287 ha; 11°10'N 060°57'W. Restricted Area (in the process of being designated as Environmentally Sensitive Area). Located on the south-western coast of Tobago near Scarborough, this site contains several under-represented wetland types such as coral reefs, seagrass beds and mangrove forests. Endangered and vulnerable species in the area include various types of coral (Acropora palmata, Diploria labyrinthiformis, D. strigosa and Siderastrea siderea) as well as the critically endangered Hawksbill turtle (Eretmochelys imbricata) and at least 119 fish species. As the major tourist attraction in Tobago, the reef continues to be adversely affected by intense tourist activity and pollutant discharges. So far the restricted area status and existing management plan have been unable to prevent these impacts.
    [Show full text]
  • University of California, Berkeley Student Research Papers, Fall 1996
    Q H /ironmental Science, Policy and Management 107, Geography 142, IDS 158, and Integrative Biology 198 *• M6 B56 T he B iology and G eomorphology 1996 BIOS of T ropical Isla n d s RESERVES Student Research Papers, Fall 1996 Richard B. Gump South Pacific Biological Research Station Moorea, French Polynesia University of California, Berkeley A b o v e : The 1996 Moorea Class, on the front lawn of the Gump Research Station, with Cook's Bay and fringing reef in the background. Standing, from left: Jenmfer Conners, Morgan Hannaford (Graduate Student Instructor), Sandra Trujillo, Solomon Dobrowski, Brent Mishler (Professor, IB), Ylva Carosone, Stephanie Yelenik, Joanna Canepa, Kendra Bergstrom, Peter Weber (Graduate Student Instructor), Julianne Ludwig, Larry Rabin, Damien Filiatrault, Steve Strand (Executive Director, Gump Research Station), and Carole Hickman (Professor, IB). Reclining or seated, from left: Xavier Mayali, Chris Feldman, Sapna Khandwala, Isa Woo, Tracy Benning (Professor, ESPM), Patricia Sanchez Baracaldo (Graduate Student Instructor), and Michael Emmett. B elo w : The beach and lagoon atTetiaroa, site of a class field trip, with Tahiti (left) and Moorea (right) in the background. Environmental Science, Policy and Management 107, Geography 142, IDS 158, Integrative Biology 158 ' ? /A (e 1996 Student Research papers TABLE OF CONTENTS NK\\V0l( \cK $[05 Introductory remarks. Brent D. Mishler 1 The distribution and morphology of seagrass (Halophila Michael Alan Emmett 2 decipiens) in Moorea, French Polynesia. Zonation of lagoon algae in Moorea, French Polynesia. Xavier Mayali 15 Distributional patterns of mobile epifauna associated with Kendra G. Bergstrom 26 two species of brown algae (Phaeophyta) in a tropical reef ecosystem.
    [Show full text]
  • Cadmium Uptake Kinetics in Parts of the Seagrass Cymodocea Nodosa
    Malea et al. J of Biol Res-Thessaloniki (2018) 25:5 https://doi.org/10.1186/s40709-018-0076-4 Journal of Biological Research-Thessaloniki RESEARCH Open Access Cadmium uptake kinetics in parts of the seagrass Cymodocea nodosa at high exposure concentrations Paraskevi Malea1*, Theodoros Kevrekidis2, Konstantina‑Roxani Chatzipanagiotou1 and Athanasios Mogias2 Abstract Background: Seagrass species have been recommended as biomonitors of environmental condition and as tools for phytoremediation, due to their ability to concentrate anthropogenic chemicals. This study aims to provide novel information on metal accumulation in seagrasses under laboratory conditions to support their use as a tool in the evaluation and abatement of contamination in the feld. We investigated the kinetics of cadmium uptake into adult leaf blades, leaf sheaths, rhizomes and roots of Cymodocea nodosa in exposure concentrations within the range of 1 cadmium levels in industrial wastewater (0.5–40 mg L− ). Results: A Michaelis–Menten-type equation satisfactorily described cadmium accumulation kinetics in seagrass 1 parts, particularly at 0.5–5 or 10 mg L− . However, an S equation best described the uptake kinetics in rhizomes at 1 1 5 mg L− and roots at 10 and 20 mg L− . Equilibrium concentration and uptake rate tended to increase with the exposure concentration, indicating that seagrass displays a remarkable accumulation capacity of cadmium and refect high cadmium levels in the surrounding medium. Concerning leaf blades and rhizomes, the bioconcentration factor at equilibrium (range 73.3–404.3 and 14.3–86.3, respectively) was generally lower at higher exposure concentrations, indicating a gradual reduction of available binding sites.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Reassessment of Seagrass Species in the Marshall Islands1
