Transcriptases Are Endonucleases (Human Immunodeficiency Virus/Avian Myeloblastosis Virus) MARC S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redundancy in Ribonucleotide Excision Repair: Competition, Compensation, and Cooperation
DNA Repair 29 (2015) 74–82 Contents lists available at ScienceDirect DNA Repair j ournal homepage: www.elsevier.com/locate/dnarepair Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation ∗ Alexandra Vaisman, Roger Woodgate Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA a r t i c l e i n f o a b s t r a c t Article history: The survival of all living organisms is determined by their ability to reproduce, which in turn depends Received 1 November 2014 on accurate duplication of chromosomal DNA. In order to ensure the integrity of genome duplication, Received in revised form 7 February 2015 DNA polymerases are equipped with stringent mechanisms by which they select and insert correctly Accepted 9 February 2015 paired nucleotides with a deoxyribose sugar ring. However, this process is never 100% accurate. To fix Available online 16 February 2015 occasional mistakes, cells have evolved highly sophisticated and often redundant mechanisms. A good example is mismatch repair (MMR), which corrects the majority of mispaired bases and which has been Keywords: extensively studied for many years. On the contrary, pathways leading to the replacement of nucleotides Ribonucleotide excision repair with an incorrect sugar that is embedded in chromosomal DNA have only recently attracted significant Nucleotide excision repair attention. This review describes progress made during the last few years in understanding such path- Mismatch repair Ribonuclease H ways in both prokaryotes and eukaryotes. Genetic studies in Escherichia coli and Saccharomyces cerevisiae Flap endonuclease demonstrated that MMR has the capacity to replace errant ribonucleotides, but only when the base is DNA polymerase I mispaired. -
Supporting Information
Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus. -
Mechanisms of Salmonella Attachment and Survival on In-Shell Black Peppercorns, Almonds, and Hazelnuts
UC Irvine UC Irvine Previously Published Works Title Mechanisms of Salmonella Attachment and Survival on In-Shell Black Peppercorns, Almonds, and Hazelnuts. Permalink https://escholarship.org/uc/item/5534264q Authors Li, Ye Salazar, Joelle K He, Yingshu et al. Publication Date 2020 DOI 10.3389/fmicb.2020.582202 Peer reviewed eScholarship.org Powered by the California Digital Library University of California fmicb-11-582202 October 19, 2020 Time: 10:46 # 1 ORIGINAL RESEARCH published: 23 October 2020 doi: 10.3389/fmicb.2020.582202 Mechanisms of Salmonella Attachment and Survival on In-Shell Black Peppercorns, Almonds, and Hazelnuts Ye Li1, Joelle K. Salazar2, Yingshu He1, Prerak Desai3, Steffen Porwollik3, Weiping Chu3, Palma-Salgado Sindy Paola4, Mary Lou Tortorello2, Oscar Juarez5, Hao Feng4, Michael McClelland3* and Wei Zhang1* 1 Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL, United States, 2 Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, United States, 3 Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States, 4 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 5 Department Edited by: of Biology, Illinois Institute of Technology, Chicago, IL, United States Chrysoula C. Tassou, Institute of Technology of Agricultural Products, Hellenic Agricultural Salmonella enterica subspecies I (ssp 1) is the leading cause of hospitalizations and Organization, Greece deaths due to known bacterial foodborne pathogens in the United States and is Reviewed by: frequently implicated in foodborne disease outbreaks associated with spices and nuts. -
Potent Inhibition of Human Telomerase by U-73122
Journal of Biomedical Science (2006) 13:667–674 667 DOI 10.1007/s11373-006-9100-z Potent inhibition of human telomerase by U-73122 Yi-Jui Chen, Wei-Yun Sheng, Pei-Rong Huang & Tzu-Chien V. Wang* Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan, 333, Taiwan Received 28 April 2006; accepted 14 June 2006 Ó 2006 National Science Council, Taipei Key words: alkylating agents, cancer therapyzU-73122, N-ethylmaleimide, telomerase inhibitor Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 lM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hemato- poietic cancer cells. -
Genetic Snapshots of the Rhizobium Species NGR234 Genome
Article Genetic snapshots of the Rhizobium species NGR234 genome VIPREY, Virginie, et al. Abstract In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than I 12 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome, that of NGR234 is partitioned into three replicons: a chromosome of about 3.5 Mb, a megaplasmid of more than 2 Mb (pNGR234b) and pNGR234a, a 536,165 bp plasmid that carries most of the genes required for symbioses with legumes. Symbiotic loci represent only a small portion of all the genes coded by rhizobial genomes, however. To rapidly characterize the two largest replicons of NGR234, the genome of strain ANU265 (a derivative strain cured of pNGR234a) was analyzed by shotgun sequencing. Reference VIPREY, Virginie, et al. Genetic snapshots of the Rhizobium species NGR234 genome. Genome Biology, 2000, vol. 1, no. 6, p. 1-17 DOI : 10.1186/gb-2000-1-6-research0014 PMID : 11178268 Available at: http://archive-ouverte.unige.ch/unige:84778 Disclaimer: layout of this document may differ from the published version. 1 / 1 http://genomebiology.com/2000/1/6/research/0014.1 Research Genetic snapshots of the Rhizobium species NGR234 genome Virginie Viprey*, André Rosenthal, William J Broughton* and Xavier Perret* Addresses: *Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, chemin de lImpératrice, 1292 Chambésy, Genève, Switzerland. Institut für Molekulare Biotechnologie, Abteilung Genomanalyze, Beutenbergstrasse, 07745 Jena, Germany. -
