Bioone? RESEARCH

Total Page:16

File Type:pdf, Size:1020Kb

Bioone? RESEARCH RESEARCH BioOne? EVOLVED Proximate Nutrient Analyses of Four Species of Submerged Aquatic Vegetation Consumed by Florida Manatee (Trichechus manatus latirostris) Compared to Romaine Lettuce (Lactuca sativa var. longifolia) Author(s): Jessica L. Siegal-Willott, D.V.M., Dipl. A.C.Z.M., Kendal Harr, D.V.M., M.S., Dipl. A.C.V.P., Lee-Ann C. Hayek, Ph.D., Karen C. Scott, Ph.D., Trevor Gerlach, B.S., Paul Sirois, M.S., Mike Renter, B.S., David W. Crewz, M.S., and Richard C. Hill, M.A., Vet.M.B., Ph.D., M.R.C.V.S. Source: Journal of Zoo and Wildlife Medicine, 41(4):594-602. 2010. Published By: American Association of Zoo Veterinarians DOI: 10.1638/2009-0118.1 URL: http://www.bioone.org/doi/full/10.1638/2009-0118.1 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms of use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Zoo and Wildlife Medicine 41(4): 594-602, 2010 Copyright 2010 by American Association of Zoo Veterinarians PROXIMATE NUTRIENT ANALYSES OF FOUR SPECIES OF SUBMERGED AQUATIC VEGETATION CONSUMED BY FLORIDA MANATEE {TRICHECHUS MANATUS LATIROSTRIS) COMPARED TO ROMAINE LETTUCE {LACTUCA SATIVA VAR. LONGIFOLIA) Jessica L. Siegal-Willott, D.V.M., Dipl. A.C.Z.M., Kendal Harr, D.V.M., M.S., Dipl. A.C.V.P., Lee-Ann C. Hayek, Ph.D., Karen C. Scott, Ph.D., Trevor Gerlach, B.S., Paul Sirois, M.S., Mike Renter, B.S., David W. Crewz, M.S., and Richard C. Hill, M.A., Vet.M.B., Ph.D., M.R.C.V.S. Abstract: Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid- detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (a = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed. Key words: Halodule wrightii, manatee, nutrient analysis, Syringodium filiforme, Thalassia testudinum, Trichechus manatus. INTRODUCTION longifolia) supplemented with commercial pelleted foods marketed for various other species, as well Free-ranging manatees consume more than 60 as other leafy foods (green-leaf lettuce, cabbage, species of shoreline plants and submerged aquatic endive, kale), fruits (apples), and vegetables (sweet vegetation (SAV), including sea grasses such as potatoes, carrots).119 Thalassia testudinum, Halodule wrightii, and Previous research into manatee nutrition fo- Syringodium filiforme, marine algae, and fresh- 15 1617 20 21 27 30 31 35 cused on manatee digestive morphology, phy- water algae such as Chara spp. i n siology, and efficiency, and on the types of contrast, captive manatees are fed a diet composed aquatic plants consumed.1-3-51315-17'19-20-25-27-30 Pre- principally of romaine lettuce {Lactuca sativa var. vious reports concerned with aquatic plants consumed by manatees have evaluated the From the College of Veterinary Medicine, University nutrient content of plants consumed and the of Florida, 2015 SW 16th Avenue, Gainesville, Florida variability in plant nutrient content based on 32610, USA (Department of Small Animal Hospital species, collection site, location within the com- (Siegal-Willott, Scott, Gerlach, Hill) and Department of Large Animal Hospital (Harr); Mathematics and munity, plant turnover, and time of year, but Statistics, the Smithsonian Institution, MRC-121, have not evaluated Chara algae or directly Washington, DC. 20560, USA (Hayek); the Dairy compared such data with that of romaine lettuce One Forage Laboratory, 730 Warren Road, Ithaca, in diets of captive animals.1-3-13-18-20-25-27-30 Free- New York 14850, USA (Sirois, Reuter); and the Fish ranging manatees consume entire plants of sea and Wildlife Research Institute, Florida Fish and grasses, including both rhizomes and leaves.20-27 Wildlife Conservation Commission, 100 Eighth Ave- Previous investigations found SAV to be high in nue, St. Petersburg, Florida 33701, USA (Crewz). ash and insoluble carbohydrate, and low in Present address (Siegal-Willott): Department of Animal percent protein, lipid, lignin, and soluble carbo- Health, Smithsonian National Zoological Park, 3001 6 7 9 10 27 Connecticut Avenue NW, Washington, DC. 20008, hydrates. - - - - During periods of growth, blade USA; (Harr): Idexx Laboratories, Inc.