SOLAR ECLIPSE NEWSLETTER SOLAR ECLIPSE February 2004 NEWSLETTER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Helium Mrs. Ahng the Second Lightest Element on Earth, Helium Is One Of
Helium Mrs. Ahng The second lightest element on Earth, Helium is one of the most important elements in our universe. It is the reason that we have sunlight, it makes balloons float, and used to cool down nuclear reactors. Although it is a simple noble gas with only two protons and two electrons, it is a powerful and essential resource. Discovered in1868 by astronomer Pierre Janssen while studying a solar eclipse; he noticed a yellow line around sun that had a wavelength that he had not seen before. English Astronomer Sir Norman Lockyer later named the element after the Greek word “Helios”, making the connection to how it was discovered. Helium only makes ups less than 1% of Earth’s atmosphere because of how light it is. It’s atomic mass is only 4.003, so the surrounding air is heavier than helium. An example of the difference in mass can be seen when comparing a helium filled balloon to a balloon filled with a mixture of atmospheric gases. The mass of the mixture is much heavier, and therefore is more effected by gravitational pull. Helium is found mostly in space in the core of stars, but it was also found on Earth in 1895 trapped underground. Scientists believe that the Helium that we harvest today was created during the creation of the universe, or the “Big Bang”. Only two electrons energize one orbital for this element, giving us the popular image for all atoms. With the outer orbital shell full, the element is referred to as inert and nonreactive. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
78 Gina Greene Gina Greene
78 Gina Greene Gina Greene Eiffel’s Apartment and the Architecture of Dreams [T]he three friends returned to their slumbers. Could they have found a calmer or more peaceful spot to sleep in? On the earth, houses, towns, cottages, and country feel every shock given to the exterior of the globe. On sea, the vessels rocked by the waves are still in motion; in the air, the balloon oscillates incessantly on the fluid strata of divers densities. This projectile alone, floating in perfect space, in the midst of perfect silence, offered perfect repose. --Jules Verne, From the Earth to the Moon, 18901 Who among us, in his idle hours, has not taken a delicious pleasure in constructing for himself a model apartment, a dream house, a house of dreams? --Charles Baudelaire, 18522 In 1890, the year after the Eiffel Tower opened as the centerpiece of the Paris Exposition Universelle, writer Henri Girard declared, in a small volume dedicated to La Tour Eiffel de Trois Cent Métres,that its designer, Gustave Eiffel, had become “the object of general envy” amongst the denizens of Paris [Fig.1].3 This envy, according to Girard, was inspired not by the fame that had accrued upon its designer, or the fortune the tower generated but, rather, from a single design feature he had built into the plan. Eiffel had installed a private apartment at the summit of his colossal tower to which he alone had access. 80 Gina Greene Unlike the rest of the tower, the apartment was not notable for its iterations of wrought iron modernity and technological prowess. -
Milestones and Personalities in Science and Technology
History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting, -
Glossary of Lunar Terminology
Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites. -
Interview with Lou Mayo Transcript (Pdf)
Sun-Earth Day Highlights Eclipse 2008: China Interview with Lou May: New Activity for Amateur Astronomers [Troy Cline] My name is Troy Cline and welcome to another Sun-Earth Day Highlights podcast. In today's podcast well talk with Lou Mayo about a new eclipse based activity that he designed specifically for the Amateur Astronomer section of the Sun-Earth Day website. The title of that activity is the, "NASA Lunar Parallax Challenge". Lou will also give us some rather interesting historical information about eclipses, the significance of eclipse viewing in today's world, how you can find more eclipse information on-line and finally how to start your own After School Astronomy Club. So let's get started. Here's Lou. [Lou Mayo] Well, you know Troy we live in a magnificent era right now where we understand the universe in ways that were impossible only 50 or 100 years ago. For most of human history we have not understood the true nature of eclipses. And so, most eclipses were viewed with fear and foreboding, bad omens. There are many stories of the significance of eclipses. In history the Lydians and Medes, that’s a great story from about 430 B.C., these 2 groups had been fighting for 5 years. They’d had constant wars. The advantage shifted back and forth. Nobody seemed to be winning but in the 6th year for their war, an eclipse occurred and they were so afraid that the gods were unhappy with this war that they immediately stopped all fighting and formed a peace treaty. -
Lunar Distances Final
A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem. -
This Months KAS Events
