Worlds Apart Book Six: Crucible

Total Page:16

File Type:pdf, Size:1020Kb

Worlds Apart Book Six: Crucible WORLDS APART BOOK SIX: CRUCIBLE Copyright © 2006, 2018 James G. Wittenbach www.worldsapartbooks.com All rights reserved. Produced in the United States of America Library of Congress Cataloging in Publication Data Wittenbach, James Worlds Apart Book 06: Crucible Table of Contents Chapter One ............................................................................................. 1 Chapter Two .......................................................................................... 16 Chapter Three ........................................................................................ 28 Chapter Four .......................................................................................... 46 Chapter Five .......................................................................................... 63 Chapter Six ............................................................................................. 70 Chapter Seven........................................................................................ 77 Chapter Eight......................................................................................... 86 Chapter Nine ......................................................................................... 99 Chapter Ten ......................................................................................... 110 Chapter Eleven .................................................................................... 126 Chapter Twelve ................................................................................... 145 Chapter Thirteen ................................................................................. 159 Chapter Fourteen ................................................................................ 172 Chapter Fifteen .................................................................................... 185 Chapter Sixteen ................................................................................... 197 Chapter Seventeen .............................................................................. 211 Chapter Eighteen ................................................................................ 221 Chapter Nineteen ................................................................................ 236 Chapter Twenty................................................................................... 249 Chapter Twenty-One .......................................................................... 266 Chapter Twenty-Two ......................................................................... 284 Chapter Twenty-Two and a Half ...................................................... 290 Chapter Twenty-Three ....................................................................... 302 WORLDS APART BOOK SIX: CRUCIBLE CHAPTER ONE Nineteen seconds have passed since Pegasus entered the Chapultepec StarLock. Page | 1 PC-1/Main Bridge Oing!... ... is the sound a forty kilo hunk of scorched metal would make when it spacked against Pegasus’s forward shield and spiraled off into space if there were anything other than near-vacuum in space to transmit noise, which everyone knows there isn’t. Oing!... If a starship explodes, and no one is around to hear it, it doesn’t make a sound. Oing!... Something else impacted the shields, vaporizing and releasing just enough energy to create a resonant sound that translated through the system as... Oing!... The impacts appeared as little sparks in the Primary Holographic Display. Prime Commander William Keeler, stocky and commanding in his stockiness, furrowed his professorly brow. “What is that?” “We seem to be passing through a debris field,” answered Lt. Shayne American, his hyper-competent operations officer, a handsome woman with chocolate brown skin and a tight, pale blond crewcut. WORLDS APART BOOK SIX: CRUCIBLE Of the twenty-something people in the command center, she was the one through which most information flowed to the “Inner Bridge,” the four big chairs occupied by the Prime Commander, his Chief Tactical Officer, and Page | 2 usually the First Officer, but Executive TyroCommander Lear had been relieved of duty for almost igniting a global thermonuclear war on the last planet they had visited. Instead, the fourth chair was occupied by a junior Tactical Officer, Lt. David Alkema, Keeler’s unofficial aide-de- camp; who hadn’t destroyed any planets in a thermo- nucleonic holocaust, at least as far as he knew. “No damage to hull, shields holding,” American reported. Keeler turned to Alkema. “Hah! Pegasus one, Debris Field, zero!” Pegasus had left Chapultepec to come to the aid of the Lexington Keeler, one of the other Pathfinder ships the colonies of Sapphire and Republic had built to explore the galaxy. “A trillion cubic meters of space, and we emerge in a debris field,” said Tactical TyroCommander Redfire, the tall, thin, crewcut and artistic Chief Tactical Officer. “What are the odds?” Prime