-Canada, 5645- protein levels have been shown to increase, 199 Street. Langley, British Columbia V3A 1H9, rhizome soluble carbohydrates decrease, and Canada. Correspondence should be directed to Dr. lipid levels remain relatively stable in certain Siegal-Willott ([email protected]). species of SAV.6-7-9-10 The nutrient content of sea 594 SIEGALL-WILLOTT ET AL.—NUTRIENT ANALYSES OF VEGETATION CONSUMED BY MANATEES 595 grasses also varies among species and among most shells, sand, and other biota; rinsed; and portions of the plant. Thus, entire plants of then patted dry with unbleached paper towels. each species consumed by free-ranging manatees Samples were weighed to obtain a field wet must be analyzed on several occasions through- weight and placed into plastic bags in a cooler out the year to obtain a representative evaluation that contained wet ice to protect them from light of the diet. and heat during transfer to the laboratory. In the Nevertheless, the proximate-nutrient composi- laboratory, sea grass leaf blades were manually tion of the diet of free-ranging manatees has not separated from rhizomes and some attached been compared with that of captive manatees. roots. Neither romaine lettuce nor Chara parts Differences in nutrient composition among diets were separated for analysis. Whether the two could affect captive-manatee health.19 Thus, the supermarket purchases of romaine lettuce in June aim of this study was to compare the nutrient and December were the same cultivar is not analysis of romaine lettuce with those of four known, nor is the agricultural source of the species of SAV known to be consumed regularly romaine lettuce known. Once separated, sea grass by free-ranging Florida manatees, with a view to leaves and rhizomes were weighed (laboratory improving captive-manatee nutrition. wet weight) and stored at — 80°C. Samples were lyophilized in a freeze dryer (FTS Systems Inc., MATERIALS AND METHODS Stone Ridge, New York 12484, USA) to stable weight (laboratory dry weight). Romaine lettuce SAV and romaine lettuce collection and storage and Chara samples were treated similarly to those Sea grass samples were collected under a de of the sea grasses. Percent dry matter (DM) of minimus permit issued to the Florida Fish and each sample was determined as laboratory dry Wildlife Research Institute (St. Petersburg, Florida weight X 100/laboratory wet weight. Percent DM 33071, USA). Sea grass samples were collected of leaf portion relative to rhizome portion was from two shallow-water locations in Tampa calculated as laboratory dry weight leaf/labora- Bay, Florida, adjacent to Apollo Beach (APB), tory dry weight leaf portion + laboratory dry (27°45'46N, 82°26'33W), and Sunshine Skyway weight rhizome portion) and laboratory dry causeway (SKY), (27°39'24N, 82°40'35W). Col- weight rhizome/(laboratory dry weight leaf por- lection sites were chosen where manatees are tion + laboratory dry weight rhizome portion). known to graze.17 Halodule wrightii and Thalassia testudinum were collected both at APB and SKY. Forage analysis Syringodium filiforme occurred only at SKY. Sea Proximate-nutrient analyses were performed in grass samples were collected at three time points duplicate on subsamples of each ground, lyoph- during 2006 to incorporate seasonal variations in ilized sample after thorough mixing. Sample nutrient composition: spring (March 2006), sum- moisture was measured by using near infrared mer (June 2006), and winter (December 2006). reflectance spectroscopy (Model 6500, Foss Chara sp. was collected from the Everglades North America, Eden Prairie, Minnesota 55344, National Park (ENP) (25°18'28N, 81°1'31W) in USA; AOAC method 991.01) to account for any June 2006 only; limited accessibility to ENP moisture obtained during shipment; crude pro- restricted Chara sp. collection to a single site tein (CP) was determined with an autoanalyzer and time.
