Directional Dark Matter Search with the Newsdm Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Directional Dark Matter Search with the Newsdm Experiment GRAN SASSO SCIENCE INSTITUTE DOCTORAL THESIS Directional dark matter search with the NEWSdm experiment Author: Supervisors: Valerio GENTILE Prof. Giovanni DE LELLIS Prof. Salvatore CAPOZZIELLO A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Astroparticle Physics January 13, 2019 ii “And no-one showed us to the land And no-one knows the where or whys But something stirs and something tries And starts to climb towards the light” Echoes, Pink Floyd iii Acknowledgements I would like to thank all the people who supported me during my PhD experience. Firstly, I would like to express my gratitude to my Supervisors: Prof. Giovanni De Lel- lis who really taught me what the scientific method is; Prof. Salvatore Capozziello from whom I learnt that there is not a unique way to explain something. I owe a special ac- knowledgment to Prof. Francesco Vissani that I consider to be my first unofficial Supervi- sor and, especially, a friend: you believed in me more than I have ever done. I would like to thank my Referees, Dr. Pierluigi Belli, Dr. Marco Selvi and Prof. Francesco Arneodo, whose comments and suggestions have surely improved the quality of this work. I would also thank Prof. Vitaly Kudryavtsev and Dr. Luciano Pandola for their precious advices on my simulation studies. I would like to thank Antonia who was crucial for my professional growth: you have taught me that no limit is just that and that every effort, sooner or later, will be repaid. I would like to thank my colleagues: Andrey, Asada and Naka-san for their invaluable support throughout the different activities in my PhD work and all the people in Napoli, L’Aquila and Nagoya groups who are part of this scientific adventure. I owe a lot to my closest friends, wherever they are now, and in particular to my new friends met at GSSI: sharing this experience with you made it unique and valuable. I would like to thank my family: my father who has always stressed me the importance of studying (I will never be able to repay you); my mother and my grandmother who have fully and unconditionally supported me; Antonia, Giusy, Domenico, Carmine, Mena, Giuseppe, Eleonora, Alessandra and who is coming up :). You all are my inestimable value. Finally, I would like to thank Prof. Francesco Auletta, who was my teacher at fifth year of high school: if during your first lecture you had not kicked me out of the classroom, most likely I would not be beating my fingers on the keyboard now. iv Contents Acknowledgements iii Introduction 1 1 The dawn of the darkness4 1.1 Early times and first evidences..........................5 1.2 Framework of the modern cosmology......................9 1.3 On the origin and last fate of the Universe: the LCDM model........ 13 1.4 Strong candidates for dark matter: WIMPs................... 17 1.5 WIMPs halo models................................ 19 1.6 An alternative point of view: f(R) theories.................... 21 2 Directional dark matter search 24 2.1 An overview on dark matter search........................ 24 2.2 Direct dark matter search............................. 27 2.3 Results of direct experiments........................... 30 2.3.1 Ionization in high purity Germanium detectors............ 31 2.3.2 Scintillator crystals............................. 32 2.3.3 Cryogenic bolometers........................... 34 2.3.4 Liquid noble-gas detectors........................ 35 2.3.5 Threshold detectors and novel techniques................ 37 2.3.6 WIMP-nucleon exclusion plot....................... 37 2.4 Directional dark matter search........................... 39 3 Nuclear Emulsions for WIMP Search with directional measurement 41 3.1 Nuclear emulsion technique and Nano Imaging Tracker............ 43 3.1.1 NIT emulsion production......................... 44 3.1.2 Chemical treatments and handling.................... 46 v 3.2 Background sources................................. 47 3.2.1 External background sources....................... 48 Environmental gamma source...................... 48 Environmental neutron source...................... 48 Muon-induced neutron and cosmic muons background........ 50 Neutrino diffuse background....................... 51 3.2.2 Internal background sources....................... 53 Electrons induced by 14C......................... 53 Radiogenic Neutrons............................ 56 3.2.3 Instrumental background......................... 56 3.3 The NEWSdm project................................ 58 3.4 Readout strategy.................................. 60 3.4.1 Shape analysis for candidate tracks................... 61 3.4.2 Candidate validation with the resonance effect of polarised light.. 62 3.4.3 Optical microscope for LSPRs analysis.................. 66 3.5 Sensitivity...................................... 