Commander Keeler tented his fingers. “With this ship, pretty much 100%.” Something hit the forward shield and exploded in a grand yellow fireball. “Ooooh,” the Commander cooed. “Aaaah. Any idea what kind of debris we’re flying through?” WORLDS APART BOOK SIX: CRUCIBLE “It could just be the tail of a comet, sir,” suggested Alkema, a handsome young man with a ruddy face and glossy black curls of hair framing it. Alkema was said to be the Commander’s brain. This was not true. He merely Page | 3 loaned the commander his own brain as a sort of repository for certain command information --- such as, how the ship worked --- that the commander couldn’t be bothered to remember. “Sensors have enough data to let me plot a course out of the debris field,” Helmsman Jesus Powerhouse announced. Plugged into the ship’s directional control systems by a neural interface above his right eye, he needed only to think to alter the ship’s trajectory. “New course laid and executed. We will be clear of the debris field in seventeen seconds.” “Do that,” the Commander sort of ordered. Another piece of debris smattered against the energy field above the starboard wing blade. There was an explosion of light, but no noise or impact vibration. “Clearing the debris field in seventeen seconds,” Powerhouse reported. David Alkema scowled at his readouts. “I am detecting a lot of alloys in the debris that are not naturally occurring. This debris field could be the remains of the Lexington Keeler,” Alkema quietly told the commander. “Negative,” American corrected him. “If the preliminary sensor readings are correct, there’s much too much mass.” As she spoke, a holographic projection appeared in the space in front of her station. It showed a WORLDS APART BOOK SIX: CRUCIBLE large half-crescent of matter and gas, Pegasus was passing through a corner of. “By a factor of at least 14,000.” “We are clear,” reported Powerhouse, as the tiny little golden flying swan icon that represented Pegasus cleared Page | 4 the holographic representation of the field. A few swirls of dust and chunks of metal swirled in her gravity wake. “Badang,1” said Commander Keeler. “So, where does that leave us, exactamundo?” “We are within the planetary orbital margins of the system 12 255 Crux,” said Lt. Navigator Eliza Jane Change, a black-haired, almond-eyed beauty every man on the ship had officially given up on. “What do we know about this system?” Keeler asked. Instinctively, he turned toward the station his first officer usually occupied. Then, he remembered he had relieved her of duty, and he could not help but smile. He turned to Alkema instead. “We know that the Pathfinder Ship Lexington Keeler sent a distress message from this system. They were under attack from a large spherical spaceship. And we passed through the StarLock to see if we could render assistance,” Alkema reported. “I was there when that happened,” Keeler told him. “Seems like only yesterday... but it was actually about five minutes ago.” 1 A colloquialism of Sapphire’s Arcadia Province. Rough translation: “Swell” WORLDS APART BOOK SIX: CRUCIBLE Keeler turned to Redfire. “So, about that debris field. If it’s not Lexington Keeler, could it be the other guys?” “Too early to tell,” Redfire told him, “We can’t even be sure they were Aurelians.” Page | 5 Keeler snorted. “Come on. How many alien species do we know who fly big spherical spaceships?” “How many alien species do we not know who fly big spherical spaceships,” Redfire came back. About then, Lieutenant American got a report from the telemetry station. “Pegasus has located Lexington Keeler. Second planet in the system... close orbit.” She tried to bring up a high-resolution view, but Pegasus was still too far away. The second planet appeared as a black and red sphere. Lexington Keeler was a tiny blurry diamond shape at the edge of the planet’s atmosphere. “That’s pretty damn close,” said Powerhouse. Redfire gave a tactical rundown, “Sir, if I may, we have multiple priorities here. 1. We have to determine whether whoever attacked Keeler is still a threat to Pegasus. 2. We have to ascertain the condition of the Lexington Keeler. 3. We have to analyze the debris field we passed through. 4. We have to map out the system and determine the status of the colony Keeler came here to study. You can argue whether one or two is the higher priority, but they both get back to the same point, we need tactical data.” Alkema operationalized the concept. “We need to launch probes. At least four for Keeler and the planet, and another four to collect readings the debris field.” WORLDS APART BOOK SIX: CRUCIBLE Keeler nodded. “Let’s
Recommended publications
  • Hawking Radiation
