Production of Nuclear Debris Surrogates for Forensic Methods Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strontium-90
EPA Facts about Strontium-90 What is strontium-90? The most common isotope of strontium is strontium-90. Radioactive strontium-90 is produced when uranium and plutonium undergo fission. Fission The time required for a radioactive substance to is the process in which the nucleus of a lose 50 percent of its radioactivity by decay is radionuclide breaks into smaller parts. Large known as the half-life. Strontium-90 has a half- amounts of radioactive strontium-90 were life of 29 years and emits beta particles of produced during atmospheric nuclear weapons relatively low energy as it decays. Yttrium-90, its tests conducted in the 1950s and 1960s. As a decay product, has a shorter half-life (64 hours) result of atmospheric testing and radioactive than strontium-90, but it emits beta particles of fallout, this strontium was dispersed and higher energy. deposited on the earth. How are people exposed to strontium- 90? What are the uses of strontium-90? Although external exposure to strontium-90 Strontium-90 is used in medical and agricultural from nuclear testing is of minor concern because studies. It is also used in thermoelectric devices environmental concentrations are low, that are built into small power supplies for use strontium in the environment can become part of the food chain. This pathway of exposure in remote locations, such as navigational beacons, remote weather stations, and space became a concern in the 1950s with the advent vehicles. Additionally, strontium-90 is used in of atmospheric testing of nuclear explosives. electron tubes, radioluminescent markers, as a With the suspension of atmospheric testing of radiation source in industrial thickness gauges, nuclear weapons, dietary intake has steadily and for treatment of eye diseases. -
Bellucci Et Al. 2016 Trinitite Revised V Final
1 Direct Pb isotopic analysis of a nuclear fallout debris particle from the 2 Trinity nuclear test 3 4 5 Jeremy J. Bellucci1*, Joshua F. Snape1, Martin W. Whitehouse1, Alexander A. Nemchin1,2 6 7 *Corresponding author, email address: [email protected] 8 9 1Department of Geosciences, Swedish Museum of Natural History, SE-104 05 10 Stockholm, Sweden 11 2 Department of Applied Geology, Curtin University, Perth, WA 6845, Australia 12 13 Abstract 14 15 The Pb isotope composition of a nuclear fallout debris particle has been directly 16 measured in post-detonation materials produced during the Trinity nuclear test by a 17 secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This 18 technique permits the visual assessment of the spatial distribution of Pb and can be used 19 to obtain full Pb isotope compositions in user-defined regions in a 70 µm x 70 µm 20 analytical window. In conjunction with BSE and EDS mapping of the same particle, the 21 Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic 22 sand. Similarly, the Pb isotope composition of the particle is resolvable from the 23 surrounding glass at the 2σ uncertainty level. The Pb isotope composition measured in 24 the particle here is in excellent agreement with that inferred from measurements of green 25 and red trinitite, suggesting that these types of particles are responsible for the Pb isotope 26 compositions measured in both trinitite glasses. 27 28 29 Keywords: 30 31 Trinitite, Trinity Test, Post Detonation Nuclear Forensics, Pb isotopes, SIMS, Scanning 32 Ion Imaging, Fallout Debris, Forensics 33 34 35 Introduction 36 37 In the event of a non-state sanctioned nuclear attack, forensic investigations will 38 be necessary to determine the provenance of the weapon and the materials used in 39 construction of the device. -
Monitored Natural Attenuation of Inorganic Contaminants in Ground
Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium EPA/600/R-10/093 September 2010 Monitored Natural Attenuation of Inorganic Contaminants in Ground Water Volume 3 Assessment for Radionuclides Including Tritium, Radon, Strontium, Technetium, Uranium, Iodine, Radium, Thorium, Cesium, and Plutonium-Americium Edited by Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 and Richard T. Wilkin Ground Water and Ecosystems Restoration Division Ada, Oklahoma 74820 Project Officer Robert G. Ford Land Remediation and Pollution Control Division Cincinnati, Ohio 45268 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development managed portions of the technical work described here under EPA Contract No. 68-C-02-092 to Dynamac Corporation, Ada, Oklahoma (David Burden, Project Officer) through funds provided by the U.S. Environmental Protection Agency’s Office of Air and Radiation and Office of Solid Waste and Emergency Response. It has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. All research projects making conclusions or recommendations based on environmental data and funded by the U.S. Environmental Protection Agency are required to participate in the Agency Quality Assurance Program. This project did not involve the collection or use of environmental data and, as such, did not require a Quality Assurance Plan. -