68 4 Background simulation 71 4.1 Input parameters.................................. 71 4.1.1 Neutron sources.............................. 72 4.1.2 Cosmic muons............................... 73 4.1.3 Environmental gammas and electrons from 14C............ 75 4.2 Simulation of NIT response to electrons..................... 78 4.3 Intrinsic neutron and electrons from 14C background............. 81 4.4 Technical test simulation.............................. 83 4.5 Simulation of the pilot experiment........................ 85 4.5.1 Opera emulsion as a veto......................... 87 4.6 Discussion on simulation results......................... 90 5 Resonance effect of polarised light in NIT emulsions 91 5.1 Scanning and analysis processes......................... 91 5.2 Plasmon variables.................................. 93 5.3 Test beam with Carbon ions............................ 95 5.3.1 Simulation of the test beam........................ 98 5.3.2 Scanning of the data............................ 105 5.4 Position accuracy.................................. 105 vi 5.5 Shape analysis.................................... 107 5.6 Plasmon analysis.................................. 109 5.6.1 Microtracks and Npeaks.......................... 111 5.6.2 Isolated grains............................... 111 5.7 Efficiency and track length threshold with plasmon analysis......... 114 5.8 Summary....................................... 118 6 Neutrino studies with NEWSdm detector 122 6.1 Coherent elastic neutrino-nucleus scattering.................. 123 6.2 Neutrino floor for the NEWSdm detector.................... 125 6.3 Supernova neutrinos with the NEWSdm detector............... 128 6.3.1 Supernova neutrino source........................ 129 6.3.2 Supernova neutrino signal......................... 130 6.3.3 Background sources............................ 133 6.3.4 Results.................................... 133 6.4 Neutrinos from nuclear reactors.......................... 137 6.5 Neutrinos from spallation neutron source.................... 138 6.6 Conclusions on neutrino studies......................... 139 Conclusions 141 vii List of Figures 1.4 All-sky WMAP measurement of the CMB radiation temperature [30]. The lowest temperatures are represented by blue regions while the highest by red regions. The small fluctuations shown are of magnitude O(mK) with the average temperature measured to be 2.72548 ± 0.00057 K......... 14 1.5 The CMB power spectrum as a function of angular scale. Red line is the best fit to the model, and the grey band represents the cosmic variance. [31] 15 1.6 (Left): Curvature and expansion of universes containing both matter and a cosmological constant L. The highlighted regions indicate the best fitting values from CMB and galaxy cluster data added to the Supernova Cosmol- ogy Project (SCP) results [37]. (Right): The abundance relative to H of 4He, 2H, 3He and 7Li as a function of baryon density [38]............... 16 1.7 The density as a function of Galactocentric radius for several radial profiles of the DM halo of the Milky Way [50]....................... 21 1.8 Best fit of rotation curves for the galaxies NGC 4455 (left) and NGC 5023 (right). The data are represented by dots, the Newtonian potential by the short dashed line, the correction term by the long dashed line. The total rotation curve vc(R) is represented by the solid line [52]............ 23 1.9 Hubble’s diagram for Type Ia Supernovae. The red line represents the best fit of the theory with the observed data with 1s error bars. The yellow band represents the 1s uncertainty [55]......................... 23 2.1 Diagram of possible dark matter detection channels. The arrows indicate the direction of the reaction [58].......................... 25 2.2 Typical representation of the sensitivity region for dark matter experiment. The black line represents an upper limit reference curve while the colored ones show the variations due to different properties of the detector. The closed curve represents the signal contour in case of an observation [57]... 31 2.3 Direct dark matter techniques [57]......................... 32 viii 2.4 DAMA/LIBRA annual modulation versus the time exposure [76]....... 33 2.5 Schematic representation of the single phase (left) and double phase operation mode [57]....................................... 36 2.6 Signal indications (closed curves) and exclusion limits (open curves) for low (left) and high (right) WIMP mass in the spin-independent case [57, 96]. 38 2.7 Signal indications (closed curves) and exclusion limits (open curves) for low (left) and high (right) WIMP mass in the spin-dependent case [57].... 38 2.8 Schematic representation of the Earth motion through the Milky Way..... 40 2.9 Hammer-Aitoff
Recommended publications
  • A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
    Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles.