    a brief history of andreas müller student seminar theory group max camenzind lsw heidelberg mpia & lsw january 2004 http://www.lsw.uni-heidelberg.de/users/amueller talktalk organisationorganisation basics ☺ standard knowledge advanced knowledge edge of knowledge and verifiability mindmind mapmap whatwhat isis aa blackblack hole?hole? black escape velocity c hole singularity in space-time notion „black hole“ from relativist john archibald wheeler (1968), but first speculation from geologist and astronomer john michell (1783) ☺ blackblack holesholes inin relativityrelativity solutions of the vacuum field equations of einsteins general relativity (1915) Gµν = 0 some history: schwarzschild 1916 (static, neutral) reissner-nordstrøm 1918 (static, electrically charged) kerr 1963 (rotating, neutral) kerr-newman 1965 (rotating, charged) all are petrov type-d space-times plug-in metric gµν to verify solution ;-) ☺ black hole mass hidden in (point or ring) singularity blackblack holesholes havehave nono hairhair!! schwarzschild {M} reissner-nordstrom {M,Q} kerr {M,a} kerr-newman {M,a,Q} wheeler: no-hair theorem ☺ blackblack holesholes –– schwarzschildschwarzschild vs.vs. kerrkerr ☺ blackblack holesholes –– kerrkerr inin boyerboyer--lindquistlindquist black hole mass M spin parameter a lapse function delta potential generalized radius sigma potential frame-dragging frequency cylindrical radius blackblack holehole topologytopology blackblack holehole –– characteristiccharacteristic radiiradii G = M = c = 1 blackblack holehole --
    [Show full text]
  • A Search for an Additional Planet in the Hot-Jupiter System WASP-5 by Transit Timing Variations
    A Search for an Additional Planet in the Hot-Jupiter System WASP-5 by Transit Timing Variations Akihiko Fukui Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University July 19, 2011 Abstract Searching for transit timing variations (TTVs) of a transiting extrasolar planet can be a tool to ¯nd additional, even less massive planets existing in the same system. In addition, such additional-planet searches around hot Jupiters can be a test for migration mechanisms of hot Jupiters. We observed 7 new transits of the hot Jupiter WASP-5b by using a 61 cm telescope located in New Zealand, aiming for detecting TTVs induced by an additional planet. When combined with other available photometric and radial velocity (RV) data, we ¯nd that its transit timings do not match a linear ephemeris; the best ¯t Â2 values is 32.2 with 9 degrees of freedom, which corresponds to a con¯dence level of 99.982 % or 3.7 σ. Considering possible imperfect corrections of light-curve baselines, the Â2 value reduces to 24.7, which corresponds to a con¯dence level of 99.668 % or 2.9 σ. From the absence of signi¯cant TTV signals, we calculate upper limits of the mass of an hypothetical additional planet by means of numerical simulations, as a function of orbital-period ratio of the two planets. We place the limits of 2 M© (3 σ conf.) near 1:2 and 2:1 mean motion resonances (MMRs) with WASP-5b, assuming that the two planets are co-planer. These limits narrow the limits placed from the RV data only, where the limits of 22-70 M© over the orbital-period ratio from 0.2 to 5.0 are placed.
    [Show full text]
  • 8.901 Lecture Notes Astrophysics I, Spring 2019
    8.901 Lecture Notes Astrophysics I, Spring 2019 I.J.M. Crossfield (with S. Hughes and E. Mills)* MIT 6th February, 2019 – 15th May, 2019 Contents 1 Introduction to Astronomy and Astrophysics 6 2 The Two-Body Problem and Kepler’s Laws 10 3 The Two-Body Problem, Continued 14 4 Binary Systems 21 4.1 Empirical Facts about binaries................... 21 4.2 Parameterization of Binary Orbits................. 21 4.3 Binary Observations......................... 22 5 Gravitational Waves 25 5.1 Gravitational Radiation........................ 27 5.2 Practical Effects............................ 28 6 Radiation 30 6.1 Radiation from Space......................... 30 6.2 Conservation of Specific Intensity................. 33 6.3 Blackbody Radiation......................... 36 6.4 Radiation, Luminosity, and Temperature............. 37 7 Radiative Transfer 38 7.1 The Equation of Radiative Transfer................. 38 7.2 Solutions to the Radiative Transfer Equation........... 40 7.3 Kirchhoff’s Laws........................... 41 8 Stellar Classification, Spectra, and Some Thermodynamics 44 8.1 Classification.............................. 44 8.2 Thermodynamic Equilibrium.................... 46 8.3 Local Thermodynamic Equilibrium................ 47 8.4 Stellar Lines and Atomic Populations............... 48 *[email protected] 1 Contents 8.5 The Saha Equation.......................... 48 9 Stellar Atmospheres 54 9.1 The Plane-parallel Approximation................. 54 9.2 Gray Atmosphere........................... 56 9.3 The Eddington Approximation................... 59 9.4 Frequency-Dependent Quantities.................. 61 9.5 Opacities................................ 62 10 Timescales in Stellar Interiors 67 10.1 Photon collisions with matter.................... 67 10.2 Gravity and the free-fall timescale................. 68 10.3 The sound-crossing time....................... 71 10.4 Radiation transport.......................... 72 10.5 Thermal (Kelvin-Helmholtz) timescale............... 72 10.6 Nuclear timescale..........................