Anti-Dicer (SAB4200087)
Anti-Dicer produced in rabbit, affinity isolated antibody Product Number SAB4200087 Product Description Precautions and Disclaimer Anti-Dicer is produced in rabbit using as the For R&D use only. Not for drug, household, or other immunogen a synthetic peptide corresponding to a uses. Please consult the Safety Data Sheet for fragment of human Dicer (Gene ID: 23405) conjugated information regarding hazards and safe handling to KLH. The corresponding sequence is identical in practices. mouse. The antibody is affinity-purified using the immunizing peptide immobilized on agarose. Storage/Stability Store at –20 C. For continuous use, store at 2–8 C for Anti-Dicer recognizes human Dicer. The antibody may up to one month. For extended storage, freeze in be used in several immunochemical techniques working aliquots at –20 C. Repeated freezing and including immunoblotting (218 kDa), immuno- thawing, or storage in “frost-free” freezers, is not precipitation, and immunofluorescence. Detection of recommended. If slight turbidity occurs upon prolonged the Dicer band by immunoblotting is specifically storage, clarify the solution by centrifugation before inhibited with the immunizing peptide. use. Working dilutions should be discarded if not used within 12 hours. Dicer, also known as Dicer1, Endoribonuclease Dicer, Helicase with RNase motif, and HERNA, is a member Product Profile of the RNase III family that catalyzes the first step in the Immunoblotting: a working antibody concentration of RNA interference (RNAi) pathway and initiates 3-6 g/mL is recommended using HeLa cell lysates. formation of the RNA-induced silencing complex (RISC). Dicer processes the dsRNA into small Immunoprecipitation: a working antibody amount of fragments called short interfering RNA (siRNA) or 2.5-5 g is recommended using HeLa cell lysates. -
Exoribonuclease Nibbler Shapes the 3″ Ends of Micrornas
Current Biology 21, 1878–1887, November 22, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.09.034 Article The 30-to-50 Exoribonuclease Nibbler Shapes the 30 Ends of MicroRNAs Bound to Drosophila Argonaute1 Bo W. Han,1 Jui-Hung Hung,2 Zhiping Weng,2 precursor miRNAs (pre-miRNAs) [8]. Pre-miRNAs comprise Phillip D. Zamore,1,* and Stefan L. Ameres1,* a single-stranded loop and a partially base-paired stem whose 1Howard Hughes Medical Institute and Department of termini bear the hallmarks of RNase III processing: a two-nucle- Biochemistry and Molecular Pharmacology otide 30 overhang, a 50 phosphate, and a 30 hydroxyl group. 2Program in Bioinformatics and Integrative Biology Nuclear pre-miRNAs are exported by Exportin 5 to the cyto- University of Massachusetts Medical School, plasm, where the RNase III enzyme Dicer liberates w22 nt 364 Plantation Street, Worcester, MA 01605, USA mature miRNA/miRNA* duplexes from the pre-miRNA stem [9–12]. Like all Dicer products, miRNA duplexes contain two- nucleotide 30 overhangs, 50 phosphate, and 30 hydroxyl groups. Summary In flies, Dicer-1 cleaves pre-miRNAs to miRNAs, whereas Dicer-2 converts long double-stranded RNA (dsRNA) into Background: MicroRNAs (miRNAs) are w22 nucleotide (nt) small interfering RNAs (siRNAs), which direct RNA interference small RNAs that control development, physiology, and pathol- (RNAi), a distinct small RNA silencing pathway required for ogy in animals and plants. Production of miRNAs involves the host defense against viral infection and somatic transposon sequential processing of primary hairpin-containing RNA poly- mobilization, as well as gene silencing triggered by exogenous merase II transcripts by the RNase III enzymes Drosha in the dsRNA [13, 14]. -
2.2.3 Generation of Genomic DNA Sequences from Plant Sources
Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk The Hong Kong Polytechnic University Department of Health Technology and Informatics Isolation and Characterisation of Nucleases from Various Biological Sources for Further Application in Nucleic Acid Analysis By CHEUNG Tsz Shan A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy March 2012 CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no materials previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgment has been made in the text. -
Supplementary Materials
Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented. -
Characterization of the Mammalian RNA Exonuclease 5/NEF-Sp As a Testis-Specific Nuclear 3′′′′′ → 5′′′′′ Exoribonuclease
