The Availability of Indium: the Present, Medium Term, and Long Term Martin Lokanc, Roderick Eggert, and Michael Redlinger Colorado School of Mines Golden, Colorado

Total Page:16

File Type:pdf, Size:1020Kb

The Availability of Indium: the Present, Medium Term, and Long Term Martin Lokanc, Roderick Eggert, and Michael Redlinger Colorado School of Mines Golden, Colorado The Availability of Indium: The Present, Medium Term, and Long Term Martin Lokanc, Roderick Eggert, and Michael Redlinger Colorado School of Mines Golden, Colorado NREL Technical Monitor: Michael Woodhouse NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Subcontract Report NREL/SR-6A20-62409 October 2015 Contract No. DE-AC36-08GO28308 The Availability of Indium: The Present, Medium Term, and Long Term Martin Lokanc, Roderick Eggert, and Michael Redlinger Colorado School of Mines Golden, Colorado NREL Technical Monitor: Michael Woodhouse Prepared under Subcontract No. UGA-0-41025-20 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-6A20-62409 Golden, CO 80401 October 2015 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Available electronically at SciTech Connect http:/www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI http://www.osti.gov Phone: 865.576.8401 Fax: 865.576.5728 Email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS http://www.ntis.gov Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: [email protected] Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. NREL prints on paper that contains recycled content. Acronyms and Abbreviations - Nil CAGR Compound annual growth rate CIGS Copper indium gallium selenide DOE U.S. Department of Energy e Estimated EOL End of life g gram GW Gigawatt HHI Herfindahl–Hirschman Index In Indium ITO Indium-tin-oxide JORC Australasian Joint Ore Reserves Committee kg kilogram lb pound LCD Liquid crystal display LED Light-emitting diode m meter mn Million MOFCOM Ministry of Commerce (China) Mohs A scale of hardness of solids N/A Not available, not applicable ppb Parts per billion ppm Parts per million PV Photovoltaic SMG SMG Indium Resources t Tonne (metric ton) tpa Tonnes per annum tpd Tonnes per day UK United Kingdom USD U.S. dollar USGS U.S. Geological Survey wt% Percent of composition by weight wt weight iii This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications Executive Summary The Issue The demand for indium could intensify significantly if thin-film materials relying on this element—specifically, copper-indium-gallium-selenide (CIGS) and III-V thin-films—become preferred photovoltaic (PV) materials. Yet the indium supply is potentially fragile for several reasons: • Markets for metallic forms of indium are small, (about 1000 tonnes per annum [tpa] of world production and use. Any new, widespread use could dramatically alter overall demand, which could grow faster than production capacity for up to about a decade, given the length of time needed to significantly increase production capacity. During this decade, indium prices could be high and volatile enough that thin-film manufacturers find it uncompetitive compared to competing PV materials. • Indium is currently produced almost solely as a byproduct of zinc smelting and refining.1 As a byproduct, indium benefits from sharing some production costs with its associated main product. Thus, costs of producing indium as a byproduct are undoubtedly lower than if it were produced by itself. If future demand for indium exceeds the quantities available as a byproduct, more costly sources of indium will be necessary to satisfy demand from thin-film producers, raising the possibility that indium prices could be much higher than current and recent prices. • Relevant for the long term, indium is one of the scarcer elements, at least in terms of average abundance in the Earth’s crust. Thus, even if indium were available in the short to medium term at prices making CIGS materials competitive with competing photovoltaic materials, such competitiveness could be short lived. Overall, the concern implied by these three factors is whether the availability or prices of indium constrain the expansion of thin-film materials. Fully answering this question would require detailed evaluation of its demand and supply. This study focuses only on the supply side of the question and examines the following, narrower question: If the demand for indium grows significantly, what are the likely sources of incremental production, in what quantities, and what might be the expected production costs and prices? The Approach This study examines the availability of indium from three temporal perspectives: 1 A byproduct is produced along with a main product. The main product, more specifically its prices and production costs, largely determine the commercial viability of the mining operation. The associated byproduct, in contrast, has little effect on the overall viability of the mine, although of course the price received for the byproduct must be sufficient to justify the additional costs of separating and recovering the byproduct rather than discarding it. An intermediate situation arises when more than one product importantly influences the viability of an operation; in this case, each product is a coproduct. iv This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications 1. It describes the present based on estimates of current production capacities and associated production costs. 2. It evaluates the medium term, roughly 5–20 years into the future, based on known developed and undeveloped indium resources. 