University of California, Berkeley Student Research Papers, Fall 1996

Total Page:16

File Type:pdf, Size:1020Kb

University of California, Berkeley Student Research Papers, Fall 1996 Q H /ironmental Science, Policy and Management 107, Geography 142, IDS 158, and Integrative Biology 198 *• M6 B56 T he B iology and G eomorphology 1996 BIOS of T ropical Isla n d s RESERVES Student Research Papers, Fall 1996 Richard B. Gump South Pacific Biological Research Station Moorea, French Polynesia University of California, Berkeley A b o v e : The 1996 Moorea Class, on the front lawn of the Gump Research Station, with Cook's Bay and fringing reef in the background. Standing, from left: Jenmfer Conners, Morgan Hannaford (Graduate Student Instructor), Sandra Trujillo, Solomon Dobrowski, Brent Mishler (Professor, IB), Ylva Carosone, Stephanie Yelenik, Joanna Canepa, Kendra Bergstrom, Peter Weber (Graduate Student Instructor), Julianne Ludwig, Larry Rabin, Damien Filiatrault, Steve Strand (Executive Director, Gump Research Station), and Carole Hickman (Professor, IB). Reclining or seated, from left: Xavier Mayali, Chris Feldman, Sapna Khandwala, Isa Woo, Tracy Benning (Professor, ESPM), Patricia Sanchez Baracaldo (Graduate Student Instructor), and Michael Emmett. B elo w : The beach and lagoon atTetiaroa, site of a class field trip, with Tahiti (left) and Moorea (right) in the background. Environmental Science, Policy and Management 107, Geography 142, IDS 158, Integrative Biology 158 ' ? /A (e 1996 Student Research papers TABLE OF CONTENTS NK\\V0l( \cK $[05 Introductory remarks. Brent D. Mishler 1 The distribution and morphology of seagrass (Halophila Michael Alan Emmett 2 decipiens) in Moorea, French Polynesia. Zonation of lagoon algae in Moorea, French Polynesia. Xavier Mayali 15 Distributional patterns of mobile epifauna associated with Kendra G. Bergstrom 26 two species of brown algae (Phaeophyta) in a tropical reef ecosystem. Neuston composition and the effect of freshwater sediment Joanna L. Canepa 38 plumes in Paopao and Opunohu Bays (Moorea, French Polynesia). Habitat and cavity preference in the stomatopod Larry Rabin 51 Gonodactylus childi. Factors affecting the distribution of holothuroids on Vaipahu Daniel D. Filiatrault 60 Reef, Moorea, French Polynesia. Comparative effects of the introduced mangrove, Rhizophora Isa Woo 72 stylosa, and the native tree, Hibiscus tiliaceus, on the salt marsh grass, Paspalum vaginatum. Establishment and development of the mangrove fem Ylva Carosone 82 Acrostichum aureum on Moorea, French Polynesia. The success of the introduced Common Myna, Acridotheres Julianne Ludwig 95 tristis, on the island of Moorea, French Polynesia, as demonstrated by foraging patterns related to human development and disturbance. Factors influencing the early life cycle of Inocarpus fagiferus. Sandra Trujillo 112 The distribution of corticolous epiphytes on Hibiscus tiliaceus Solomon Dobrowski 121 in the Opunohu watershed; Moorea, French Polynesia. Leaf retention and decomposition in a tropical island stream, Sapna B. Khandwala 134 Moorea, French Polynesia. Ecological and evolutionary implications of spines on the Stephanie Yelenik 143 tropical stream snail, Clithon spinosa. Distribution and ecology of freshwater shrimp (Decapoda) Chris Feldman 151 in the Opunohu River, Moorea, French Polynesia. A behavioral and ecological phylogeny of the freshwater Jennifer Rose Conners 163 Neritidae on Moorea. m Environmental Science, Policy and Management 107, Geography 142, IDS 158, Integrative Biology 158 1996 Student Research papers --------------------------------------------------------------------------------- N University of California, Berkeley M ^1 ^6 W '* I Biology and | Geomorphology of Tropical Islands ^ J Inroductory Remarks This is a rare course in the modem age of college education, an interdisciplinary course open only by application and interview, that occupies one whole semester (13 units), with a student : teacher ratio of about 2:1, featuring all-inclusive research experience and full immersion in the life of science and a foreign culture. The 15 students spend a month in Berkeley for lectures and labs five days a week, then go to the Richard B. Gump South Pacific Biological Research Station on Moorea in French Polynesia for two months to carry out an intensive research project as well as some general educational field trips and group projects, finally returning to Berkeley for two weeks