    [Show full text]
  • Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
    Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.
    [Show full text]
  • Probing the Nature of Dark Matter in the Universe
    PROBING THE NATURE OF DARK MATTER IN THE UNIVERSE A Thesis Submitted For The Degree Of Doctor Of Philosophy In The Faculty Of Science by Abir Sarkar Under the supervision of Prof. Shiv K Sethi Raman Research Institute Joint Astronomy Programme (JAP) Department of Physics Indian Institute of Science BANGALORE - 560012 JULY, 2017 c Abir Sarkar JULY 2017 All rights reserved Declaration I, Abir Sarkar, hereby declare that the work presented in this doctoral thesis titled `Probing The Nature of Dark Matter in the Universe', is entirely original. This work has been carried out by me under the supervision of Prof. Shiv K Sethi at the Department of Astronomy and Astrophysics, Raman Research Institute under the Joint Astronomy Programme (JAP) of the Department of Physics, Indian Institute of Science. I further declare that this has not formed the basis for the award of any degree, diploma, membership, associateship or similar title of any university or institution. Department of Physics Abir Sarkar Indian Institute of Science Date : Bangalore, 560012 INDIA TO My family, without whose support this work could not be done Acknowledgements First and foremost I would like to thank my supervisor Prof. Shiv K Sethi in Raman Research Institute(RRI). He has always spent substantial time whenever I have needed for any academic discussions. I am thankful for his inspirations and ideas to make my Ph.D. experience produc- tive and stimulating. I am also grateful to our collaborator Prof. Subinoy Das of Indian Institute of Astrophysics, Bangalore, India. I am thankful to him for his insightful comments not only for our publica- tions but also for the thesis.
    [Show full text]
  • Fuzzy and Axion-Like Dark Matter As an Illusion
    Copyright © 2019 by Sylwester Kornowski All rights reserved Fuzzy and Axion-Like Dark Matter as an Illusion Sylwester Kornowski Abstract: Here we show that masses of the dark-matter (DM) loops in the massive spiral galaxies have the same values as masses of the postulated fuzzy and axion-like DM particles. The DM loops are not fuzzy and, contrary to the spin-zero axion-like DM particles, spin of them is quantized. The DM loops in galactic halos interact with stars via the weak interactions of the virtual electron-positron pairs created spontaneously in spacetime. Such interactions decrease radii of the DM loops and simultaneously increase the orbital speeds of stars. We calculated also the small-scale cutoff for such loop-like DM. 1. Introduction The existence of dark matter (DM) results from its gravitational interaction on various astronomical scales. But the cold dark matter (CDM) models predict cuspy dark matter halo profiles (not seen in the rotation curves of galaxies) and an abundance of low mass halos (not seen in local population of dwarf galaxies). To avoid such problems it is postulated to have warm dark matter (mwarm ~ keV) but this in turn disturbs the structure on larger scales. The solution is a free very light scalar particle (m ~ 10–21 eV = 1.8·10–57 kg). Such ultra-light scalar particles cause that the dark matter behaves as a classical field and the wave nature of the particle is manifest on astrophysical scales. It is assumed that dark matter halos are stable on small scales because of the uncertainty principle in wave mechanics.