Recommended publications
  • Red Names=Invasive Species Green Names=Native Species
    CURLY-LEAF PONDWEED EURASIAN WATERMIL- FANWORT CHARA (Potamogeton crispus) FOIL (Cabomba caroliniana) (Chara spp.) This undesirable exotic, also known (Myriophyllum spicatum) This submerged exotic Chara is typically found growing in species is not common as Crisp Pondweed, bears a waxy An aggressive plant, this exotic clear, hard water. Lacking true but management tools are cuticle on its upper leaves making milfoil can grow nearly 10 feet stems and leaves, Chara is actually a limited. Very similar to them stiff and somewhat brittle. in length forming dense mats form of algae. It’s stems are hollow aquarium species. Leaves The leaves have been described as at the waters surface. Grow- with leaf-like structures in a whorled are divided into fine resembling lasagna noodles, but ing in muck, sand, or rock, it pattern. It may be found growing branches in a fan-like ap- upon close inspection a row of has become a nuisance plant with tiny, orange fruiting bodies on pearance, opposite struc- “teeth” can be seen to line the mar- in many lakes and ponds by the branches called akinetes. Thick ture, spanning 2 inches. gins. Growing in dense mats near quickly outcompeting native masses of Chara can form in some Floating leaves are small, the water’s surface, it outcompetes species. Identifying features areas. Often confused with Starry diamond shape with a native plants for sun and space very include a pattern of 4 leaves stonewort, Coontail or Milfoils, it emergent white/pinkish early in spring. By midsummer, whorled around a hollow can be identified by a gritty texture flower.
    [Show full text]
  • Buccoo Reef/ Bon Accord Lagoon Complex
    BUCCOO REEF/ BON ACCORD LAGOON COMPLEX Geographical Location: Tobago Name of the Ramsar site: Buccoo Reef/Bon Accord Lagoon Complex Ramsar Site No.: 1496 Geographical coordinates (latitude/longitude): 11° 10′ N, 60° 57′ W, Total site area: 1287 hectares 2 Area: 12.87 km (1287 ha). Mean sea level to 30 m below sea level Mangroves 2 2 2 account for 1.3 km (130 ha) of which 0.1 km (10 ha) are ponds and 0.5 km (50 ha) are seagrass beds General location: The wetland is located on the leeward coast of south-western Tobago and approximately 6 miles (in a straight line) from the administrative town of Scarborough, which is in the parish of St. Andrew. Adjacent to the wetland are the villages of Buccoo and Canaan/Bon Accord which are considered population growth poles in Tobago (IMA, 1996). Summary description: Buccoo Reef / Bon Accord Lagoon Complex. 1,287 ha; 11°10'N 060°57'W. Restricted Area (in the process of being designated as Environmentally Sensitive Area). Located on the south-western coast of Tobago near Scarborough, this site contains several under-represented wetland types such as coral reefs, seagrass beds and mangrove forests. Endangered and vulnerable species in the area include various types of coral (Acropora palmata, Diploria labyrinthiformis, D. strigosa and Siderastrea siderea) as well as the critically endangered Hawksbill turtle (Eretmochelys imbricata) and at least 119 fish species. As the major tourist attraction in Tobago, the reef continues to be adversely affected by intense tourist activity and pollutant discharges. So far the restricted area status and existing management plan have been unable to prevent these impacts.