of non-stop data analysis, library research, and writing. Following a round of peer reviews, the students prepare camera-ready copies for their papers and give an oral presentation in a professional-style symposium. The 1996 class, whose papers follow in this book, set new standards of achievement and formed bonds with each other and the teaching staff that will last a long time. The professors (who spent 1-3 week periods each on Moorea) and the Graduate Student Instructors (who spent the whole two months on Moorea) had a unique opportunity to help each student design their project, go with them in the field, observe their data-gathering and work habits, and assist them in the analysis and write-up phase. This close living and working situation allows the transfer of fundamental methods, theories, and even attitudes about science, in addition to the expected transfer of basic information about islands and their biology. It is extremely rewarding for us to see students transform into research scientists in front of our eyes! Such a course is an expensive and time consuming effort that would not be possible without the help of many people. As lead instructor, I had the privilege of working with several other faculty members, all experts in tropical studies but with a wide spectrum of specialties. In addition to myself, field teaching was done by professors Tracy Benning, Roy Caldwell, Carole Hickman, and David Stoddart, all of whom gave lectures at Berkeley as well. Additional faculty who gave lectures on campus include Carla D'Antonio and Vince Resh. Dr. Chene Semans gave presentations on campus and visited Moorea to help students with cartography; the results of her efforts are evident in this volume. The three intrepid Graduate Student Instructors, Morgan Hannaford, Patricia Sanchez, and Peter Weber deserve special mention. They were responsible for the day-to-day running of the course on Moorea, helping the students in many ways ranging from mundane logistical matters to sophisticated scientific techniques. We literally couldn't have done without them! We thank the Director of the Gump Research Station, Dr. Vince Resh, for facilitating the course's stay at the Station. The Executive Director, Dr. Steven Strand, who resides at the station, helped in all aspects of the course, kept everything working, and was generous with scientific assistance and advice. His wife, Pat Strand, also shared her hospitality and biological expertise and was extremely helpful to all. Thanks also to Frank Murphy for organizing the welcoming tamara'a, Hinano Murphy for her helpful advice, and Marimari Kellum for opening her wonderful garden to the students. We also are grateful to Gordon and Betty Moore (and the Moore Family Foundation) for their continuing support of laboratory and computation facilities at the Station. The three departments involved (Environmental Science, Policy and Management, Geography, and Integrative Biology) committed financial support, personnel, equipment, and facilities. In particular we would like to thank Julie Meyers in Integrative Biology for dealing with finances and accounting, Dorothy Tabron in Integrative Biology for help with supplies and equipment, and Don Bain in Geography fo, help with eotnputation. -j D - Brent D. Mishler Department of Integrative Biology • See also the WWW site at: http://ucmpl.berkeley.edu/moorea/mooreahome.html The Distribution and Morphology of Seagrass (Halophila decipiens) in Moorea, French Polynesia Michael Alan Emmett Environmental Sciences Department, College of Letters and Science University of California, Berkeley 94720 ABSTRACT. A survey of the seagrass resources in Opunohu and Paupau Bays on the island of Moorea, French Polynesia was conducted between October and November, 1996. A single species, Halophila decipiens Ostenfeld. was located in both bays. Each of the bays contained beds in the shallow estuarine backbay areas and the deeper lagoon area of the backreef slope. These seagrass meadows ranged from 3-15 hectares in area. Biomass samples and ecological data were taken at two study areas in each bay, one in each of the two habitat types. Leaf surface area, intemode length, biomass, percent seagrass cover, and the intemodal growth rate data were collected and reported for each study site. The plant morphology within the bed structures was found have statistically significant variations, depending on habitat type and the location within the bed. The