Downloaded from rnajournal.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press Characterization of the mammalian RNA exonuclease 5/NEF-sp as a testis-specific nuclear 3′′′′′ → 5′′′′′ exoribonuclease SARA SILVA,1,2 DAVID HOMOLKA,1 and RAMESH S. PILLAI1 1Department of Molecular Biology, University of Geneva, CH-1211 Geneva 4, Switzerland 2European Molecular Biology Laboratory, Grenoble Outstation, 38042, France ABSTRACT Ribonucleases catalyze maturation of functional RNAs or mediate degradation of cellular transcripts, activities that are critical for gene expression control. Here we identify a previously uncharacterized mammalian nuclease family member NEF-sp (RNA exonuclease 5 [REXO5] or LOC81691) as a testis-specific factor. Recombinant human NEF-sp demonstrates a divalent metal ion-dependent 3′′′′′ → 5′′′′′ exoribonuclease activity. This activity is specific to single-stranded RNA substrates and is independent of their length. The presence of a 2′′′′′-O-methyl modification at the 3′′′′′ end of the RNA substrate is inhibitory. Ectopically expressed NEF-sp localizes to the nucleolar/nuclear compartment in mammalian cell cultures and this is dependent on an amino-terminal nuclear localization signal. Finally, mice lacking NEF-sp are viable and display normal fertility, likely indicating overlapping functions with other nucleases. Taken together, our study provides the first biochemical and genetic exploration of the role of the NEF-sp exoribonuclease in the mammalian genome. Keywords: NEF-sp; LOC81691; Q96IC2; REXON; RNA exonuclease 5; REXO5; 2610020H08Rik INTRODUCTION clease-mediated processing to create their final 3′ ends: poly(A) tails of most mRNAs or the hairpin structure of Spermatogenesis is the process by which sperm cells are replication-dependent histone mRNAs (Colgan and Manley produced in the male germline. -
Mung Bean Nuclease Product Information
Certificate of Analysis Mung Bean Nuclease: Part No. Size (units) Part# 9PIM431 M431A 2,000 Revised 4/18 10X Reaction Buffer (M432A): When the Mung Bean Nuclease 10X Reaction Buffer, provided with this enzyme, is diluted 1:10, it has a composition of 0.03M sodium acetate (pH 5.0), 0.05M NaCl and 1mM ZnCl2. Enzyme Storage Buffer: Mung Bean Nuclease is supplied in 10mM Tris-HCl (pH 7.5), 50mM NaCl, 0.01% Triton® X-100 and 50% glycerol. Source: Mung bean sprouts (Phaseolus aureus). Unit Definition: One unit is defined as the amount of enzyme required to produce 1µg of acid-soluble material per minute *AF9PIM431 0418M431* at 37°C. The reaction conditions are: 30mM sodium acetate (pH 5.0), 50mM NaCl, 1mM ZnCl2, 5% glycerol and 0.5mg/ml AF9PIM431 0418M431 denatured calf thymus DNA. See the unit concentration on the Product Information Label. Storage Temperature: Store at –20°C. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Quality Control Assays Contaminant Assay Endonuclease/Nickase Activity: To confirm the absence of contaminating endonuclease/nickase activity, 1µg of lambda DNA/Hind III markers (Cat.# G1711) is incubated with Mung Bean Nuclease for 10 minutes at room temperature. The mark- ers are then separated by electrophoresis on a 1% agarose gel and stained with ethidium bromide. Markers that have been Promega Corporation incubated with ≥60 units of enzyme will remain as intact bands with a minimal amount of smearing. 2800 Woods Hollow Road Madison, WI 53711-5399 USA Telephone 608-274-4330 Toll Free 800-356-9526 Fax 608-277-2516 Internet www.promega.com PRODUCT USE LIMITATIONS, WARRANTY, DISCLAIMER Promega manufactures products for a number of intended uses. -
DICER1 Gene Dicer 1, Ribonuclease III
DICER1 gene dicer 1, ribonuclease III Normal Function The DICER1 gene provides instructions for making a protein that plays a role in regulating the activity (expression) of other genes. The Dicer protein aids in the production of a molecule called microRNA (miRNA). MicroRNAs are short lengths of RNA, a chemical cousin of DNA. Dicer cuts (cleaves) precursor RNA molecules to produce miRNA. MicroRNAs control gene expression by blocking the process of protein production. In the first step of making a protein from a gene, another type of RNA called messenger RNA (mRNA) is formed and acts as the blueprint for protein production. MicroRNAs attach to specific mRNA molecules and stop the process by which protein is made. Sometimes, miRNAs break down the mRNA, which also blocks protein production. Through this role in regulating the expression of genes, Dicer is involved in many processes, including cell growth and division (proliferation) and the maturation of cells to take on specialized functions (differentiation). Health Conditions Related to Genetic Changes DICER1 syndrome Mutations in the DICER1 gene cause DICER1 syndrome. People with this condition have an increased risk of developing many types of tumors, particularly certain tumors of the lungs (pleuropulmonary blastoma); kidneys (cystic nephroma); ovaries (Sertoli- Leydig tumors); and thyroid, a butterfly-shaped gland in the lower neck (multinodular goiter). Most of these mutations lead to an abnormally short Dicer protein that is likely unable to produce miRNA. Without regulation by