    [Show full text]
  • Nasa.Gov/Search.Jsp?R=19940022855 2020-06-16T13:30:04+00:00Z
    https://ntrs.nasa.gov/search.jsp?R=19940022855 2020-06-16T13:30:04+00:00Z NASA Conference Publication 10129 Vision-21 Interdisciplinary Science and Engineering in the Era of Cyberspace Proceedings of a symposium cosponsored by the NASA Lewis Research Center and the Ohio Aerospace Institute and held in Westlake, Ohio March 30-31, 1993 (NASA-CP-IOI2Q) VISION 21: N94-27358 INTERDISCIPLINARY SCIENCE AND --THRU-- m ENGINEERING IN THE ERA OF N94-27376 CY_ERSPACE (NASA) 274 p Uncl as I IASA G3/12 0206714 NASA Conference Publication 10129 Vision-21 Interdisciplinary Science and Engineering in the Era of Cyberspace Proceedings of a symposium cosponsored by the NASA Lewis Research Center and the Ohio Aerospace Institute and held in Westlake, Ohio March 30-31, 1993 NASA National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1993 Into the Era of Cyberspace Our robots precede us with infinite diversity exploring the universe delighting in complexity A matrix of neurons, we create our own reality of carbon and of silicon, we evolve toward what we chose to be. GL 1993 iii PilIJl)I4_$ PAG[ I!ILA!'_I(. NOT _t__O FOREWORD The symposium "Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace" was held at the Holiday Inn in Westlake, Ohio on March 30-31, 1993, sponsored by the NASA Lewis Research Center's Aerospace Technology Directorate under the auspices of the NASA Office of Aeronautics, Exploration and Technology. In the NASA space program there is always a major focus on near-term development of technologies and hardware; however, there is also a continuing need to consider the more visionary far-term concepts and ideas that might lead to radical breakthroughs in the next century.
    [Show full text]
  • PHASEA ~ORT(REVISED) a IVIAN-CCMPUTER ROLES in SPACE NAVIGATION and GUIDANCE
    PHASEA ~ORT(REVISED) a IVIAN-CCMPUTER ROLES IN SPACE NAVIGATION AND GUIDANCE , '' Eugene Farber The Frank1 in Institute Research Laboratories and Lloyd P. Crumley and Lou Spiegel . General Electric Company January 18, 1967 \ prepared for Electronics Research Center Cambridge National Aeronautics and Space Administration under contract number NAS 12-128 i INSlTUTE RESEARCH LABORATORES 1 I SYSTEMS SCIENCE DIVISION This report is a revision of the Phase I report submitted to NASA by The Franklin Institute Re- search Laboratories on October 17, 1966, and is submitted in accordance with the requirements of contract NAS 12-128. Approved: Carl A. Silver Manager Behavioral Sciences Laboratory 0 4 E e TABLE OF CONTENTS 1 Section Title Page 1 SECTION 1. INTRODUCTION ...................... 1-1 SECTION 2 . MISSION DESCRIPTION 2.1 . General Mission Constraints ................ 2-1 8 2.5 . Navigation and Guidanoe Events .............. 2-7 SECTION 3. NAVIGATION AND GUIDANCE PHASE DESCRIPTIONS E 3.1. Earth Cycle. Part 1 .................... 3-1 3.5 Interplanetary Cycle ................... 3-3 3.22 . Earth Cycle. Part 2 .................... 3-6 1 3.26. Mars Cycle ........................ 3-6 3.32. Classification of Phases by hotion ........... 3-7 8 3.33 . Functions Deleted from Consideration ........... 3-7 SECTION 4. ERROR-SENSITIVITY ANALYSIS 4.1 . Injection ......................... 4-2 8 4.6 . Post and Terminal Adjustments ............... 4-11 4.7 . Orbit Errtry. ....................... 4-15 8 4.0 . summsry .......................... 4-18 SECTION 5 . NAVIGATION AND GUIDANCE 5.1 . Orbit Determination. ................... 5-1 1 5.6 . Injection ......................... 5-8 5.9 . Post and Terminal Adjustment ............... 5-17 5.13 . Orbit Entry ........................ 5-26 I 5.16 .