plants in the bed margins had a larger intemodal length than those in the interior portions of the bed structure (p=0.0091). The leaf-blade surface areas were smaller in the bed margins than in the interior (p=0.0336). The intemodal lengths were shorter in the lagoon habitats (p=0.0140). The leaf-blade surface areas were larger in lagoon habitats than in the estuarine areas of the two bays (p<0.0001). Leaf surface area was also found to be greater in Opunohu Bay than in Paupau Bay (pO.OOOl). These morphological differences suggest that H. decipiens is a colonizing species adapted to a low light habitat and that it is able to adjust its morphology to accommodate environmental variables. Introduction and provides a secondary ecosystem function of stabilizing bottom sediments (Phillips 1984). As Seagrasses are
Recommended publications
  • New Record of the Seagrass Species Halophila Major (Zoll.) Miquel in Vietnam: Evidence from Leaf Morphology and ITS Analysis
    DOI 10.1515/bot-2012-0188 Botanica Marina 2013; 56(4): 313–321 Nguyen Xuan Vy*, Laura Holzmeyer and Jutta Papenbrock New record of the seagrass species Halophila major (Zoll.) Miquel in Vietnam: evidence from leaf morphology and ITS analysis Abstract: The seagrass Halophila major (Zoll.) Miquel (i) the number of cross veins, which ranges from 18 to 22, is reported for the first time from Vietnam. It was found and (ii) the ratio of the distance between the intramar- growing with other seagrass species nearshore, 4–6 m ginal vein and the lamina margin at the half-way point deep at Tre Island, Nha Trang Bay. Leaf morphology and along the leaf length, which is 1:20–1:25 (Kuo et al. 2006). phylogenetic analysis based on ribosomal internal tran- Recently, genetic markers, including plastid and nuclear scribed spacer sequences confirmed the identification. sequences, have been used to reveal the genetic relation- There was very little sequence differentiation among sam- ships among members of the genus Halophila. Among the ples of H. major collected in Vietnam and other countries molecular markers used, neither single sequence analysis in the Western Pacific region. A very low evolutionary of the plastid gene encoding the large subunit of ribulose- divergence among H. major populations was found. 1,5-bisphosphate-carboxylase-oxygenase (rbcL) and of the plastid maturase K (matK) nor analysis of the concat- Keywords: Halophila major; internal transcribed spacer; enated sequences of the two plastid markers has resolved new record; seagrass; Vietnam. the two closely related species H. ovalis and H. ovata (Lucas et al.
    [Show full text]
  • Reassessment of Seagrass Species in the Marshall Islands1
    Micronesica 2016-04: 1–10 Reassessment of Seagrass Species in the Marshall Islands 1 ROY T. TSUDA Department of Natural Sciences, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA [email protected] NADIERA SUKHRAJ U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd., Honolulu, HI 96850, USA [email protected] Abstract—Recent collections of specimens of Halophila gaudichaudii J. Kuo, previously identified as Halophila minor (Zollinger) den Hartog, from Kwajalein Atoll in September 2016 and the archiving of the specimens at BISH validate the previous observation of this seagrass genus in the Marshall Islands. Previously, no voucher specimen was available for examination. Molecular analyses of the Kwajalein Halophila specimens may demonstrate conspecificity with Halophila nipponica J. Kuo with H. gaudichaudii relegated as a synonym. Herbarium specimens of Cymodocea rotundata Ehrenberg and Hemprich ex Ascherson from Majuro Atoll were found at BISH and may represent the only specimens from the Marshall Islands archived in a herbarium. Cymodocea rotundata, however, has been documented in past literature and archived via digital photos in its natural habitat in Majuro. The previous validation of Thalassia hemprichii (Ehrenberg) Ascherson with specimens, and the recent validation of Halophila gaudichaudii and Cymodocea rotundata with specimens reaffirm the low coral atolls and islands of the Marshall Islands as the eastern limit for the three species in the Pacific Ocean. Introduction In a review of the seagrasses in Micronesia, Tsuda et al. (1977) reported nine species of seagrasses in Micronesia with new records of Thalassodendron ciliatum (Forsskål) den Hartog from Palau, and Syringodium isoetifolium (Ascherson) Dandy and Cymodocea serrulata (R.