3. Most speculatively, it examines the long term, beyond 20 years or so into the future, based on (a) the general relationship in the recent past between the concentration of mineral ores for a range of metals; and (b) likely future ore grades for indium. The Findings At present, indium availability has the following characteristics (based on recent data and information): • Indium reserves are an estimated 15,000 tonnes, more than two thirds of which are in China. A broader estimate, including reserves and resources, from the Indium Corporation of America (Moss et al. 2011) is total reserves and resources of approximately 50,000 tonnes, with some 47% in China and the Commonwealth of Independent States and 53% in other countries.2 • Indium is produced mainly as a byproduct of zinc, and to a lesser extent as a byproduct of copper, tin, and polymetallic deposits from mineral ores containing less than 100 parts per million (ppm) (or less than 0.01%) indium.3 We estimate that the indium content of zinc and other ores from which indium was recovered in 2013 was ~700 tonnes. Zinc ores accounted for ~90% of production. For reasons discussed later, we believe these estimates are well below the actual levels of mine production. Considering only zinc ores, mine production of indium was geographically concentrated in China, Peru, Canada, Australia, and the United States, which together accounted for more than 75% of world production in 2013. • Primary refined production of indium was ~770 tonnes in 2013 (Tolcin 2014a).4 Production over the last few years was ~600 to ~800 tpa. About half of global primary refined indium is produced in China. The remaining production is predominantly in Belgium, Canada, Japan, Peru, and South Korea. • Secondary refined production capacity was ~610 tonnes in 2013, almost all of which represents recycling of manufacturing wastes rather than recovery from end-of-life (EOL) products. Of this total tonnage, 510 tonnes (84%) occurs in or near manufacturing centers in Japan, South Korea, and China, and is recovered from spent indium-tin oxide sputtering targets used in the production of flat-panel displays. 2 A reserve is the quantity of material that is known with a high degree of certainty to exist in the Earth’s crust and can be extracted and recovered at a profit with current technologies and under current legal and regulatory regimes and current prices and production costs. As such, a reserve is only a fraction of the material in the crust. Resources of a particular material are larger than reserves in that resources represent material that is known with some degree of certainty to exist in the crust and might be technically, legally, and commercially viable to produce under some conceivable circumstances. 3 Ore is rock that contains one or more valuable minerals, from which the desired material is recovered (in this case, indium).
Recommended publications
  • Aquatic ERA Summary Report
    SUMMARY REPORT TECK COMINCO METALS LTD. AQUATIC ECOLOGICAL RISK ASSESSMENT Issue Date: SeptemberDecember 20102007 Prepared by: Stella Swanson Golder Associates, Calgary, (now Swanson Environmental Strategies Ltd.) Prepared for: Teck Cominco Metals Ltd. (now Teck Metals Ltd.) Trail, British Columbia Table of Contents INTRODUCTION 1 Background to the Risk Assessment .............................................................. 1 Study Area Description ................................................................................... 2 OVERALL APPROACH USED FOR THE ERA 3 The Past: Cominco smelter Bottom-Up and Top-Down Perspectives ......................................................... 3 Problem Formulation: The First Step in Risk Assessment .............................. 5 Sequential Analysis of Lines of Evidence (SALE): a New Method for Assembling a Weight-of-Evidence for Risk ................................................ 5 Description of the SALE Process .................................................................... 6 The Present: Teck Cominco External Review of the ERA Approach ............................................................ 7 smelter RESULTS OF THE PROBLEM FORMULATION: THE FIRST STAGE OF THE RISK ASSESSMENT 7 Risk Management Goal and Objectives .......................................................... 7 Meeting the Risk Management Objectives ............................................. 7 Assessment Endpoints and Measures: Specific Aquatic Ecosystem Components and Characteristics to be Protected ...................................
    [Show full text]
  • Indium, Caesium Or Cerium Compounds for Treatment of Cerebral Disorders
    Europaisches Patentamt 298 644 J European Patent Office Oy Publication number: 0 A3 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88305895.0 © intci.s A61K 31/20, A61K 31/28, A61K 33/24 @ Date of filing: 29.06.88 © Priority: 07.07.87 GB 8715914 © Applicant: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows © Date of publication of application: Guildford Surrey GU1 1BA(GB) 11.01.89 Bulletin 89/02 @ Inventor: Horrobin, David Frederick © Designated Contracting States: c/o Efamol House Woodbridge Meadows AT BE CH DE ES FR GB GR IT LI LU NL SE Guildford Surrey GU1 1BA(GB) Inventor: Corrigan, Frank ® Date of deferred publication of the search report: c/o Argyll & Bute Hospital 14.11.90 Bulletin 90/46 Lochgilphead, Argyll PA3T 8ED Scotland(GB) © Representative: Caro, William Egerton et al J. MILLER & CO. Lincoln House 296-302 High Holborn London WC1V 7 JH(GB) © Indium, caesium or cerium compounds for treatment of cerebral disorders. © A method of treatment of schizophrenia or other chronic cerebral disorder in which cerebral atrophy is shown, is characterised in that one or more as- similable or pharmaceutically acceptable indium caesium or cerium compounds is associated with a pharmaceutically acceptable diluent or carrier. CO < CD 00 O> Xerox Copy Centre PARTIAL EUROPEAN SEARCH REPORT Application number European Patent J which under Rule 45 of the European Patent Convention Office shall be considered, for the purposes of subsequent EP 88 30 5895 proceedings, as the European search report DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE ategory of relevant passages to claim APPLICATION (Int.