    [Show full text]
  • 'Dark Matter Halo for Every Elementary Particle' Model
    A critical review of MOND from the perspective of the `Dark Matter Halo for Every Elementary Particle' Model E.P.J. de Haas (Paul) Nijmegen, The Netherlands∗ (Dated: September 24, 2015) Abstract In this paper I look at MOND from the perspective of my elementary particle Dark matter halo hypothesis. First I repeat the core elements of my model, in order for the paper to be self contained. Then I show how the energy equation for the rotation curve with an extra constant term can give the natural but deceptive impression that Newton's Laws have to be corrected for the ultra low regime, if this energy perspective is missing. Special attention is given to the virtual aspect of the acceleration, virtual as in not caused by Newton's force of gravity, due to a constant kinetic energy caused by the Dark Matter halo at large distances. The rotation curve equations are discussed and the one from my model is given. Conclusions are drawn from the ΛCDM core-cusp problem in relation to this new perspective on MOND as hiding a Dark Matter model perspective. My model might well be the bridge between MOND at the galactic scale and ΛCDM at the cosmic level. ∗ haas2u[at]gmail.com 1 I. THE ELEMENTARY PARTICLE DARK MATTER HALO MODEL It is common knowledge that a Dark Matter mass function linear in r can explain the flatness of galaxy rotation curves at large r. This is the empirical starting point of our Dark Matter model, first presented in [1] and in [2]. Given a rest mass m0 at r = 0, it will have an additional spherical Dark Matter halo containing an extra mass, with Dark Matter properties only, in the sphere with radius r as r mdm = m0: (1) rdm The Dark Matter radius rdm should have a galaxy specific value somewhere in between 10 kpc and 20 kpc, so approximately once or twice the radius of an average luminous galaxy.
    [Show full text]
  • A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework?,?? J
    A&A 620, A92 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832898 & c ESO 2018 Astrophysics A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework?,?? J. S. Farnes1,2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford OX1 3QG, UK e-mail: [email protected] 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands Received 22 February 2018 / Accepted 20 October 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy.
    [Show full text]
  • Evolution of Galactic Star Formation in Galaxy Clusters and Post-Starburst Galaxies
    Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz M¨unchen2020 Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Marcel Lotz aus Frankfurt am Main M¨unchen, den 16. November 2020 Erstgutachter: Prof. Dr. Andreas Burkert Zweitgutachter: Prof. Dr. Til Birnstiel Tag der m¨undlichen Pr¨ufung:8. Januar 2021 Contents Zusammenfassung viii 1 Introduction 1 1.1 A brief history of astronomy . .1 1.2 Cosmology . .5 1.2.1 The Cosmological Principle and our expanding Universe . .6 1.2.2 Dark matter, dark energy and the ΛCDM cosmological model . .9 1.2.3 Chronology of the Universe . 13 1.3 Galaxy properties . 16 1.3.1 Morphology . 17 1.3.2 Colour . 20 1.4 Galaxy evolution . 22 1.4.1 Galaxy formation . 22 1.4.2 Star formation and feedback . 24 1.4.3 Mergers . 25 1.4.4 Galaxy clusters and environmental quenching . 26 1.4.5 Post-starburst galaxies . 29 2 State-of-the-art simulations 33 2.1 Brief introduction to numerical simulations . 33 2.1.1 Treatment of the gravitational force . 34 2.1.2 Varying hydrodynamic approaches . 35 2.2 Magneticum Pathfinder simulations . 39 2.2.1 Smoothed particle hydrodynamics . 39 2.2.2 Details of the Magneticum Pathfinder simulations . 40 3 Gone after one orbit: How cluster environments quench galaxies 45 3.1 Data sample . 46 3.1.1 Observational comparison with CLASH . 46 3.2 Velocity-anisotropy Profiles .