    [Show full text]
  • Atlantic Coastal Submerged Aquatic Vegetation
    ASMFC Habitat Management Series #1 Atlantic Coastal Submerged Aquatic Vegetation: A Review of its Ecological Role, Anthropogenic Impacts State Regulation, and Value to Atlantic Coastal Fish Stocks NOTE: Electronic version may be missing tables or figures. Contact ASMFC at 202/289-6400 for copies. Edited by C. Dianne Stephan Atlantic States Marine Fisheries Commission and Thomas E. Bigford National Marine Fisheries Service April 1997 CONTENTS INTRODUCTION Acknowledgments..............................................................................................................ii Introduction.......................................................................1 TECHNICAL PAPERS Ecological Value Of Seagrasses: A Brief Summary For The ASMFC Habitat Committee's SAV Subcommittee .............................................................................. 7 The Relationship Of Submerged Aquatic Vegetation (SAV) Ecological Value To Species Managed By The Atlantic States Marine Fisheries Commission (ASMFC): Summary For The ASMFC SAV Subcommittee.................................. 13 Human Impacts On SAV - A Chesapeake Bay Case Study ........................................ 38 State Regulation And Management Of Submerged Aquatic Vegetation Along The Atlantic Coast Of The United States ................................................................... 42 APPENDICES Appendix 1: Bibliography Of Selected Seagrass Papers ........................................... 57 Appendix 2: SAFMC Policy for Protection and Enhancement of Marine Submerged Aquatic
    [Show full text]
  • SEAGRASS MEADOWS of TAMPA BAY - a REVIEW Roy R
    PROCEEDINGS TAMPA BAY AREA SClENTlFIC INFORMATION SYMPOaUM May 1982 Editors: Sara-Ann F, Treat Joseph L. Simon Roy R. Lewis 111 Robert L, Whitrnan, Jr. Sea Grant Project No. IR/82-2 Grant No, NASUAA-D-00038 Report Number 65 Florida Sea Grant College July 1985 Copyright O 1985 by Bellwether Press ISBN 0-8087-35787 Reproduced directiy from the author's manuscript. AII rights reserved. No part of this book may be reproduced in any form whatsoever, by pho tograplr or rnimeognph or by any other means, by broadcast or transmission, by translation into any kind of language, nor by recording electronicalIy or otherwise, without permissio~lin writing from the publisher, except by a reviewer, who may quote brief passages in critical articles and reviews. Printed in the United States of America. SEAGRASS MEADOWS OF TAMPA BAY - A REVIEW Roy R. Lewis III Mangrove Systems, Inc. Post Office Box 15759 Tampa, Fi 33684 M. 3, Durako M. D. MoffIer Florida Department of Natural Resources Marine Research Laboratory 100 8th Avenue S.E. St. Petersburg, FL 33701 R, C. Phillips Department of Biology Seattle Pacific University Seattle, WA 981 19 ABSTRACT Seagtass meadows presently cover approximately 5,750 ha of the bottom of Tampa Bay, in 81% reduction from the historical coverage of approximately 30,970 ha, Five of the seven species of seagrass occurring in Florida are found in the estuary, typically in less than 2 rn of water. These are: Thalassia testudinum Banks ex Konig (turtle grassh S rin odium filiforme Kutzing (manatee grassh Halodule wrightii Ascherson+ shoal - grass);~uppia maritirna L, (widgeon= and Halophila engelmannii Ascherson, The dominant species are turtle grass and shoal grass.