    Micronesica 2016-04: 1–10 Reassessment of Seagrass Species in the Marshall Islands 1 ROY T. TSUDA Department of Natural Sciences, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA [email protected] NADIERA SUKHRAJ U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd., Honolulu, HI 96850, USA [email protected] Abstract—Recent collections of specimens of Halophila gaudichaudii J. Kuo, previously identified as Halophila minor (Zollinger) den Hartog, from Kwajalein Atoll in September 2016 and the archiving of the specimens at BISH validate the previous observation of this seagrass genus in the Marshall Islands. Previously, no voucher specimen was available for examination. Molecular analyses of the Kwajalein Halophila specimens may demonstrate conspecificity with Halophila nipponica J. Kuo with H. gaudichaudii relegated as a synonym. Herbarium specimens of Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson from Majuro Atoll were found at BISH and may represent the only specimens from the Marshall Islands archived in a herbarium. Cymodocea rotundata, however, has been documented in past literature and archived via digital photos in its natural habitat in Majuro. The previous validation of Thalassia hemprichii (Ehrenberg) Ascherson with specimens, and the recent validation of Halophila gaudichaudii and Cymodocea rotundata with specimens reaffirm the low coral atolls and islands of the Marshall Islands as the eastern limit for the three species in the Pacific Ocean. Introduction In a review of the seagrasses in Micronesia, Tsuda et al. (1977) reported nine species of seagrasses in Micronesia with new records of Thalassodendron ciliatum (Forsskål) den Hartog from Palau, and Syringodium isoetifolium (Ascherson) Dandy and Cymodocea serrulata (R.
    [Show full text]
  • Rebentos Aquatic Vegetation
    Review Article / Artigo de Revisão Copertino et al.: Seagrasses and SubmergedReBentos Aquatic Vegetation Seagrass and Submerged Aquatic Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge, conservation and main threats Margareth S. Copertino1*, Joel C. Creed2, Marianna O. Lanari1,3, Karine Magalhães4, Kcrishna Barros5, Paulo C. Lana6, Laura Sordo6,7, Paulo A. Horta8 1 Laboratório Ecologia Vegetal Costeira, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG (Av. Itália, Carreiros. CEP 96203-900, Rio Grande, RS, Brasil) 2 Departamento de Ecologia, Universidade do Estado do Rio de Janeiro (Rua São Francisco Xavier, 524. CEP: 20550-900, Maracanã, RJ, Brasil) 3 Programa de Pós-Gradução em Oceanografia Biológica, Universidade Federal do Rio Grande - FURG 4 Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE) (Rua Dom Manoel de Medeiros, s/n, Dois Irmãos. CEP: 52171-900 - Recife, PE, Brasil) 5 Instituto de Ciências do Mar, Universidade Federal do Ceará (Av. Abolição, 3207. CEP 60165-081, Fortaleza, CE, Brasil) 6 Centro de Estudos do Mar, Universidade Federal do Paraná (Av. Beira-Mar, s/n. CEP 83255-979, Pontal do Sul, PA, Brasil) 7 Centro de Ciências do Mar, Universidade do Algarve (Campus Gambelas, Faro. CEP: 8005-139, Portugal) 8 Departamento de Botânica, Universidade Federal de Santa Catarina (Rua Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade. CEP: 88040-900 Florianópolis, SC, Brasil) *Corresponding author: [email protected] / [email protected] Financial Support: This study was supported by the Brazilian Network for Coastal Benthic Studies - ReBentos (Programa SISBIOTA), Rede CLIMA and INCT for Climate Changes; sponsored by CNPq and FAPESP.
    [Show full text]
  • The Sea-Grasses of Brazil Ligulate, Linear, Leaf-Tip
    Acta Bot. Need. October 512-516 21(5), 1972, p. The sea-grasses of Brazil C. den Hartog Rijksherbarium, Leiden There is still hardly anything known aboutthe occurrence of sea-grasses in South America. The number of records is extremely small. Therefore, one wonders whether these plants are extremely rare or absent along long stretches of coast, whether it is that have been overlooked or just they by botanists. It seems that the latterapplies to the coast of Brazil, from where up to nowonly two collections had been recorded (Setchell 1934; den Hartog 1970). Thanks to the active, gratefully acknowledged co-operation of Dr. Liliane Forneris (Universidade de Sao Paulo) I received a number of sea-grasses from several places along the Brazilian coast. I am also indebted to Dr. Emilia Santos (Museu Nacional, Rio de Janeiro) and Dr. Graziela M. Barroso (Jardim Botanico, Rio de Janeiro) for and sending me a specimen a photograph, respectively, of Halophila decipiens. Further, I am grateful to Dr. V. J. H. de Jilovice de Sternberg (Com- panhia ‘Algimar’, Rio de Janeiro) for his co-operation in obtaining material. At present there are 5 species now known from Brazil. KEY TO THE SEA-GRASSES OF BRAZIL 1. Leaves with 3 Tannin cells ligulate, linear, nerves. present. 2. Leaf-tip bicuspidate; leaves Va-l mm wide 1. Halodule wrightii obtuse with 2. Leaf-tip or emarginate, very faintly developed lateral teeth, or without such teeth; leaves wider than 1 mm. 3. Leaf-tip emarginate 2. Halodule emarginata 3. Leaf-tip obtuse 3. Halodule lilianeae 1.