    [Show full text]
  • Descriptions of Elementary Particles Plus Dark Matter Plus Dark Energy and Explanations for Some Related Data
    Descriptions of Elementary Particles plus Dark Matter plus Dark Energy and Explanations for Some Related Data Thomas J. Buckholtz T. J. Buckholtz & Associates [email protected] June 12, 2019 Copyright c 2019 Thomas J. Buckholtz , Keywords: beyond the Standard Model, dark matter, galaxy evolution, dark energy, cosmology, quantum gravity, quantum eld theory Abstract We suggest united models and specic predictions regarding elementary particles, dark matter, aspects of galaxy evolution, dark energy, and aspects of the cosmology timeline. Results include specic predictions for new ele- mentary particles and specic descriptions of dark matter and dark energy. Some of our modeling matches known elementary particles and extrapolates to predict other elementary particles, including bases for dark matter. Some modeling explains observed ratios of eects of dark matter to eects of ordinary matter. Some models suggest aspects of galaxy formation and evolution. Some modeling correlates with eras of increases or decreases in the observed rate of expansion of the universe. Our modeling framework features mathematics for isotropic quantum harmonic oscillators and provides a framework for creating physics theories. Some aspects of our approach em- phasize existence of elementary particles and de-emphasize motion. Some of our models complement traditional quantum eld theory and, for example, traditional calculations of anomalous magnetic dipole moments. Contents 1 Introduction . 2 1.1 Context for and scope of our work . 2 1.2 Timing regarding assumptions put into the work and explanations coming from the work 2 1.3 Scope of this manuscript . 3 2 Methods.............................................. 3 2.1 Approach . 3 2.2 Inspirations . 5 2.3 ALG double-entry bookkeeping .
    [Show full text]
  • Decaying Superheavy Dark Matter and Subgalactic Structure of the Universe
    Physics Letters B 594 (2004) 1–7 www.elsevier.com/locate/physletb Decaying superheavy dark matter and subgalactic structure of the Universe Chung-Hsien Chou, Kin-Wang Ng Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC Received 11 December 2003; received in revised form 20 April 2004; accepted 29 April 2004 Available online 9 June 2004 Editor: J. Frieman Abstract The collisionless cold dark matter (CCDM) model predicts overly dense cores in dark matter halos and overly abundant subhalos. We show that the idea that CDM are decaying superheavy particles which produce ultra-high energy cosmic rays with energies beyond the Greisen–Zatsepin–Kuzmin cutoff may simultaneously solve the problem of subgalactic structure formation in CCDM model. In particular, the Kuzmin–Rubakov’s decaying superheavy CDM model may give an explanation to the smallness of the cosmological constant and a new thought to the CDM experimental search. 2004 Elsevier B.V. All rights reserved. PACS: 95.35.+d; 98.62.Gq; 98.70.Sa; 98.80.Cq 1. Introduction teracting particles. However, there exist serious dis- crepancies between observations and numerical simu- Recent cosmological observations such as dynam- lations of CDM halos in collisionless cold dark matter ical mass, Type Ia supernovae, gravitational lensing, (CCDM) models [3–5], which predict too much power and cosmic microwave background anisotropies, con- on small scales, manifested as cuspy CDM cores in cordantly predict a spatially flat universe containing a dwarf galaxies [6], galaxies like the Milky Way [7], mixture of 5% baryons, 25% cold dark matter (CDM), and central regions of galaxy clusters [8] as well as and 70% vacuum-like dark energy [1,2],termedasthe a large excess of CDM subhalos or dwarf galaxies standard CDM model.