    [Show full text]
  • Proceedings of a Workshop for Monitoring
    Seagrass-Watch Proceedings of a Workshop for Monitoring Seagrass Habitats in the Kimberley Region, Western Australia Department of Environment & Conservation - West Kimberly Office Broome, Western Australia 23-24 August 2009 Len McKenzie & Rudi Yoshida First Published 2009 ©Seagrass-Watch HQ, 2009 Copyright protects this publication. Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Disclaimer Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. Seagrass-Watch HQ has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of the survey. Readers should ensure that they make appropriate enquires to determine whether new information is available on the particular subject matter. The correct citation of this document is McKenzie, LJ & Yoshida, R.L. (2009). Seagrass-Watch: Proceedings of a Workshop for Monitoring Seagrass Habitats in the Kimberley Region, Western Australia. Department of Environment & Conservation - West Kimberley Office, Broome, 23 - 24 August 2009. (Seagrass-Watch HQ, Cairns). 58pp. Produced by Seagrass-Watch HQ Front cover photos (left to right) Town Beach Broome, One Arm Creek and
    [Show full text]
  • Redalyc.Halophila Baillonis Ascherson: First Population
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MAGALHÃES, KARINE M.; BORGES, JOÃO C.G.; PITANGA, MARIA E. Halophila baillonis Ascherson: first population dynamics data for the Southern Hemisphere Anais da Academia Brasileira de Ciências, vol. 87, núm. 2, abril-junio, 2015, pp. 861-865 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32739721025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2015) 87(2): 861-865 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140184 www.scielo.br/aabc Halophila baillonis Ascherson: first population dynamics data for the Southern Hemisphere KARINE M. MAGALHÃES1, JOÃO C.G. BORGES2 and MARIA E. PITANGA2 1Departamento de Biologia, Universidade Federal Rural de Pernambuco/UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brasil 2Fundação Mamíferos Aquáticos, Av. 17 de Agosto, 2001, 1º andar, Casa Forte, 52061-540 Recife, PE, Brasil Manuscript received on May 8, 2014; accepted for publication on October 25, 2014 ABSTRACT The present paper presents the first population data for the Southern Hemisphere of the rare seagrass Halophila baillonis. The population studied is located in a calm, reef-protected area at depths ≤ 5 m, covering 12,000 m2 (400 m long by 30 m wide, oriented parallel to the coastline).
    [Show full text]
  • Seagrasses of Florida: a Review
    Page 1 of 1 Seagrasses of Florida: A Review Virginia Rigdon The University of Florida Soil and Water Science Departments Introduction Seagrass communities are noted to be some of the most productive ecosystems on earth, as they provide countless ecological functions, including carbon uptake, habitat for endangered species, food sources for many commercially and recreationally important fish and shellfish, aiding nutrient cyling, and their ability to anchor the sediment bottom. These communites are in jeopardy and a wordwide decline can be attributed mainly to deterioration in water quality, due to anthropogenic activities. Seagrasses are a diverse group of submerged angiosperms, which grow in estuaries and shallow ocean shelves and form dense vegetative communities. These vascular plants are not true grasses; however, their “grass-like” qualities and their ability to adapt to a saline environment give them their name. While seagrasses can be found across the globe, they have relatively low taxonomic diversity. There are approximately 60 species of seagrasses, compared to roughly 250,000 terrestrial angiosperms (Orth, 2006). These plants can be traced back to three distinct seagrass families (Hydrocharitaceae, Cymodoceaceace complex, and Zosteraceae), which all evolved 70 million to 100 million years ago from a individual line of monocotyledonous flowering plants (Orth, 2006). The importance of these ecosystems, both ecologically and economically is well understood. The focus of this paper will be to discuss the species of seagrass in Florida, the components which affect their health and growth, and the major factors which threaten these precious and unique ecosystems, as well as programs which are in place to protect and preserve this essential resource.
