Exploring the Representativeness Heuristic
Total Page:16
File Type:pdf, Size:1020Kb
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 37 In Search of Prototypes and Feminist Bank-Tellers: Exploring the Representativeness Heuristic HÅKAN NILSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1652-9030 UPPSALA ISBN 978-91-554-7102-6 2008 urn:nbn:se:uu:diva-8476 !" # $ # # % & ' ( ) $& * +& & , # % - . /0'" ) $ 1 +& 2 & !3& & & ,.* 4304 055603 0& 2 $ 71+8 # # $ 9 72& '/ : & ; 4368& 2 9 1+ ( $ 9 # $ $ & , # 1+ $ # " 78 1+ $ $ & ' # $ # <& 78 ' 1+ & ' # $ 9 # 0 $& ' # $ # 1+& ' ( & = 1+ 9 ( 9 & , 9 ( $ 9 # $ $ & , $ $ ( 9 & , 9 # 1+& ' , 0 9 $ 1+& 1 , 0 $$ 9 , $$ 9 # $ (& > $$ ($ $ ( $ 9 & 2 ( $ $ # ($ $ & ? $ $ ,9 1 %1=.)@ ?$ $ ? $ $ ? 9 # ! " ! # $ %&&'! ! ()*'%+& ! A +B/ * ,,* 504! ,.* 4304 055603 0 " """ 063 7 "CC &/&C D E " """ 0638 Till Filip iv List of Papers This thesis is based on the following studies, which in the following will be referred to by their Roman numerals. I Nilsson, H., Olsson, H., & Juslin, P. (2005). The cognitive substrate of subjective probability. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 600-620. II Nilsson, H., Juslin, P., & Olsson, H. (in press). Exemplars in the mist: The cognitive substrate of the representativeness heuristic. Scan- dinavian Journal of Psychology. III Nilsson, H. (2008). The conjunction fallacy: A phenomenon not caused by the representativeness heuristic. Manuscript submitted for publication. v vi Contents 1. Introduction.................................................................................................1 2. Subjective Probability.................................................................................3 2.1. The Evolution of Probability...............................................................3 2.2. Modern Research on Subjective Probability .......................................5 2.2.1. Judgment and Decision Making ..................................................5 2.2.2. Learning.....................................................................................10 3. The Representativeness Heuristic .............................................................13 3.1. Assumptions......................................................................................13 3.2. Critique..............................................................................................16 4. The Conjunction Fallacy...........................................................................18 4.1. The Conjunction Fallacy and the Standard Problem.........................18 4.2. Methodology Debate.........................................................................19 4.3. Empirical Evidence ...........................................................................20 4.4. Potential Explanations.......................................................................20 5. Empirical Studies......................................................................................23 5.1. Study I: The Cognitive Substrate of the Representativeness Heuristic ..................................................................................................................23 5.1.1. Three Theories, Five Models.....................................................23 5.1.2. Method.......................................................................................27 5.1.3. Results .......................................................................................29 5.1.4. Discussion..................................................................................31 5.1.5. Cognitive Modeling and Model Evaluation...............................31 5.2. Study II: Are Representativeness Effects Caused by the Representativeness Heuristic?..................................................................33 5.2.1. Introduction ...............................................................................33 5.2.2. Simulation..................................................................................34 5.2.3. Experiment.................................................................................34 5.2.4. Discussion..................................................................................35 5.3. Study III: Are Conjunction Fallacies Caused by the Representativeness Heuristic?..................................................................36 5.3.1. Introduction ...............................................................................36 5.3.2. Method.......................................................................................37 vii 5.3.3. Results .......................................................................................39 5.3.4. Discussion..................................................................................39 6. General Discussion ...................................................................................42 6.1. Summary of Results ..........................................................................42 6.2. Implications for the Representativeness Heuristic ............................43 6.3. Exemplar Memory, the Cognitive Substrate of Subjective Probability ..................................................................................................................45 6.4. Which Combination-Rule is Causing the Conjunction Fallacy?.......46 6.5. The Ecological Relevance of the Tasks ............................................50 6.6. Final Remarks ...................................................................................51 Acknowledgement ........................................................................................52 References.....................................................................................................53 viii Abbreviations CBRF Cue-Based Relative Frequency CRH Combination-Rule Hypothesis PROBEX PRObabilities from EXemplars RHH Representativeness Heuristic Hy- pothesis REP[ESAM] REPresentativeness as Evidential Support Accumulation REP[L] REPresentativeness as relative Like- lihood REP[P] REPresentativeness as Prototype similarity RMSD Root Mean Squared Deviation WAH Weighted Average Hypothesis ix x 1. Introduction Imagine that a posh friend has invited you over for a glass of wine. On your arrival he tells you that he has two bottles, one (ridiculously) expensive and one medium-priced. He wants to taste the exclusive wine but can not decide if it is worth wasting half the bottle on you. Therefore, he has decided to test your knowledge of wines. He covers your eyes and hands you a glass of wine. He tells you that if you can taste whether this wine is red or white then he will let you taste the exclusive wine. You take a sip and absorb the en- semble of flavors that spreads through your mouth. Based on the characteris- tics of the wine you assess the probability that the wine is red and the prob- ability that it is white and choose the type of wine that it is most likely to be. Everyday we face situations (more or less) similar to the one above, where we evaluate options and rank them according to how likely they are to bring us to a desired goal. The study of subjective probability judgment is the study of how we make such evaluations. In order to understand how probabilities are assessed there are several questions that have to be an- swered. First, how is the relevant knowledge represented in memory? Is the relevant knowledge represented as, for example, frequencies (e.g., Gigeren- zer, Hoffrage, & Kleinbölting, 1991), abstract prototypes (e.g., Kahneman & Frederick, 2002; Koehler, White, & Grondin, 2003), associative links (e.g., Gluck & Bower, 1988a; Lagnado & Shanks, 2002), or memory traces of concrete events (e.g., Dougherty, Gettys, & Ogden, 1999; Juslin & Persson, 2002)? Second, what characterizes the cognitive process behind the subjec- tive probability assessment? Does the process involve, for example, compu- tation of frequency (e.g., Gigerenzer et al., 1991; Juslin, 1994), associative strength (e.g., Gluck & Bower, 1988a; Lagnado & Shanks, 2002), or similar- ity (e.g., Juslin & Persson, 2002; Kahneman & Frederick, 2002)? Third, what empirical patterns emerge in subjective probability judgments? For example, under which conditions do subjective probability judgments obey the rules of probability theory? These questions are of course not independ- ent. Studies aimed at answering one question will provide partial answers to the others as well. Nonetheless, full understanding of how people assess subjective probabilities can not be accomplished without exploring all three questions. This thesis focuses on one of the heuristics for assessing probabilities suggested by the heuristics and biases approach (Gilovich, Griffin, & Kah- neman, 2002; Kahneman, Slovic, & Tversky, 1982), the representativeness 1 heuristic (Kahneman & Tversky, 1972; Kahneman & Frederick, 2002). Ac- cording to the heuristics and biases approach, humans have developed a set of heuristics (cognitive shortcuts) enabling us to cope in a world of uncer- tainty. The scientific strategy of the heuristics and biases approach has been to study frequently occurring data patterns (biases) and to make inferences about which