    [Show full text]
  • Lepton Flavour Violation and Dark Matter Phenomenology
    UNIVERSIDAD AUTONOMA´ DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE F´ISICA TEORICA´ Lepton Flavour Violation and Dark Matter Phenomenology Memoria de Tesis Doctoral realizada por Bryan Zald´ıvar Montero presentada ante el Departamento de F´ısica Teorica´ de la Universidad Autonoma´ de Madrid para la obtencion´ del T´ıtulo de Doctor en Ciencias. Tesis Doctoral dirigida por Alberto Casas Jesus´ Moreno del I.F.T. de la Universidad Autonoma´ de Madrid Madrid, Febrero 2013. AGRADECIMIENTOS CONTENTS 1 General Introduction and Motivations 1 2 Supersymmetry and Lepton Flavour Violation 5 2.1 Elements of SUSY .............................. 5 2.1.1 Neutrino masses and mixings .................... 9 2.1.2 Supersymmetric See-saw ....................... 9 2.1.3 LFV processes in the supersymmetric See-saw ........... 11 2.2 Leptogenesis ................................. 14 3 Dark Matter phenomenology 17 3.1 Experimental evidences of Dark Matter ................... 17 3.2 Dark Matter candidates ............................ 18 3.2.1 Baryonic Dark Matter? ........................ 18 3.2.2 Non-baryonic Dark Matter ...................... 19 3.3 Early universe ................................. 20 3.3.1 The dynamics of the universe’s evolution .............. 20 3.3.2 Thermodynamics ........................... 23 3.4 Dark Matter abundance ............................ 29 3.4.1 Freeze-out of cold Dark Matter .................... 31 3.5 Dark Matter Detection ............................ 33 3.5.1 Indirect detection ........................... 33 3.5.2 Direct
    [Show full text]
  • Unitarity Bounds and the Cuspy Halo Problem
    Unitarity Bounds and the Cuspy Halo Problem Lam Hui Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 Institute for Advanced Study, School of Natural Sciences, Princeton, NJ 08540 [email protected] Conventional Cold Dark Matter cosmological models predict small scale structures, such as cuspy halos, which are in apparent conflict with observations. Several alternative scenarios based on modifying fundamental properties of the dark matter have been proposed. We show that general principles of quantum mechanics, in particular unitarity, imply interesting constraints on two pro- posals: collisional dark matter proposed by Spergel & Steinhardt, and strongly annihilating dark matter proposed by Kaplinghat, Knox & Turner. Efficient scattering required in both implies m <∼ 12 GeV and m <∼ 25 GeV respectively. The same arguments show that the strong annihilation in the second scenario implies the presence of significant elastic scattering, particularly for large enough masses. Recently, a variant of the collisional scenario has been advocated to satisfy simultaneously constraints from dwarf galaxies to clusters, with a cross section that scales inversely with velocity. We show that this scenario likely involves super-elastic processes, and the associated kinetic en- ergy change must be taken into account when making predictions. Exceptions and implications for experimental searches are discussed. 98.89.Cq; 98.80.Es; 98.62.Gq; 11.80.Et; 11.55Bq I. INTRODUCTION Griest and Kamionkowski [9] previously derived similar mass bounds related to the freeze-out density of thermal There is a long history of efforts to constrain dark mat- relics, assuming 2-body final states. In §II, we provide ter properties from galactic structure (e.g.
    [Show full text]
  • Unitarity Bounds and the Cuspy Halo Problem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Unitarity Bounds and the Cuspy Halo Problem Lam Hui Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 Institute for Advanced Study, School of Natural Sciences, Princeton, NJ 08540 [email protected] Conventional Cold Dark Matter cosmological models predict small scale structures, such as cuspy halos, which are in apparent conflict with observations. Several alternative scenarios based on modifying fundamental properties of the dark matter have been proposed. We show that general principles of quantum mechanics, in particular unitarity, imply interesting constraints on two pro- posals: collisional dark matter proposed by Spergel & Steinhardt, and strongly annihilating dark matter proposed by Kaplinghat, Knox & Turner. Efficient scattering required in both implies m <∼ 12 GeV and m <∼ 25 GeV respectively. The same arguments show that the strong annihilation in the second scenario implies the presence of significant elastic scattering, particularly for large enough masses. Recently, a variant of the collisional scenario has been advocated to satisfy simultaneously constraints from dwarf galaxies to clusters, with a cross section that scales inversely with velocity. We show that this scenario likely involves super-elastic processes, and the associated kinetic energy change must be taken into account when making predictions. Implications for experimental searches are discussed. 98.89.Cq; 98.80.Es; 98.62.Gq; 11.80.Et; 11.55Bq I. INTRODUCTION Griest and Kamionkowski [9] previously derived similar mass bounds related to the freeze-out density of thermal There is a long history of efforts to constrain dark mat- relics, assuming 2-body final states.
    [Show full text]