Calcined Bone Provides a Reliable Substrate for Strontium Isotope Ratios As Shown by an Enrichment Experiment
Research Article Received: 8 August 2014 Revised: 15 October 2014 Accepted: 16 October 2014 Published online in Wiley Online Library Rapid Commun. Mass Spectrom. 2015, 29, 107–114 (wileyonlinelibrary.com) DOI: 10.1002/rcm.7078 Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment Christophe Snoeck1*, Julia Lee-Thorp1,RickSchulting1,JeroendeJong2, Wendy Debouge2 and Nadine Mattielli2 1Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Rd, Oxford OX1 3QY, UK 2G-Time Laboratory, Université Libre de Bruxelles, CP 160/02, 50, Avenue F.D. Roosevelt, B-1050 Brussels, Belgium RATIONALE: Strontium isotopes (87Sr/86Sr) are used in archaeological and forensic science as markers of residence or mobility because they reflect the local geological substrate. Currently, tooth enamel is considered to be the most reliable tissue, but it rarely survives heating so that in cremations only calcined bone fragments survive. We set out to test the proposition that calcined bone might prove resistant to diagenesis, given its relatively high crystallinity, as the ability to measure in vivo 87Sr/86Sr from calcined bone would greatly extend application to places and periods in which cremation was the dominant mortuary practice, or where unburned bone and enamel do not survive. METHODS: Tooth enamel and calcined bone samples were exposed to a 87Sr-spiked solution for up to 1 year. Samples were removed after various intervals, and attempts were made to remove the contamination using acetic acid washes and ultrasonication. 87Sr/86Sr was measured before and after pre-treatment on a Nu Plasma multi-collector induced coupled plasma mass spectrometer using NBS987 as a standard. -
Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life ..................................................................... -
Journal of Radioanalytical and Nuclear Chemistry
J Radioanal Nucl Chem (2013) 298:993–1003 DOI 10.1007/s10967-013-2497-8 A multi-method approach for determination of radionuclide distribution in trinitite Christine Wallace • Jeremy J. Bellucci • Antonio Simonetti • Tim Hainley • Elizabeth C. Koeman • Peter C. Burns Received: 21 January 2013 / Published online: 13 April 2013 Ó Akade´miai Kiado´, Budapest, Hungary 2013 Abstract The spatial distribution of radiation within trin- The results from this study indicate that the device-related ititethinsectionshavebeenmappedusingalphatrack radionuclides were preferentially incorporated into the radiography and beta autoradiography in combination with glassy matrix in trinitite. optical microscopy and scanning electron microscopy. Alpha and beta maps have identified areas of higher activity, Keywords Trinitite Á Nuclear forensics Á Radionuclides Á and these are concentrated predominantly within the surfi- Fission and activation products Á Laser ablation inductively cial glassy component of trinitite. Laser ablation-inductively coupled plasma mass spectrometry coupled plasma mass spectrometry (LA-ICP-MS) analyses conducted at high spatial resolution yield weighted average 235U/238Uand240Pu/239Pu ratios of 0.00718 ± 0.00018 (2r) Introduction and 0.0208 ± 0.0012 (2r), respectively, and also reveal the presence of some fission (137Cs) and activation products Nuclear proliferation and terrorism are arguably the gravest (152,154Eu). The LA-ICP-MS results indicate positive cor- of threats to the security of any nation. The ability to relations between Pu ion signal intensities and abundances decipher forensic signatures in post-detonation nuclear of Fe, Ca, U and 137Cs. These trends suggest that Pu in debris is essential, both to provide a deterrence and to trinitite is associated with remnants of certain chemical permit a response to an incident. -
THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)
XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements . -
Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3. -
A Detailed Geochemical Investigation of Post-Nuclear Detonation Trinitite Glass at High Spatial Resolution: Delineating Anthropogenic Vs
Chemical Geology 365 (2014) 69–86 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: Delineating anthropogenic vs. natural components Jeremy J. Bellucci ⁎, Antonio Simonetti, Elizabeth C. Koeman, Christine Wallace, Peter C. Burns Department of Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, IN 46556, United States article info abstract Article history: This study documents, for the first time, the combined abundances of major and trace elements at high spatial Received 24 March 2013 resolution for trinitite glass, which was produced during the first atomic weapon test (Trinity site; New Received in revised form 4 December 2013 Mexico, USA). The results indicate that the chemical composition of trinitite is largely dependent on the precursor Accepted 5 December 2013 mineral phases found in the arkosic sand at the Trinity site. The chemical compositions of trinitite were evaluated Available online 16 December 2013 using principal component analysis, which indicates that trends may be attributed to mixing between an anthro- Editor: L. Reisberg pogenic component and phases (both major and minor) within the arkosic sand. The resolvable anthropogenic component in trinitite is made up of metals including Al, Co, Cr, Cu, Fe, Ga, Mg, Mn, Nb, Pb, Ta, and Ti. Uranium Keywords: in trinitite appears to have two sources: natural U-bearing phases and the tamper used in the device. The concen- Nuclear forensics trations of volatile anthropogenic metals (Co, Cr, Cu, and Pb) are enriched in samples that originate from N74 m Trinity away from ground zero. -