    [Show full text]
  • The Infrared Spectrum of Indium in Silicon Revisited A
    The infrared spectrum of indium in silicon revisited A. Tardella, B. Pajot To cite this version: A. Tardella, B. Pajot. The infrared spectrum of indium in silicon revisited. Journal de Physique, 1982, 43 (12), pp.1789-1795. 10.1051/jphys:0198200430120178900. jpa-00209562 HAL Id: jpa-00209562 https://hal.archives-ouvertes.fr/jpa-00209562 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 43 (1982) 1789-1795 DTCEMBRE 1982, 1789 Classification Physics Abstracts 71.55 - 78.50 The infrared spectrum of indium in silicon revisited A. Tardella and B. Pajot Groupe de Physique des Solides de l’Ecole Normale Supérieure, Université Paris VII, Tour 23, 2, place Jussieu, 75251 Paris Cedex 05, France (Reçu le 27 mai 1982, révisé le 22 juillet, accepté le 23 août 1982) Résumé. 2014 Le spectre d’absorption de l’indium dans le silicium a été mesuré dans des conditions où l’élargisse- ment des raies par effet de concentration est négligeable. Avec une résolution appropriée, on détecte 17 transitions et les composantes d’un doublet serré sont attribuées à deux transitions calculées. A 6 K, la largeur intrinsèque des raies varie de 2,6 à 0,8 cm-1, ce qui indique un effet lié à la structure de la bande de valence du silicium.
    [Show full text]
  • Teck in Its Tweens: an Update on 12 Years of Litigation Over the Canadian Smelter
    Teck in its Tweens: An Update on 12 Years of Litigation Over The Canadian Smelter Kelly T. Wood Assistant Attorney General Just over the border from Northeast Washington, in the town of Trail, B.C., the Teck Metals (formerly Teck Cominco) smelter hovers over the Columbia River like a bird of prey. In 2002 and 2003, swimmer Christopher Swain swam the length of the Columbia—from its Canadian headwaters to the Pacific Ocean—in an effort to bring attention to pollution and blockage issues. Passing the Teck smelter, Swain recalled the sight as he took slow freestyle-swim breaths beneath the smelter: “Water. Mordor. Water. Mordor. Water. Mordor . .” The Trail smelter is currently the largest lead/zinc smelter in the world, a title it recently regained after a downturn in emerging markets caused the prices of metals to take a dive, and a number of other smelters to close, in the early 2010s. For a period of 100+ years, Teck discharged hazardous byproducts from its smelting operations into the Columbia River, both liquid effluent and granulated slag. Up to 145,000 tons of slag went into the Columbia on an annual basis, the vast majority of which was dutifully carried downstream the 10 river miles to Washington. So much slag (millions of tons) washed downstream from the Trail smelter, that a “black sand” beach formed in a backwater eddy north of the town of Northport. Over time, Teck slag physically decays in the river, leaching heavy metals to the surrounding environment. And, other metals in Teck’s liquid effluent discharges also adsorbed to river sediment and settled into the quiescent waters of Lake Roosevelt.
