Constraining the Particle Nature of Dark Matter: Model-Independent Tests from the Intersection of Theory and Observation

Total Page:16

File Type:pdf, Size:1020Kb

Constraining the Particle Nature of Dark Matter: Model-Independent Tests from the Intersection of Theory and Observation CONSTRAINING THE PARTICLE NATURE OF DARK MATTER: MODEL-INDEPENDENT TESTS FROM THE INTERSECTION OF THEORY AND OBSERVATION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Daniel Mack, B.A., M.S. * * * * * The Ohio State University 2008 Dissertation Committee: Approved by Prof. John F. Beacom, Adviser Prof. James Beatty Adviser Prof. Eric Braaten Graduate Program in Prof. Terrence Walker Physics ABSTRACT Dark matter is one of the greatest mysteries of modern astrophysics. It comprises about 83% of the matter density in the Universe and approximately 22% of the total energy density, yet its identity and particle properties are unknown. Gravitational interactions reveal its presence, but it does not readily interact with light or nor- mal matter. The purpose of this dissertation is to provide insight into the particle properties of this exotic type of matter in a model-independent fashion. Dark mat- ter is expected to be its own antiparticle, but the strength of its self-annihilation is not known. It is often assumed to be consistent with that which gives the correct abundance if dark matter were produced as a thermal relic in the early Universe, but that has not been proven. Constraints on the dark matter self-annihilation cross section are found over a wide range of masses, both for the separate cases of monoen- ergetic neutrino and monoenergetic photon production, and the corresponding limits on the total self-annihilation cross section. This is done by comparing the theoretical flux from a region of annihilating dark matter to observational data of that region. While larger than the thermal relic value, the resulting upper bounds are surpris- ingly stringent and among the first model-independent limits of their kind. A specific application of residual dark matter annihilations during the time of Big Bang Nu- cleosynthesis is analyzed, adding a lower limit to the value of the annihilation cross section for a certain mass range to couple with the calculated upper bounds mentioned ii above. The interaction strength of dark matter with normal matter is constrained by the case of dark matter capture in Earth and the resulting heat flow from an- nihilation in the core. When compared to observation, the analysis rules out many possible interaction strengths between dark matter and normal matter, showing that the interaction, as measured by the interaction cross section, must be truly weak for the usually considered mass range. These model-independent investigations help to shrink the range of possible dark matter property values in a generic fashion, aiding in better understanding and more focused analyses. iii To my parents, family, and friends, who have always shown their support. To those who find the analytic in the artistic, and the aesthetic in the logic. iv ACKNOWLEDGMENTS I would like to first and foremost acknowledge my adviser, Dr. John Beacom, for mentoring me these last several years. I have learned a great deal from John about astrophysics, particle physics, doing research, writing papers, giving talks, the politics of science, ice-cycling in Wisconsin, and even how to grow an impressive goatee. I would also like to thank the other members of my committee, Drs. Terry Walker, Jim Beatty, and Eric Braaten, for seeing me through this process, and especially Terry for encouraging me in joining the Astrophysics group in my initial graduate school stages (and therefore having me interact with such hooligans as Andrew, Savvas, and Louie). I also need to thank my undergraduate professors at Ohio Wesleyan University, Barbara Andereck, Brad Trees, and Bob Harmon, without whom I would not have made it to graduate school. I am also grateful for my collaborators, Gianfranco Bertone, Nicole Bell, Hasan Yuksel,¨ Thomas Jacques, and Gary Steigman, who along with John were essential for my research and publications. Along those lines, I acknowledge Eric Braaten, Stuart Raby, Stefano Profumo, Frederick Kuehn, Matt Kistler, Louie Strigari, Jordi Miralda- Escud´e, Jerry Newsom, Wendy Panero, Ralph von Frese, Laura Baudis, Andy Gould, Shin'ichiro Ando, Shantanu Desai, Michael Kachelriess, Manoj Kaplinghat, Eiichiro Komatsu, Robert Scherrer, Shmuel Nussinov, and Casey Watson for discussions and advice in completing the publications. v On a more personal note, I would like to thank my parents, Gene and Carlotta, and the rest of my family, especially Ed and Amanda, for always giving me support. I have to thank my good friends, too, for putting up with me and my irrationalities during this process: Chad Johns, Sara