    [Show full text]
  • Radiatively Driven Stellar Winds from Hot Stars E NCYCLOPEDIA of a STRONOMY and a STROPHYSICS
    Radiatively Driven Stellar Winds from Hot Stars E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Radiatively Driven Stellar Winds from strong convection zone needed to heat a circumstellar corona. Their stellar winds thus remain at temperatures Hot Stars comparable with the star’s surface, and so lack the very A stellar wind is the continuous, supersonic outflow of high gas pressure needed to drive an outward expansion matter from a star. Among the most massive stars—which against the stellar gravity. However, such hot stars tend also to be the hottest and most luminous—the winds have a quite high radiative flux, since by the Stefan– can be very strong, with important consequences both for Boltzmann law this scales as the fourth power of the the star’s own evolution as well as for the surrounding surface temperature. It is the pressure of this radiation (not interstellar medium. Such hot-star winds are understood of the gas itself) that drives the wind expansion. to be driven by the pressure of the star’s emitted radiation. The typical flow speeds of hot-star winds—up to −1 Our Sun has a SOLAR WIND, but it is so tenuous and about 3000 km s —are a factor of a few faster than the 400– −1 transparent that it would be difficult to detect directly from 700 km s speed of the solar wind. However, the inferred a more distant star. However, many stars have winds that mass loss rates of hot stars greatly exceed—by up to a factor are dense enough to be opaque at certain wavelengths of a billion—that of the Sun.
    [Show full text]
  • Starship Size Table
    My Spacedock construction notes all it there are some other peoples stuff in here but not all has credits to it. This is just my notes and I saw that there was interest out there in it so I generated a PDF for everyone who wants to use it. Omerga1967 Spacedock New & Alternative Tech from the net These notes from the web for Spacedock are useful and have significant purpose. I have used only a few in modifications but keep a copy of them with the pages of the Spacedock that I have printed in the use of constructing starships and space stations. STARSHIP SIZE TABLE Starship Space Length Beam Height SU Mass Range Size Station + 2,000 m + 2,000 m +2,0 00 m +3,000 – 6,000 +10 ,000,000 to 20,000,000 metric tonnes 50 13 72,000 – 73,999 68,000 – 69,999 m 60,000 - 61,999 m 107,000 –193,000 310,000,000 – 519,999,999 metric tonnes 49 13 70,000 – 71,999 m 66,000 – 67,999 m 58,000 - 59,999 m 104,000 –187,000 300,000,000 – 499,999,999 metric tonnes 48 12 68,000 – 69,999 m 64,000 – 65,999 m 56,000 - 57,999 m 101,000 – 181,000 290,000,000 - 479,999,999 met ric tonnes 47 12 66,000 – 67,999 m 62,000 – 63,999 m 54,000 - 55,999 m 98,000 – 175,000 280,000,000 – 459,999,999 metric tonnes 46 12 64,000 – 65,999 m 60,000 – 61,999 m 52,000 - 53,999 m 95,000 –169,000 270,000,000 – 439,999,999 metric tonnes 45 12 62, 000 – 63,999 m 58,000 – 59,999 m 50,000 - 51,999 m 92,000 –163,000 260,000,000 – 419,999,999 metric tonnes 44 11 60,000 – 61,999 m 56,000 – 57,999 m 48,000 - 49,999 m 89,000 – 157,000 250,000,000 – 399,999,999 metric tonnes 43 11 58,000 – 59,999 m 54,00
    [Show full text]