    [Show full text]
  • Soldering to Gold Films
    Soldering to Gold Films THE IMPORTANCE OF LEAD-INDIUM ALLOYS Frederick G. Yost Sandia Laboratories, Albuquerque, New Mexico, U.S.A. Reliable solder joints can be made on gold metallised microcircuits using lead-indium solders providing certain important conditions are understood and carefully controlled. This paper reviews the three fundamental concepts of scavenging, wetting, and ageing, which are relevant when soldering to gold films. Alloys containing indium have been used for solder- sition and a body centred tetragonal space lattice. ing electronic components to thin gold films and wires Although considerable work has been addressed for at least 14 years. Braun (1, 2) investigated the to the question of clustering and phase separation potential of several multicomponent alloys based in the a field below 20°C (7, 8, 9) the practical signifi- upon the lead-tin-indium ternary alloy system. cance of this phenomenon has not yet materialised. More recently, work on lead-indium binary alloys The most commonly used alloy is the 50 weight has been reported by Jackson (3) and Yost, et al per cent indium composition which has a liquidus (4, 5, 6). In this paper we intend to define, to discuss, temperature of approximately 210°C and a solidus and to illustrate three fundamental concepts relevant temperature of approximately 185°C. Alloys in the to soldering to gold films using lead-indium solders. lead rich phase field, a, freeze dendritically by The lead-indium phase diagram, shown in Figure forming lead rich stalks. The formation of these 1, contains a wealth of useful solder alloys having dendrites causes a surface rumpling which gives the solidus temperatures which range from 156.6°C solder surface a somewhat frosty rather than a shiny (pure indium) to 327.5 °C (pure lead).
    [Show full text]
  • Download Download
    Blaylock’s Bomb: How a Small BC City Helped Create the World’s First Weapon of Mass Destruction Ron Verzuh our years into the Second World War, the citizens of Trail, British Columbia, a small city with a large smelter in the moun- tainous West Kootenay region near the United States border, were, Flike most of the world, totally unaware of the possibility of creating an atomic bomb. Trail’s industrial workforce, employees of the Consolidated Mining and Smelting Company of Canada (CM&S Company), were home-front producers of war materials destined for Allied forces on the battlefields of Europe. They, along with the rest of humanity, would have seen the creation of such a bomb as pure science fiction fantasy invented by the likes of British novelist H.G. Wells.1 They were understandably preoccupied with the life-and-death necessity of ensuring an Allied victory against the Nazis, Italian fascists, and the Japanese. It was no secret that, as it had done in the previous world conflict, their employer was supplying much of the lead, zinc, and now fertilizer that Britain needed to prosecute the war.2 What Trailites did not know was that they were for a short time indispensable in the creation of the world’s first weapon of mass destruction. 1 H.G. Wells, The Shape of Things to Come (London: Penguin, 2005) and The World Set Free (London: Macmillan and Co., 1914). Both allude to nuclear war. 2 Lance H. Whittaker, “All Is Not Gold: A Story of the Discovery, Production and Processing of the Mineral, Chemical and Power Resources of the Kootenay District of the Province of British Columbia and of the Lives of the Men Who Developed and Exploited Those Resources,” unpublished manuscript commissioned by S.G.
    [Show full text]
  • Platinum Group Metals Patent Analysis and Mapping a REVIEW of PATENTING TRENDS and IDENTIFICATION of EMERGING TECHNOLOGIES
    DOI: 10.1595/147106708X362735 Platinum Group Metals Patent Analysis and Mapping A REVIEW OF PATENTING TRENDS AND IDENTIFICATION OF EMERGING TECHNOLOGIES By Richard Seymour Johnson Matthey Technology Centre, Blounts Court, Sonning Common, Reading RG4 9NH, U.K.; E-mail: [email protected] The patent literature contains a wealth of detailed information about existing and new uses for the platinum group metals (pgms). While excellent searching tools have existed for many years for identifying patents relating to specific topics, it is only relatively recently that it has been feasible to map the complete archive of patent literature to identify important trends relating to potential new applications. This paper summarises the results of such an exercise for the pgms carried out in early 2008 and shows that one such ‘hot spot’ relates to organic light emitting diodes (OLEDs). Previous articles in this Journal have described Matthey Technology Centre is Aureka® (a product the importance of patents as a key source of techni- available from Thomson Reuters) (3), which cal and commercial intelligence (1, 2). The use of includes patent data sets from the Patent patent mapping to visualise large sets of patent data Cooperation Treaty (PCT) and European Patent and to identify trends contained within that data has offices, plus a range of national patent collections also been demonstrated (2). The present paper fur- including those of the U.S.A., Japan, the U.K., ther develops these themes by examining the patent France and Germany. With the exception of Japan, literature on pgms published since 1983, in particu- these collections contain full-text patent docu- lar that on the minor metals iridium and ruthenium.