    [Show full text]
  • Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States
    Reproductive Biology of the Tropical-Subtropical Seagrasses of the Southeastern United States Mark D. Moffler and Michael J. Durako Florida Department of Natural Resources Bureau of Marine Research 100 Eighth Ave., S.E. St. Petersburg, Florida 33701 ABSTRACT Studiesof reproductivebiology in seagrassesof the southeasternUnited States have addressed descriptive morphologyand anatomy,reproductive physiology, seed occurrence,and germination.Halodale wrightii Aschers.,Halophila engelmannii Aschers., Syringodium filiforme Kutz., and Thalassiatestudiaum Banks ex Konig are dioecious;Halophila decipiens Ostenfeld and Ruppiamaritima L. are monoecious.In Halophila johrtsoaii Eiseman, only fernale flowers are known. With the exception of R, maritima, which has hydroanemophilouspollination, these species have hydrophilous pollination. Recent reproductive-ecology studiessuggest that reproductivepatterns are due to phenoplasticresponses and/or geneticadaptation to physico-chemicalenvironmental conditions. Laboratory and field investigationsindicate that reproductive periodicityis temperaturecontrolled, but proposedmechanisms are disputed.Water temperature appears to influencefloral developmentand maybe importantin determiningsubsequent flower densities and fruit/seed production.Flowering under continuouslight in vitro suggeststhat photoperiodplays a limitedrole in floral induction.Flower expression and anthesis,however, may be influencedby photoperiod.Floral morpho- ontogeneticstudies of T. testudinumfield populationsdemonstrated the presenceof early-stageinflorescences
    [Show full text]
  • Seagrass Meadows - Encyclopedia of Earth
    Seagrass meadows - Encyclopedia of Earth http://www.eoearth.org/article/Seagrass_meadows Encyclopedia of Earth Seagrass meadows Lead Author: Carlos M. Duarte (other articles) Article Topics: Oceans and Marine ecology This article has been reviewed and approved by the following Topic Table of Contents Editor: Jean-Pierre Gattuso (other articles) 1 Introduction Last Updated: September 21, 2008 2 Adaptations to Colonize the Sea 3 Seagrass Distribution and Habitat 4 Seagrass Functions 5 Conservation Issues Introduction 6 Further Reading Seagrasses are angiosperms that are restricted to life in the sea. Seagrasses colonized the sea, from terrestrial angiosperm ancestors, about 100 million years ago, which indicates a relatively early appearance of seagrasses in angiosperm evolution. With a rather low number of species (about 50-60), seagrass comprise < 0.02% of the angiosperm flora. Seagrasses are assigned to two families, Potamogetonaceae and Hydrocharitaceae, encompassing 12 genera of angiosperms containing about 50 species (Table 1). Three of the genera, Halophila , Zostera and Posidonia , which may have evolved from lineages that appeared relatively early in seagrass evolution, comprise most (55%) of the species, while Enhalus , the most recent seagrass genus, is represented by a single species ( Enhalus acoroides , Photo 1: Posidonia oceanica meadow in the NW Table 1). Most seagrass meadows are monospecific, but Mediterranean. (Photograph by M. Sanfélix) may develop multispecies, with up to 12 species, meadows in subtropical and tropical waters. Adaptations to Colonize the Sea The colonization of the sea required a number of key adaptations including (1) blade or subulate leaves with sheaths, fitted for high-energy environments; (2) hydrophilous pollination, allowing submarine pollination (except for the genus Enhalus ) and subsequent propagule dispersal; and (3) extensive lacunar systems allowing the internal gas flow needed to maintain the oxygen supply required by their below-ground structures in anoxic sediments.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1980 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/03043770 and cited as: Eiseman, N. J., & McMillan, C. (1980). A new species of seagrass, Halophila johnsonii, from the Atlantic coast of Florida. Aquatic Botany, 9, 15‐19. doi:10.1016/0304‐3770(80)90003‐0 ,~ \'1 \ Aqu.ti,Bowny. 9(198~" t'fIJJ1 .".~ Elsevier Scientific Publishing Company; Amsterdam - Printed in The Netherlands A NEW SPECIES OF SEAGRASS, HALOPHILA JOHNSONII, FROM THE ATLANTIC COAST OF FLORIDA N.J. EISEMAN Harbor Branch Foundation, Fort Pierce, FL 33450 (U.S.A.) CALVIN MCMILLAN Department ofBotany and Plant Ecology Research Laboratory, Uniuersity of Texas at Austin, Austin, TX 78712 (U.S.A.) (Accepted 21 January 1980) ABSTRACT Eiseman, N.J. and McMillan, C., 1980. A new species of seagrass, Halophila johnsonii, from the Atlantic coast of Florida. Aquat. Bot., 9: (5-1-9. Plants that occur in shallow lagoons from Sebastian Inlet to Biscayne Bay on the Atlantic coast of Florida are described as a new species, Halophila johnsonii, in section Halophila. Pistillate flowers have been observed from April to July and fruits in August, but staminate flowers have not been collected, suggesting that H. johnsonii may be apomictic. The plants have previously been referred to as H. decipiens Ostenfeld, a pantropical spe­ cies that is found at depths of 20 m on the continental shelf along the Atlantic coasts of Florida.