  • GSH 006−15+7: a Local Galactic Supershell Featuring Transition from H I Emission to Absorption V
    Mon. Not. R. Astron. Soc. (2012) doi:10.1111/j.1365-2966.2012.20538.x GSH 006−15+7: a local Galactic supershell featuring transition from H I emission to absorption V. A. Moss,1,2 N. M. McClure-Griffiths,2 R. Braun,2 A. S. Hill2 andG.J.Madsen1 1Sydney Institute for Astronomy, School of Physics A29, The University of Sydney, NSW 2006, Australia 2CSIRO Astronomy and Space Science, ATNF, PO Box 76, Epping, NSW 1710, Australia Accepted 2012 January 11. Received 2012 January 11; in original form 2011 August 16 ABSTRACT We report on the discovery of a new Galactic supershell, GSH 006−15+7, from the Galactic All-Sky Survey data. Observed and derived properties are presented, and we find that GSH 006−15+7 is one of the nearest physically large supershells known, with dimensions of ◦ ∼780 × 520 pc at a distance of ∼ 1.5 kpc. The shell wall appears in HI emission at b −6.5 ◦ and in HI self-absorption (HISA) at b −6.5. We use this feature along with HISA diagnostics to estimate an optical depth of τ ∼ 3, a spin temperature of ∼40 K and a swept-up mass of M ∼ 3 × 106 M. We also investigate the origin of GSH 006−15+7, assessing the energy contribution of candidate powering sources and finding evidence in favour of a formation energy of ∼1052 erg. We find that this structure provides evidence for the transfer of mass and energy from the Galactic disc into the halo. Key words: radiative transfer – stars: winds, outflows – ISM: bubbles – ISM: structure – Galaxy: structure – radio lines: ISM.
    [Show full text]
  • Theskyx Professional and Serious Astronomer Edition User Guide
    TheSkyX Professional and Serious Astronomer Edition User Guide Revision 2.5, August 2013 Copyright 2013 Software Bisque, Inc. All rights reserved. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Software Bisque. The software and/or databases described in this document are furnished under a license agreement or nondisclosure agreement. They may be used or copied only in accordance with the terms of the agreement (www.bisque.com/eula). It is against the law to copy the software on any medium except as specifically allowed in the license or nondisclosure agreement. The purchaser may make one copy of the software for backup purposes. No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical, including (but not limited to) photocopying, recording, or information storage and retrieval systems, for any purpose other than the purchaser’s personal use, without the express written permission of Software Bisque. Charts created with TheSkyX are for personal use only. They may not be published in any form without express written permission of Software Bisque, Inc. TheSkyX includes routines from Astronomical Algorithms Software, © 1991 by Jeffrey Sax, and option to the book Astronomical Algorithms by Jean Meeus copyright © 1991 by Willmann-Bell. ISBN 0-943376-35-2. Non-exclusive use has been specifically granted, in writing, by Willmann- Bell, for use in TheSkyX. Serial Number U11A445. Photographs in the AAO folder of TheSkyX’s media are copyright Anglo-Australian Observatory (AAT images) and/or ROE/AATB (UK Schmidt Telescope images) and are reproduced with permission.