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • INTERVIEW: Swiss Fund CDMR Argues Investment Case for Minor Metals
    INTERVIEW: Swiss fund CDMR argues investment case for minor metals LONDON (Metal-Pages) 15-Apr-15. While investment funds speculating in base metals are a fairly routine occurrence, those same funds rarely get involved with minor metals or rare earths. If they do, they tend to hold an equity stake in the mining companies rather than in the actual metal. Over the years some smaller funds and hedge funds have made forays into minor metals but those kind of speculative investors are still few and far between. One of them is the Swiss firm Compagnie des Métaux Rares. It operates a Luxembourg-based fund with a stake in physical minor metals, holding 12 metals in warehouses in Rotterdam. CDMR was set up by Vincent Donnen and Gregoire Teze, two former fund analysts with extensive experience of working in Asia, who took it off the ground with $1mn of their own money and another $4mn raised from their network. Now they are looking to attract a total of $20mn to $25mn into the fund which has been operational since last April. The attraction of minor metals, explains Donnen, stems from the fact that the majority of them are currently undervalued and yet demand from the industries which used them such as electronics, car manufacturing or aircraft building is on the rise. At the same time most of these metals are not produced on their own but rather as a by-product of base and precious metals such as copper, nickel or platinum. Aircraft manufacture, electronics and clean energy will drive minor metal demand Some of Donnen’s top choices include rhenium, a popular metal in aircraft building, rhodium and ruthenium, both used in catalytic converters in cars, tellurium and several metals used in electronics.
    [Show full text]
  • Contamination of the Upper Columbia River And
    American Bar Association Tort Trial & Insurance Practice Section Toxic Torts and Environmental Law Committee Reaching Across the 49th Parallel: The Origins and Transformation of Canada/U.S. Environmental Disputes Phoenix, AZ April 2-4, 2009 Cont ami na tion of the Upper ClColumbi a River and the Transboundary Application of CERCLA: Pakootas v. TCM Metals, Ltd. Presented by: Richard A. Du Bey Short Cressman & Burgess PLLC | Seattle, WA | (206) 682-3333 | [email protected] 1 Superfund (CERCLA) 42 U.S.C. §§ 9601 et seq. (1980) • Provides a Federal “Superfund” to clean up uncontrolled or abandoned hazardous-waste sites . ..., . , and other . releases . into the environment • Potentially responsible parties (PRPs) are held strictly jointly and severally liable for total cleanup cost 2 Superfund (CERCLA) 42 U.S.C. §§ 9601 et seq. (1980) • Provides for enforcement by Tribal, State and Federal governmental aggfencies for the clean up pf of hazardous substances and each of the three sovereiggyns may assert statutory claims for Natural Resource Damages (NRD) 3 Tribal Interests at Risk • Indian Reservations are the remaining homeland of Indian Tribes • Tribes entitled to use and enjoy their reservation homeland and associated on and off-Reservation natural resources • Tribal rights to natural resources have significant economic, cultural and spiritual value 4 Case Study: the Upper Colum bia River • Lake Roosevelt created by Grand Coulee Dam in 1942 • 150 miles between Grand Coulee Dam and US/Canada border •Collllville Reservation west of LLkake Roosevelt • Spokane Reservation east of Lake Roosevelt 5 Area of Concern Cominco Smelter 6 The Grand Coulee Dam 7 Source of Contamination • Contamination from world’ s largest lead- zinc smelter 16 km upstream from border • 1992 USGS sediment study identified elevated levels of metals in sediments • 1994 WA Dept.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • By Peter N. Gabby
    LEAD By Peter N. Gabby Domestic survey data and tables were prepared by Amy M. Baumgartner, statistical assistant, and the world production tables were prepared by Glenn J. Wallace, international data coordinator. Domestic lead mine production decreased by 4% compared more than 4,600 t (45,900 short tons) of lead remained in the with that of 2003. alaska and Missouri were the dominant NDS. at the rate lead has been selling from the stockpile for producing States with a 95% share. Other appreciable lead the past 2 years, the inventory will probably sell out in 2006. mine production was in Idaho, Montana, and Washington. Lead was produced at 0 U.S. mines employing about 880 people. Production The value of domestic mine production was more than $523 million. Lead concentrates produced at the Missouri mines were Primary.—In 2004, domestic mine production of recoverable processed into primary metal at the only remaining domestic lead decreased by about 20,000 t, or about 4%, compared with that smelter-refineries, also located in Missouri. of 2003. The major share of the U.S. mine output of lead continued Secondary lead, derived principally from scrapped lead-acid to be derived from production in Alaska and Missouri. Appreciable batteries, accounted for 88% of refined lead production in the lead mine production also was reported in Idaho, Montana, and United States. Nearly all the secondary lead was produced by 6 Washington. Domestic mine production data were collected by companies operating 4 smelters. the U.S. Geological Survey (USGS) from a precious-metal and Lead was consumed in about 0 U.S.
    [Show full text]