Florkey, Jenn Schmelzer, and Beth Cademar- tori for infinitely many, many, many things including for tolerating me the past ten years; Dave Boley for studying at many different coffee shops with me, sometimes cooking for me, showing me how to cook, scrabble, and the gracious use of his park- ing pass; Marian Homan for innumerable wake-up calls; my \twin sister" Sarah Hixon for having me as a part of Hixon Dance, performing in her works, and sharing ranting sessions; Maggie Page and Noelle Chun, with whom it is always great to dance on- stage; and Ric Rader, Deb Friedes, Andy Vogel, Brian Hauser, and Christina Xydias, for the \Wednesday night grad student gatherings". I also like to think that I greatly supported the local business scene in Columbus, Ohio, by frequenting (rather often) the coffee shops Caff´e Apropos and Cup O Joe (the Short North location, but much more often in German Village). Countless cups of coffee contributed to the writing of this dissertation. vi VITA 5 June 1980 . Born { Cleveland, OH May 2002 . .B. A. in Physics and Astronomy, Ohio Wesleyan University, Delaware, OH September 2002 { August 2005 . Fowler Fellowship, The Ohio State Uni- versity, Department of Physics, Colum- bus, OH August 2005 . .M.S. in Physics, The Ohio State Uni- versity, Columbus, OH September 2005 { June 2008 . Graduate Research Associate, The Ohio State University, Department of Physics, Columbus, OH vii PUBLICATIONS \Towards Closing the Window on Strongly Interacting Dark Matter: Far- Reaching Constraints from Earth's Heat Flow," G. D. Mack, J. F. Beacom and G. Bertone, Phys. Rev. D 76, 043523 (2007) [arXiv:0705.4298 [astro-ph]]. \General Upper Bound on the Dark Matter Total Annihilation Cross Sec- tion," J. F. Beacom, N. F. Bell and G. D. Mack, Phys. Rev. Lett. 99, 231301 (2007) [arXiv:astro-ph/0608090]. \Conservative Constraints on Dark Matter Annihilation into Gamma Rays," G. D. Mack, T. D. Jacques, J. F. Beacom, N. F. Bell and H. Yuksel, (2008) arXiv:0803.0157 [astro-ph]. FIELDS OF STUDY Major Field: Physics viii TABLE OF CONTENTS Page Abstract . ii Dedication . iv Acknowledgments . v Vita . vii List of Tables . xii List of Figures . xiii Chapters: 1. An Introduction to Dark Matter . 1 1.1 A General Introduction . 1 1.2 A Historical Perspective . 4 2. How Much Dark Matter is There? . 16 2.1 Necessary Cosmological Formalism . 16 2.2 Measuring an Imprint of the Early Universe: the Cosmic Microwave Background . 22 2.3 The Universe is \Darker" Than Originally Thought: a Case for Λ . 29 2.4 Correlating Cosmological Measurements . 30 3. Dark Matter: Where, What, How? . 34 3.1 Where is the Dark Matter? . 34 3.2 What Could Dark Matter Be? . 40 ix 3.2.1 Supersymmetry . 41 3.2.2 Universal Extra Dimensions . 43 3.2.3 Other Viable Candidates . 44 3.3 How Can We Find Dark Matter? . 45 3.3.1 Direct Detection: The Slightest Touch . 46 3.3.2 Indirect Detection: Measuring Dark Matter's Disappearance 50 3.3.3 Unitarity: An Existing Annihilation Constraint . 52 4. Towards Closing the Window on Strongly Interacting Dark Matter: Far-Reaching Constraints from Earth's Heat Flow . 57 4.1 Introduction . 58 4.2 Review of Prior Constraints . 64 4.2.1 Indirect Astrophysical Constraints . 64 4.2.2 Direct Detection Constraints . 66 4.3 Earth's Heat Flow . 67 4.4 Dark Matter Capture Rate of Earth . 69 4.4.1 Maximum Capture Rate . 70 4.4.2 Dark Matter Scattering on Nuclei . 73 4.4.3 Dark Matter Capture Efficiency . 75 4.5 Dark Matter Annihilation and Heating Rates in Earth . 81 4.5.1 Maximal Annihilation and Heating Rates . 81 4.5.2 Equilibrium Requirements . 83 4.5.3 Annihilation and Heating Efficiencies . 86 4.6 Discussion and Conclusions . 88 4.6.1 Principal Results . 88 4.6.2 Comparison to Other Planets . 89 4.6.3 Future Directions . 90 5. Upper Bound on the Dark Matter Total Annihilation Cross Section . 92 5.1 Introduction . 92 5.2 Probing Dark Matter Disappearance . 96 5.3 Revealing Neutrino Appearance . 97 5.4 Cosmic Diffuse Neutrinos: Signal . 98 5.5 Cosmic Diffuse Neutrinos: Backgrounds . 102 5.6 Conclusions . 104 6. Conservative Constraints on Dark Matter Annihilation into Gamma Rays 107 6.1 Introduction . 108 6.2 Cross Section Constraints . 110 x 6.3 Calculation of Dark Matter Signals . 112 6.3.1 Dark Matter Halos . 112 6.3.2 Milky Way and Andromeda Signals . 115 6.3.3 Cosmic Diffuse Signal . 116 6.4 Specific Observations and Derived Annihilation Constraints . 117 6.4.1 COMPTEL and EGRET . 120 6.4.2 H.E.S.S. 121 6.4.3 INTEGRAL . 122 6.4.4 Andromeda Halo Results . 123 6.4.5 Cosmic Diffuse Results . 124 6.5 Discussion and Conclusions . 125 6.5.1 Limits on the Cross Section to Gamma Rays . 125 6.5.2 Limits on the Total Cross Section . 128 6.5.3 Conclusions and Prospects . 131 7. The Effects of Residual Dark Matter Annihilations on Big Bang Nucle- osynthesis . 133 7.1 Annihilations in the Early Universe .
