Climate Change Scenario Modelling for the Fraser River Watershed - Phase 1 - Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Climate Change Scenario Modelling for the Fraser River Watershed - Phase 1 - Final Report 22 March 2018 Prepared for: Prepared By: Ministry of Forests, Lands, Natural Resource Operations & Rural Markus A. Schnorbus Development Lead, Hydrologic Impacts Water Management Branch Pacific Climate Impacts Consortium i ii Table of Contents List of Figures ............................................................................................................................................... iv List of Tables ................................................................................................................................................ iv 1 Background ........................................................................................................................................... 1 2 Project Aim and Scope .......................................................................................................................... 3 2.1 Phase 1 Scope and Deliverables .................................................................................................... 3 2.2 Report Outline............................................................................................................................... 3 3 Study Area ............................................................................................................................................. 5 4 Fraser River VIC-GL Model .................................................................................................................... 7 4.1 Model Description ......................................................................................................................... 7 4.1.1 Land Cover ............................................................................................................................ 7 4.1.2 Soil ......................................................................................................................................... 9 4.1.3 Topography ........................................................................................................................... 9 4.1.4 Hydrologic Response Units ................................................................................................. 10 4.1.5 Routing network and drainage topology ............................................................................ 11 4.2 Forcing data ................................................................................................................................ 11 4.3 Model Calibration Method ......................................................................................................... 13 4.3.1 Streamflow .......................................................................................................................... 14 4.3.2 Evapotranspiration .............................................................................................................. 15 4.3.3 Snow Cover Area ................................................................................................................. 16 4.3.4 Glacier Mass Balance .......................................................................................................... 16 4.3.5 Multi-objective Optimization Function ............................................................................... 17 4.3.6 Parameter Selection ............................................................................................................ 17 4.4 Calibration Results ...................................................................................................................... 18 5 Phase 1 Outstanding Issues ................................................................................................................ 22 5.1 Model Verification ...................................................................................................................... 22 5.2 Hydrologic Projections ................................................................................................................ 22 6 Conclusion ........................................................................................................................................... 24 7 References .......................................................................................................................................... 25 Appendix A – Tables .................................................................................................................................... A1 iii List of Figures Figure 1. Fraser River study area. ................................................................................................................. 5 Figure 2. Land cover - elevation distribution of HRUs in the VICGL Fraser River application. ..................... 9 Figure 3. Example subset of soil parameters for the Fraser basin showing a) thickness of the bottom soil layer, b) saturated hydraulic conductivity of the top soil layer, c) wilting point of the bottom soil layer, and d) particle soil density of the bottom soil layer. .................................................................................. 10 Figure 4. Model domain showing sub-basins (colored polygons) and model drainage network (blue line). Sub-basin outlets are show as red dots (with labels). The thickness of drainage network is proportional to upstream drainage area. ........................................................................................................................ 12 Figure 5. Example calibration graphics comparing simulated versus observed for basin BCHLJ (Bridge River at La Joie Dam) for a) daily discharge hydrograph, b) multi-year average daily discharge, c) daily flow duration curve, d) scatterplot if annual maximum peak flow, e) multi-year average monthly ET, and f) monthly snow cover fraction. .................................................................................................................. 19 Figure 6. Calibration results summarized as box plots, where the thick line shows the median, the box shows the interquartile range (range between the 1st and 3rd quartiles, or 25th and 75th percentiles), whiskers extend to 1.5 times the interquartile range, and outliers are shown as dots. Note that results for HMLEQ have been omitted as results between basins are not directly comparable. ........................... 21 Figure 7. Variation of BMFB with relative glacier area ................................................................................ 21 List of Tables Table 1. VICGL land cover classes ................................................................................................................. 8 Table 2. Parameter values for Fuzzy Score calculation ............................................................................... 18 Table 3. Calibration performance summary ............................................................................................... 20 Table 4. Global climate experiments used in study ensemble ................................................................... 23 Table A1. Sub-basins for the VICGL Fraser model....................................................................................... A1 Table A2. Calibration performance by sub-basin ........................................................................................ A3 iv 1 Background Approximately 380,000 people live in floodplains in the Fraser River basin (based on the 2011 Statistics Canada census, Ebbwater Consulting) and several large communities, including parts of Greater Vancouver, are vulnerable to flooding. Specifically, the greatest flood risk is in the lower Fraser Valley, a floodplain area bordering the Fraser River and extending approximately 170 km downstream from the town of Hope to the river’s mouth, where it flows through Greater Vancouver to tidewater. The occurrence of flooding in this stretch of the Fraser would have substantial social and economic consequences. The anticipated intensification of the global water cycle due to climate change (Huntington 2006; Collins et al. 2013) and its effect on hydrologic systems (Jiménez Cisneros et al. 2017) could have significant implications on the magnitude and frequency of flood hazards. In this context, the nonstationarity of hydrologic extremes (Milly et al. 2008; Salas and Obeysekera 2014; Katz 2013; Rootzén and Katz 2013) is highly relevant as the hazard of riverine flooding could alter significantly in many regions of the world. The potential for changes in sea level is also a significant consideration for coastal communities. Ocean thermal expansion and glacier and ice sheet melt have contributed to rising ocean levels during the 20th century, and it is very likely that the rate of global mean sea level rise during the coming decades will exceed rates observed over the past decades (Church et al. 2013). However, local sea level changes along the Pacific Coast of Canada (which is influenced by vertical land motion and regional ocean dynamics) can differ significantly from the global mean (Han et al. 2015). For the design of flood management structures a design flood profile, or water level, is specified, which is often obtained via hydraulic modelling. This design flood profile is governed by the specification of both upstream and downstream boundary conditions intended to represent extreme discharge and sea level conditions, respectively referred to as the design flow and the design level. The most recent official, provincial design flood profile