    [Show full text]
  • <I>Syringodium Filiforme</I>
    BULLETIN OF MARINE SCIENCE, 83(3): 571–585, 2008 LEAF GROWTH OF THE SEAGRASS SYRINGODIUM FILIFORME IN OUTER FLORIDA BAY, FLORIDA Arthur C. Schwarzschild, W. Judson Kenworthy, and Joseph C. Zieman ABSTRACT Leaf growth of the seagrass Syringodium filiforme (Kütz., 1860) was determined using a new technique based on the growth of emergent leaves (EL method) and compared to the more labor intensive repeated measurements (RM) and demo- graphic allometric age reconstruction techniques (DA). All three techniques were used to compare leaf growth dynamics of plants with different morphologies at two sites, a shallow water (0.5 m) banktop and an adjacent deeper water (1.5 m) environ- ment in outer Florida Bay, Florida. Leaf formation rates (Leaf Plastochrone Interval or PI) determined using the EL and RM methods were nearly identical, with means of 20 and 21 d leaf–1 at both sites, significantly faster than the 30 d leaf–1 calculated using the DA method. The EL method produced the highest estimate of leaf growth, 1.8 and 1.9 cm d–1 at the 0.5 m and 1.5 m sites, respectively, followed by the RM method (1.3 and 1.3 cm d–1) and the DA method (1.0 and 1.1 cm d–1). None of the methods detected differences in leaf PI, leaf growth or leaf fragmentation rates be- tween sites. However, leaves at the 1.5 m site typically retained intact leaf tips longer than those at the 0.5 m site, and total leaf lifespan was longer at the 1.5 m site.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Effects of Two Hurricanes on Syringodium Filiforme, Manatee Grass, Within the Loxahatchee River Estuary, Southeast Florida
    Estuaries and Coasts Vol. 29, No. 6A, p. 1019–1025 December 2006 Effects of Two Hurricanes on Syringodium filiforme, Manatee Grass, Within the Loxahatchee River Estuary, Southeast Florida MARY S. RIDLER,RICHARD C. DENT, and D. ALBREY ARRINGTON* Loxahatchee River District, 2500 Jupiter Park Drive, Jupiter, Florida 33458 ABSTRACT: In September 2004, the Loxahatchee River Estuary was affected by Hurricanes Frances and Jeanne, which resulted in a monthly rainfall record of 610 mm and abnormally high freshwater discharges to the system. The occurrence, density, and biomass of Syringodium filiforme in the Loxahatchee River Estuary declined significantly following the September 2004 storms based on 15 mo of pre-hurricane monitoring and 12 mo of post-hurricane monitoring. Throughout post- hurricane monitoring, S. filiforme showed no sign of recovery, though Halophila johnsonii increased considerably during the post-hurricane period. Freshwater discharges resulting from the September 2004 hurricanes lowered minimum daily salinity values to near zero and increased standard deviation of daily salinity values to 11%. Extremely low minimum daily salinity values and high daily salinity fluctuations likely resulted in the observed decline of S. filiforme. We advise the use of minimum daily salinity values when assessing seagrass habitat suitability or when modeling the effects of alternative water management scenarios. Introduction of seagrasses in the Loxahatchee River Estuary. Estuaries receive considerable attention from Because seagrasses have been deemed a valued local stakeholders and natural resource managers ecosystem component, they will be used to assess because they provide essential nursery habitats that restoration success following modified freshwater support the development of larval and juvenile fish inflows resulting from the Comprehensive Ever- and invertebrates (Montague and Ley 1993; Four- glades Restoration Project and the Northwest Fork qurean et al.
    [Show full text]
  • Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
    THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr.
    [Show full text]
  • Karyotype Variations in Seagrass (Halodule Wrightii Ascherson¬タヤ
    Aquatic Botany 136 (2017) 52–55 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot Short communication Karyotype variations in seagrass (Halodule wrightii Ascherson—Cymodoceaceae) a b,∗ a Silmar Luiz da Silva , Karine Matos Magalhães , Reginaldo de Carvalho a Graduate Program in Botany—PPGB and Cytogenetic Plant Laboratory of the Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil b Aquatic Ecosystems Laboratory of the Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, CEP: 52171-900, Recife, Pernambuco, Brazil a r t i c l e i n f o a b s t r a c t Article history: Karyotype variations in plants are common, but the results of cytological studies of some seagrasses Received 26 June 2015 remain unclear. The nature of the variation is not clearly understood, and the basic chromosomal num- Received in revised form 5 August 2016 ber has still not been established for the majority of the species. Here, we describe karyotype variations in Accepted 15 September 2016 the seagrass Halodule wrightii, and we suggest potentially causative mechanisms involving cytomixis and Available online 16 September 2016 B chromosomes. We prepared slides using the squashing technique followed by conventional Giemsa and C-banding, and silver nitrate and a CMA/DAPI staining. Based on intraspecific analysis, the diploid chromo- Keywords: some number of H. wrightii exhibited a variation from 2n = 24 to 2n = 39; 2n = 38 was the most frequent. In Cytomixis Seagrass general, we characterized the karyotype as an asymmetrical, semi-reticulated interphase nucleus with a chromosomally uniform condensation pattern.