Highlights of the February Sky . 2nd. Last Quarter Moon . 5th. February 2005 Aurigid Meteor Shower (5th-10th) This Months KAS Events . 7th. Mars 0.7° N of Lagoon Nebula, M20 and M21 also nearby First Light A Beginners Guide to Telescopes th . 8 . By Richard Bell New Moon 7:00 pm Friday, February 4 .. 15th. Kalamazoo Area Math & Science Center First Quarter Moon Space Robotics .. 16th. Young Astronomers Moon 1.5° S of the Pleiades, 6:30 pm Tuesday, February 15 best in western states Trinity Reformed church .. 23rd. Full Moon Inside this Newsletter. .. 26th. Zodiacal Light visible in W January Meeting Minutes..................................... p. 2 after evening twilight for next 2 weeks Board Meeting Minutes....................................... p. 2 Observations…………………………........... p. 3 .. 27th. NASA Space Place............................................... p. 4 Jupiter 1.9° S of Moon, best in Young Astronomers…………….…................ p. 5 western states The Book Corner……......................................... p. 6 KAS Officers & Announcements...................... p. 7 Membership Form (Renew NOW).................... p. 8 February Sky Calendar…………....................... p. 9 www.kasonline.org February 2005 Page 2 January Meeting Board Meeting Minutes Minutes As appropriate for a frigid January meeting day, Molly and The KAS board met at 4 pm on 1/9/05 at Trinity Reformed Roger Williams gave a presentation on their trip to Ice- Church (326 W. Cork St.). Present were Richard Bell, land in September, 2004. Beverly Byle, Rich Mather, Robert Havira, Frank Sever- ance, Carol Van Dien, Robert Wade, and Roger Williams. Molly started off the presentation by describing the geol- ogy of the region, which is dominated by black lava, gla- After approval of the agenda, the treasurer’s report was ciers, numerous scenic waterfalls (often with associated examined. -
John Rombi MAS Committee
Volume 15, Issue 2 February 2010 Inside this issue: President’s Report: John Rombi Secretary’s Column 2 Doin’ It In The Dark: Trevor Rhodes 4 Welcome fellow amphibians. I feel like I’ve been living under the sea for the last few weeks. The rain has been a godsend, but unfortunately has led to our Amazing Who You Meet on the Moon 4 observing nights being cancelled. Long range forecasters have predicted a wet March as well. Does anybody want to buy a telescope? In January It was great to catch up with everyone at our first meeting; it is very pleasing to see the enthusiasm shown for the year ahead, especially by the newer mem- bers. MAS Committee (Continued on page 2) President John Rombi Vice President MAS Dates 2010 Trevor Rhodes February 2010 17/7/10 Stargard Secretary 06/02/10 Stargard 19/7/10 General Meeting Roger Powell 13/02/10 The Forest Treasurer 15/02/10 General Meeting August 2010 Tony Law 07/8/10 The Forest March 2010 14/8/10 Stargard Merchandising Officer 13/3/10 Stargard 16/8/10 General Meeting Stewart Grainger 15/3/10 General Meeting 20/3/10 The Forest September 2010 Webmaster 04/9/10 Stargard Chris Malikoff April 2010 11/9/10 The Forest 10/4/10 Stargard 20/9/10 General Meeting Committee Members Lloyd Wright 12/4/10 General Meeting Stuart Grainger 17/4/10 The Forest October 2010 Ivan Fox 02/10/10 Stargard May 2010 09/10/10 The Forest Patrons 08/5/10 Stargard 18/10/10 General Meeting Professor Bryan Gaensler (Syd Uni) 15/5/10 The Forest 30/10/10 Stargard Doctor Ragbir Bhathal (UWS) 17/5/10 General Meeting November 2010 MAS Postal Address June 2010 06/11/10 The Forest P.O. -
Kiss of the Goddess | the Economist
5/9/2016 Kiss of the goddess | The Economist Transits of Venus Kiss of the goddess Venus will soon cross the face of the sun, and astronomers around the world will have a party May 27th 2004 | From the print edition FOR about six hours on Tuesday June 8th, the sun will be fainter than usual. There is no need to panic. It will fade by a mere 0.1%. Only a diligent observer with the correct viewing equipment will notice something odd: there will be a small, dark dot on the disc of the sun, like a solitary pea on a yellow dinner plate. The pea is Venus, passing directly between Earth and the sun for the first time since 1882. Insignificant though it may seem, this rare celestial event, a “transit of Venus”, was once thought a key to understanding the universe. Two and a half centuries ago, countries dispatched astronomers on risky and expensive expeditions to observe transits from far-flung points across the globe. By doing this, they hoped to make a precise measurement of the distance to the sun and thus acquire an accurate yardstick by which the distance to everything else in the solar system could be measured. Though this quest fell short of its goal, it did produce a much better estimate of that distance. It also produced some interesting spin-offs, such as the invention of the movie camera and the discovery of Australia's Great Barrier Reef. In any case, astronomers—both professional and amateur—are eagerly awaiting the forthcoming transit so that they can commune with the shades of their predecessors. -
Belvidere Apollo/Intelligencer Obituary Index 1883 – 1892
Belvidere Apollo/Intelligencer Obituary Index 1883 – 1892 Last name, First name, MI Date obituary Page Column appeared in the paper # # Abbett, Mary (Colored) November 4, 1892 3 2 Abbett, Morph September 24, 1886 3 1 Abbott, Edward A. December 25, 1891 2 3 Abeel, Gustavus N. (Colonel) January 11, 1884 3 6 Able, Child of Mrs. October 19, 1888 3 1 Able, Mrs. October 19, 1888 3 1 Ace, Daughter of Horace April 10, 1891 2 4 Acken, John R. October 19, 1883 3 6 Ackerman, Harvey September 11, 1885 3 6 Ackerson, Effie G. May 29, 1885 2 3 Adair, John July 22, 1887 3 5 Adams (Ex-Sheriff) July 22, 1887 3 5 Adams, 2 children of Mrs. John December 24, 1886 3 5 Adams, A. K. September 16, 1887 3 5 Adams, Alexander April 10, 1885 2 4 Adams, Alexander April 17, 1885 2 4 Adams, Charles May 15, 1891 3 6 Adams, Daniel C. December 18, 1891 3 3 Adams, Isreal S. (Hon.) December 12, 1884 2 1 Adams, Lydia July 24, 1891 2 4 Agnew, Andrew February 10, 1888 2 3 Airton, John, Jr. August 28, 1885 3 6 Albertson, Derrick September 12, 1884 2 5 Albertson, Gideon L. May 18, 1888 3 2 Albertson, Henry June 15, 1888 2 4 Albertson, Henry June 15, 1888 3 2 Albertson, Levi H. November 1, 1889 3 2 2 Last name, First name, MI Date obituary Page Column appeared in the paper # # Albertson, Maria O. August 29, 1884 2 5 Albertson, Mrs. August 1, 1890 3 3 Albertson, Rebecca March 7, 1890 2 4 Albertson, Susannah C.