Paul Scherrer Institut
C^ZOOCt^ CO l 9 19 icht r r — — l-Be £3tobe I J Paul Scherrer Institut Labor für Werkstoffe und nukleare Verfahren Programm Entsorgung Chemistry of the Rectox Sensitive Elements Literature Review D.Suter Paul Scherrer Institut Telefon 056/99 2111 Würenlingen und Villigen Telex82 7414psich CH-5232 Villigen PSI Telefax 056/982327 PSI CH PSI-Bericht Nr. 113 Chemistry of the Redox Sensitive Elements Literature Review Daniel Suter Wiirenlingen and Villigen, October 1991 Preface In the framework of its Waste Management Programme the Paul Scherrer Institute is performing work to increase the understanding of radionuclide transport in the geosphere. These investigations arc performed in close cooperation with, and with the financial support of, NAGRA. The present report is issued simultaneously as a PSI report and a NAGRA NTB. TABLE OF CONTENTS Summary 2 Zusammenfassung 3 Resume 4 1. Introduction 5 2. Redox Conditions 8 3. Selenium 11 3.1 Solution Chemistry 11 3.2 Sorption Studies 13 3.3 Geochemistry 15 3.4 Experiments 18 3.5 Analytical Methods 20 4. Technetium 26 4.1 Solution Chemistry 26 4.2 Sorption Studies 29 4.3 Geochemistry 31 4.4 Experiments 32 4.5 Analytical Methods 33 5. Palladium 35 5.1 Solution Chemistry 35 5.2 Sorption Studies 36 5.3. Geochemistry 37 5.4 Experiments 38 5.5 Analytical Methods 39 6. Tin 42 6.1 Solution Chemistry 42 6.2 Sorption Studies 42 6.3 Geochemistry 43 6.4 Experiments 44 6.5 Analytical Methods 44 7. Neptunium 46 7.1 Solution Chemistry 46 7.2 Sorption Studies 48 7.3 Geochemistry 49 7.4 Experiments 51 7.5 Analytical Methods 51 8. -
From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present
From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Thomson, Jennifer Christine. 2013. From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945- Present. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11125030 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present A dissertation presented by Jennifer Christine Thomson to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts May 2013 @ 2013 Jennifer Christine Thomson All rights reserved. Dissertation Advisor: Charles Rosenberg Jennifer Christine Thomson From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present Abstract This dissertation joins the history of science and medicine with environmental history to explore the language of health in environmental politics. Today, in government policy briefs and mission statements of environmental non-profits, newspaper editorials and activist journals, claims about the health of the planet and its human and non-human inhabitants abound. Yet despite this rhetorical ubiquity, modern environmental politics are ideologically and organizationally fractured along the themes of whose health is at stake and how that health should be protected. -
Properties of Selected Radioisotopes
CASE FILE COPY NASA SP-7031 Properties of Selected Radioisotopes A Bibliography PART I: UNCLASSIFIED LITERATURE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA SP-7031 PROPERTIES OF SELECTED RADIOISOTOPES A Bibliography Part I: Unclassified Literature A selection of annotated references to technical papers, journal articles, and books This bibliography was compiled and edited by DALE HARRIS and JOSEPH EPSTEIN Goddard Space Flight Center Greenbelt, Maryland Scientific and Technical Information Division / OFFICE OF TECHNOLOGY UTILIZATION 1968 USP. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. PREFACE The increasing interest in the application of substantial quantities of radioisotopes for propulsion, energy conversion, and various other thermal concepts emphasizes a need for the most recent and most accurate information available describing the nuclear, chemical, and physical properties of these isotopes. A substantial amount of progress has been achieved in recent years in refining old and developing new techniques of measurement of the properties quoted, and isotope processing. This has resulted in a broad technological base from which both the material and information about the material is available. Un- fortunately, it has also resulted in a multiplicity of sources so that information and data are either untimely or present properties without adequately identifying the measurement techniques or describing the quality of material used. The purpose of this document is to make available, in a single reference, an annotated bibliography and sets of properties for nine of the more attractive isotopes available for use in power production. Part I contains all the unclassified information that was available in the literature surveyed. Part II is the classified counterpart to Part I.