    [Show full text]
  • Halophila Decipiens and Halophila Hawaiiana
    A Case Study of Seagrasses in Hawaii : Halophila decipiens and Halophila hawaiiana (Hydrocharitaceae) ECEIIVE DEC 1 8 2001 Submitted by: Anne Siegenthaler December 12,2001 M*f?Pdr OPT10N PFDGRAQ i Windward Community College i- Marine Option Program Project LeaderIAdvisor: Dr. Catherine Unabia Dept. of Botany, University of Hawaii ABSTRACT A study of the newly discovered alien seagrass, Halophiladecipiens, has been undertaken on the island of Oahu in the Hawaiian islands. H. decipiens has been found in several locations throughout Oahu, from Honolulu's Runway Reef and Ala Moana Beach Park, to the Windward Kaneohe Bay, and South Shore's Kahala Bay. The main study site focuses on the lagoon fronting the Kahala Mandarin Hotel, where a population of the native Halophila hawaiiana grows adjacent to the alien H. decipiens. Four 100m transects were set up parallel to the shoreline in an attempt to quantify the population densities for both species' populatibns by counting individual leaf pairs in a 9cm X 9cm quadrat area every 5m along each 100m transect. The data showed that the alien seagrass populations are much more dense, extensive and abundant than the native seagrass, whose populations are sparse and delegated to only one small corner of the lagoon. Upon further study, the alien seagrass was found growing in several locations along the Kahala Bay shoreline, downstream from the initial study site. These populations were mapped using GPS, and no native seagrasses were found amongst them. From the Kahala Bay study, it is clear that the alien seagrass is taking over the habitat of the native seagrass.
    [Show full text]
  • Evolutionary Trends in the Seagrass Genus Halophila (Thouars)
    BULLETIN OF MARINE SCIENCE, 71(3): 1299–1308, 2002 View metadata, citationEVOLUTIONARY and similar papers atTRENDS core.ac.uk IN THE SEAGRASS GENUS HALOPHILAbrought to you by CORE (THOUARS): INSIGHTS FROM MOLECULARprovided PHYLOGENY by The University of North Carolina at Greensboro Michelle Waycott, D. Wilson Freshwater, Robert A. York, Ainsley Calladine and W. Judson Kenworthy ABSTRACT Relationships among members of the seagrass genus Halophila (Hydrocharitaceae) were investigated using phylogenetic analysis of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA. The final aligned ITS sequence data set of 705 base pairs from 36 samples in 11 currently recognised species included 18.7% parsimony informative characters. Phylogenetic analysis yielded two most parsimonious trees with strong support for six groups within the genus. Evolutionary trends in Halophila appear to be toward a more reduced simple phyllotaxy. In addition, this study indicates that long distance ‘jump’ dispersal between major ocean systems may have occurred at least in the globally distributed H. decipiens. Results of ITS analyses also indicate that the wide- spread pacific species H. ovalis is paraphyletic and may contain cryptic species. Like- wise, the geographically restricted species H. hawaiiana and H. johnsonii could not be distinguished from H. ovalis with these data and warrant further investigation. Marine angiosperms have evolved to survive a particular set of environmental con- straints (Arber, 1920; den Hartog, 1970; Larkum and den Hartog, 1989). A detailed mo- lecular systematic analysis of the subclass Alismatidae which included all seagrass gen- era, demonstrated, that there have been at least three independent origins of the seagrasses in three major family groups, marine Hydrocharitaceae, Zosteraceae and a group contain- ing the Cymodoceaceae, Posidoniaceae and Ruppiaceae (Les et al., 1997).
    [Show full text]