    [Show full text]
  • Distribution of Zostera Species in Japan. I Zostera Marina L. (Zosteraceae)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 35(1), pp. 23–40, March 22, 2009 Distribution of Zostera species in Japan. I Zostera marina L. (Zosteraceae) Norio Tanaka1,*, Satoshi Aida2, Shoichi Akaike3, Hiroshi Aramaki4, Takashi Chiyokubo5, Seinen Chow6, Akihiko Fujii7, Munehiro Fujiwara8, Hitoshi Ikeuchi9, Mitsuhiro Ishii10, Ryoko Ishikawa11, Hiroshi Ito12, Takahiro Kudo13, Daisuke Muraoka14, Tatsuaki Nagahama15, Tomohide Nambu16, Hiroyuki Okumura17, Akio Oshino18, Miho Saigusa19, Yasuko Shimizu20, Tsuyoshi Suwa21, Kengo Suzuki22, Kazuya Takeda23, Norio Tanada24, Tsuyoshi Tanimoto25, Fujinori Tsuda26, Seiji Urabe27, Kousuke Yatsuya28, Goro Yoshida29, Takashi Yoshimatsu30, Satoshi Yoshimitsu31, Keizo Yoshimura32, Kenji Morita33 and Kenji Saitoh34 1 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan 2 Hiroshima Prefectural Technology Research Institute, Fisheries & Ocean Technology Center, Hatami 6–21–1, Ondo-cho, Kure, 737–1207 Japan 3 Hokkaido Hakodate Experiment Station, Yunokawa 1–2–66, Hakodate, 042–0932 Japan 4 Saga Prefectural Government, Jonai 1–1–59, Saga, 840–8570 Japan 5 Fukushima Prefectural Fisheries Experimental Station, Matsushita Shimokajiro 13–2, Onahama, Iwaki, 970–0316 Japan 6 National Research Institute of Fisheries Science, Coastal Fisheries and Aquaculture Division, Fisheries Research Agency, Nagai 6–31–1, Yokosuka, 238–0316 Japan 7 Nagasaki Prefectural Institute of Fisheries, Taira, Nagasaki, 851–2213 Japan 8 Kagawa Prefectural Fisheries Experimental Station, Farming and Cultivation
    [Show full text]
  • An Overview of Cuban Seagrasses
    Bull Mar Sci. 94(2):269–282. 2018 research paper https://doi.org/10.5343/bms.2017.1014 An overview of Cuban seagrasses Centro de Investigaciones Beatriz Martínez-Daranas * Marinas, Universidad de La Habana, Calle 16 No. 114, Ana M Suárez Miramar, Playa, Havana, 11300, Cuba. * Corresponding author email: <[email protected]>. ABSTRACT.—Here, we present an overview of the current knowledge of Cuban seagrasses, including distribution, status, threats, and efforts for their conservation. It has been estimated that seagrasses cover about 50% of the Cuban shelf, with six species reported and Thalassia testudinum K.D. Koenig being the most dominant. Seagrasses have been studied primarily in three areas in Cuba (northwest, north-central, and southwest). Thalassia testudinum and other seagrasses exhibit spatial and temporal variations in abundance, and updating of their status and distribution is needed. The main threat to Cuban seagrass ecosystems is low seawater transparency due to causes such as eutrophication and erosion. High salinities limit their distribution in the Sabana-Camagüey Archipelago, partly the result of freshwater dams and roads. Seagrass meadows play important ecological k roles and provide many ecosystem services in Cuba, with efforts underway to preserve this ecosystem. Research and Marine Ecology and Conservation in Cuba management projects are directed toward integrated coastal zone management, including a ban on trawl fisheries and the Guest Editors: extension of marine protected areas to contain more seagrass Joe Roman, Patricia González-Díaz meadows. In addition to updating species distributions, it is Date Submitted: 17 February, 2017. urgent that managers and researchers in Cuba examine the Date Accepted: 22 November, 2017.
    [Show full text]