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Beauséjour MPA Grenada
    UNITED NATIONS EP United Nations Original: ENGLISH Environment Program Proposed areas for inclusion in the SPAW list ANNOTATED FORMAT FOR PRESENTATION REPORT FOR: Molinière - Beauséjour MPA Grenada Date when making the proposal : 10/3/14 CRITERIA SATISFIED : Ecological criteria Cultural and socio-economic criterias Representativeness Productivity Conservation value Cultural and traditional use Critical habitats Socio-economic benefits Diversity Area name: Molinière - Beauséjour MPA Country: Grenada Contacts Last name: BALDEO First name: Roland Focal Point Position: MPA Coordinator Email: [email protected] Phone: 1 473 534 5796 Last name: Baldeo First name: Roland Manager Position: Manager / MPA Coordinator Email: [email protected] Phone: 1 473 417 2966 SUMMARY Chapter 1 - IDENTIFICATION Chapter 2 - EXECUTIVE SUMMARY Chapter 3 - SITE DESCRIPTION Chapter 4 - ECOLOGICAL CRITERIA Chapter 5 - CULTURAL AND SOCIO-ECONOMIC CRITERIA Chapter 6 - MANAGEMENT Chapter 7 - MONITORING AND EVALUATION Chapter 8 - STAKEHOLDERS Chapter 9 - IMPLEMENTATION MECHANISM Chapter 10 - OTHER RELEVANT INFORMATION ANNEXED DOCUMENTS Management Plan Chapter 1. IDENTIFICATION a - Country: Grenada b - Name of the area: Molinière - Beauséjour MPA c - Administrative region: Eastern Caribbean d - Date of establishment: 12/28/01 e - If different, date of legal declaration: not specified f - Geographic location Longitude X: -61.76239 Latitude Y: 12.085653 g - Size: 0 sq. km h - Contacts Contact address: Fisheries Division, Melville Street, St. George's, Grenada Website: Email address: [email protected] i - Marine ecoregion 64. Eastern Caribbean Comment, optional none Chapter 2. EXECUTIVE SUMMARY Present briefly the proposed area and its principal characteristics, and specify the objectives that motivated its creation : The Molinière Reef was identified as a priority for the establishment of a “protected seascape” as the site was considered to hold the finest reefs in Grenada.
    [Show full text]
  • The Sea-Grasses of Brazil Ligulate, Linear, Leaf-Tip
    Acta Bot. Need. October 512-516 21(5), 1972, p. The sea-grasses of Brazil C. den Hartog Rijksherbarium, Leiden There is still hardly anything known aboutthe occurrence of sea-grasses in South America. The number of records is extremely small. Therefore, one wonders whether these plants are extremely rare or absent along long stretches of coast, whether it is that have been overlooked or just they by botanists. It seems that the latterapplies to the coast of Brazil, from where up to nowonly two collections had been recorded (Setchell 1934; den Hartog 1970). Thanks to the active, gratefully acknowledged co-operation of Dr. Liliane Forneris (Universidade de Sao Paulo) I received a number of sea-grasses from several places along the Brazilian coast. I am also indebted to Dr. Emilia Santos (Museu Nacional, Rio de Janeiro) and Dr. Graziela M. Barroso (Jardim Botanico, Rio de Janeiro) for and sending me a specimen a photograph, respectively, of Halophila decipiens. Further, I am grateful to Dr. V. J. H. de Jilovice de Sternberg (Com- panhia ‘Algimar’, Rio de Janeiro) for his co-operation in obtaining material. At present there are 5 species now known from Brazil. KEY TO THE SEA-GRASSES OF BRAZIL 1. Leaves with 3 Tannin cells ligulate, linear, nerves. present. 2. Leaf-tip bicuspidate; leaves Va-l mm wide 1. Halodule wrightii obtuse with 2. Leaf-tip or emarginate, very faintly developed lateral teeth, or without such teeth; leaves wider than 1 mm. 3. Leaf-tip emarginate 2. Halodule emarginata 3. Leaf-tip obtuse 3. Halodule lilianeae 1.