    [Show full text]
  • The Inner Meaning of Outer Space: Human Nature and the Celestial Realm*
    THE INNER MEANING OF OUTER SPACE: HUMAN NATURE AND THE CELESTIAL REALM* TIMOTHY L. HUBBARD** Texas Christian University, U. S. A. Abstract Resumen Kant argued that humans possess a priori knowled- Kant afi rmaba que los seres humanos poseen un ge of space; although his argument focused on a conocimiento a priori del espacio. Aunque este physics of bodies, it also has implications for a argumento se centra en la física de los cuerpos, tam- psychology of beings. Many human cultures orga- bién tiene implicaciones para la psicología del ser. nize stars in the night sky into constellations (i.e., Muchas culturas humanas organizan las estrellas impose structure); attribute properties, behaviors, en constelaciones (imponen estructura); atribuyen and abilities to objects in the celestial realm (i.e., propiedades, conductas y habilidades a objetos impose meaning); and use perceived regularity in en el reino celeste (esto es, determinan signifi cado); the celestial realms in development of calendars, y usan la regularidad percibida en los reinos celes- long-range navigation, agriculture, and astrology tes para el desarrollo de calendarios, navegacio- (i.e., seek predictability and control). The physical nes de grandes distancias, agricultura y astrología inaccessibility of the celestial realm allows a potent (buscan predicción y control). La inaccesibilidad source of metaphor, and also allows projection of física del reino celeste permite una potente fuente myths regarding origin and ascension, places of de metáforas, así como la protección de los mitos power, and dwelling places of gods, immortals, and sobre el origen y la ascensión, los lugares del poder other souls. Developments in astronomy and cos- y aquellos donde habitan dioses, seres inmortales y mology infl uenced views of human nature and the otras almas.
    [Show full text]
  • Arxiv:0812.3647V1 [Astro-Ph] 18 Dec 2008 Soeae Yteascaino Nvriisfrrsac Nastro Foundation
    Spiral density wave triggering of star formation in SA and SAB galaxies Eric E. Mart´ınez-Garc´ıa, Rosa Amelia Gonz´alez-L´opezlira1,2,3 Centro de Radioastronom´ıa y Astrof´ısica, UNAM, Campus Morelia, Michoac´an, M´exico, C.P. 58089 [email protected], [email protected] and Gustavo Bruzual-A. Centro de Investigaciones de Astronom´ıa, Apartado Postal 264, M´erida 5101-A, Venezuela ABSTRACT Azimuthal color (age) gradients across spiral arms are one of the main predic- tions of density wave theory; gradients are the result of star formation triggering by the spiral waves. In a sample of 13 spiral galaxies of types A and AB, we find that 10 of them present regions that match the theoretical predictions. By comparing the observed gradients with stellar population synthesis models, the pattern speed and the location of major resonances have been determined. The resonance positions inferred from this analysis indicate that 9 of the objects have spiral arms that extend to the outer Lindblad resonance (OLR); for one of the galaxies, the spiral arms reach the corotation radius. The effects of dust, and of stellar densities, velocities, and metallicities on the color gradients are also arXiv:0812.3647v1 [astro-ph] 18 Dec 2008 discussed. Subject headings: galaxies: kinematics and dynamics — galaxies: photometry — galaxies: stellar content — galaxies: spiral — galaxies: structure 1Visiting astronomer at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), under cooperative agree- ment with the National Science Foundation. 2Visiting astronomer at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observa- tory, which is operated by the AURA, under contract with the National Science Foundation.
    [Show full text]
  • SOPHIE Velocimetry of Kepler Transit Candidates
    A&A 573, A124 (2015) Astronomy DOI: 10.1051/0004-6361/201424591 & c ESO 2015 Astrophysics SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system?;?? G. Bruno1, J.-M. Almenara1, S. C. C. Barros1, A. Santerne1;2;3, R. F. Diaz4, M. Deleuil1, C. Damiani1, A. S. Bonomo5, I. Boisse1, F. Bouchy1, G. Hébrard6;7, and G. Montagnier6;7 1 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), UMR 7326, 13388 Marseille, France e-mail: [email protected] 2 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal 4 Observatoire Astronomique de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix, Switzerland 5 INAF – Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy 6 Observatoire de Haute-Provence, 04670 Saint Michel l’Observatoire, France 7 Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France Received 11 July 2014 / Accepted 8 November 2014 ABSTRACT As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods '18:8 and '50:8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system.
    [Show full text]