    [Show full text]
  • Rice-Fields. the Relevance of Cyanobacteria in the Ecosystem
    Limnetica 23(1-2) 11/10/04 10:15 Página 95 95 A shallow water ecosystem: rice-fields. The relevance of cyanobacteria in the ecosystem. Eduardo Fernández-Valiente* and Antonio Quesada Departamento de Biología. Universidad Autónoma de Madrid, E-28049 Madrid, Spain * Corresponding author, tel: 34-914978186, fax: 34-914978344, email: [email protected] ABSTRACT In this paper we review the knowledge of the ecology of the largest freshwater ecosystem on Earth: the rice-fields, and in particular the rice-fields from Valencia (Spain) making a special consideration to the cyanobacteria present in this ecosystem. Rice-fields are artificial shallow aquatic ecosystems in which the land management and the agricultural practices together with the rice plant growth govern the major environmental variables affecting the aquatic biota and its relationships. Primary producers are dominated typically by macrophytic algae as Chara and cyanobacteria, both planktonic and benthic (beside the rice plants). Most rice-fields can be considered nutrient replete, since the fertilization inputs and the low ratio volume/surface make that main nutrients are typically available. Under these circumstances other environmental variables as photosynthetically active radiation availability or filtration rates and predation may explain the growth limitation of primary producers. Irradiance availability identify two periods within the cultivation cycle: when plants are short, irradiance is not limiting and some water chemistry variables (as pH, oxygen and dissolved inorganic C concentrations) change drastically as a function of the primary production; when plants are large and the canopy is intense, then irradiance is limiting and the water chemistry changes only slightly along the day.
    [Show full text]
  • An Overview of Cuban Seagrasses
    Bull Mar Sci. 94(2):269–282. 2018 research paper https://doi.org/10.5343/bms.2017.1014 An overview of Cuban seagrasses Centro de Investigaciones Beatriz Martínez-Daranas * Marinas, Universidad de La Habana, Calle 16 No. 114, Ana M Suárez Miramar, Playa, Havana, 11300, Cuba. * Corresponding author email: <[email protected]>. ABSTRACT.—Here, we present an overview of the current knowledge of Cuban seagrasses, including distribution, status, threats, and efforts for their conservation. It has been estimated that seagrasses cover about 50% of the Cuban shelf, with six species reported and Thalassia testudinum K.D. Koenig being the most dominant. Seagrasses have been studied primarily in three areas in Cuba (northwest, north-central, and southwest). Thalassia testudinum and other seagrasses exhibit spatial and temporal variations in abundance, and updating of their status and distribution is needed. The main threat to Cuban seagrass ecosystems is low seawater transparency due to causes such as eutrophication and erosion. High salinities limit their distribution in the Sabana-Camagüey Archipelago, partly the result of freshwater dams and roads. Seagrass meadows play important ecological k roles and provide many ecosystem services in Cuba, with efforts underway to preserve this ecosystem. Research and Marine Ecology and Conservation in Cuba management projects are directed toward integrated coastal zone management, including a ban on trawl fisheries and the Guest Editors: extension of marine protected areas to contain more seagrass Joe Roman, Patricia González-Díaz meadows. In addition to updating species distributions, it is Date Submitted: 17 February, 2017. urgent that managers and researchers in Cuba examine the Date Accepted: 22 November, 2017.
    [Show full text]