Recommended publications
  • Curriculum Vitae Brian P
    Curriculum Vitae Brian P. Schmidt AC FAA FRS Address: Office of the Vice Chancellor The Australian National University Canberra, ACT 2600, Australia Birthdate: 24 February 1967, Missoula Montana USA Citizenship: United States of America and Australia Telephone: +61 2 6125 2510 email: [email protected] Academic Qualifications: 1993: Ph.D. in Astronomy, Harvard University 1992: A.M. in Astronomy, Harvard University 1989: B.S. in Physics, University of Arizona 1989: B.S. in Astronomy, University of Arizona PhD thesis: Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale – Supervisor: Robert P. Kirshner Research and other Interests: Observational Cosmology, Studies of Supernovae, Gamma Ray Bursts, Large Surveys, Photometry and Calibration, Extremely Metal Poor Stars, Exoplanet Discovery Public Policy in the Areas of Education, Science, and Innovation Vigneron and Grape Grower: Maipenrai Vineyard and Winery Academic Positions Held: 2016- Vice Chancellor and President, The Australian National University 2013-2015 Public Policy Fellow, Crawford School, The Australian National University 2010- Distinguished Professor, The Australian National University 2010-2015 Australian Research Council Laureate Fellow (ANU) 2005-2009 Australian Research Council Federation Fellow (ANU) 2003-2005 Australian Research Council Professorial Fellow, (ANU) 1999-2002 Fellow, The Australian National University (RSAA) 1997-1999 Research Fellow, The Australian National University (MSSSO) 1995-1996 Postdoctoral Fellow, The Australian National University
    [Show full text]
  • Astrophysics with Terabytes
    Astrophysics with Terabytes Alex Szalay The Johns Hopkins University Jim Gray Microsoft Research Living in an Exponential World • Astronomers have a few hundred TB now – 1 pixel (byte) / sq arc second ~ 4TB – Multi-spectral, temporal, … _ 1PB • They mine it looking for 1000 new (kinds of) objects or more of interesting ones (quasars), 100 density variations in 400-D space 10 correlations in 400-D space 1 • Data doubles every year 0.1 2000 1995 1990 1985 1980 1975 1970 CCDs Glass The Challenges Exponential data growth: Distributed collections Soon Petabytes Data Collection Discovery Publishing and Analysis New analysis paradigm: New publishing paradigm: Data federations, Scientists are publishers Move analysis to data and Curators Why Is Astronomy Special? • Especially attractive for the wide public • Community is not very large • It has no commercial value – No privacy concerns, freely share results with others – Great for experimenting with algorithms • It is real and well documented – High-dimensional (with confidence intervals) – Spatial, temporal • Diverse and distributed – Many different instruments from many different places and many different times • The questions are interesting • There is a lot of it (soon petabytes) The Virtual Observatory • Premise: most data is (or could be online) • The Internet is the world’s best telescope: – It has data on every part of the sky – In every measured spectral band: optical, x-ray, radio.. – As deep as the best instruments (2 years ago). – It is up when you are up – The “seeing” is always great – It’s a smart telescope: links objects and data to literature on them • Software became the capital expense – Share, standardize, reuse.
    [Show full text]
  • Things You Need to Know About Big Data
    Critical Missions Are Built On NetApp NetApp’s Big Data solutions deliver high performance computing, full motion video (FMV) and intelligence, surveillance and reconnaissance (ISR) capabilities to support national safety, defense and intelligence missions and scientific research. UNDERWRITTEN BY To learn more about how NetApp and VetDS can solve your big data challenges, call us at 919.238.4715 or visit us online at VetDS.com. ©2011 NetApp. All rights reserved. Specifications are subject to change without notice. NetApp, the NetApp logo, and Go further, faster are trademarks or registered trademarks of NetApp, Inc. in the United States and/or other countries. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such. Critical Missions Are Things You NeedBuilt On NetApp to Know About Big Data NetApp’s Big Data solutions deliver high Big data has been making big news in fields rangingperformance from astronomy computing, full motionto online video advertising. (FMV) and intelligence, surveillance and By Joseph Marks The term big data can be difficult to pin down because it reconnaissanceshows up in (ISR) so capabilities many toplaces. support Facebook national safety, defense and intelligence crunches through big data on your user profile and friend networkmissions and to scientific deliver research. micro-targeted ads. Google does the same thing with Gmail messages, Search requests and YouTube browsing. Companies including IBM are sifting through big data from satellites, the Global Positioning System and computer networks to cut down on traffic jams and reduce carbon emissions in cities. And researchers are parsing big data produced by the Hubble Space Telescope, the Large Hadron Collider and numerous other sources to learn more about the nature and origins of the universe.
    [Show full text]
  • A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
    Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles.
    [Show full text]
  • Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
    Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.
    [Show full text]
  • Probing the Nature of Dark Matter in the Universe
    PROBING THE NATURE OF DARK MATTER IN THE UNIVERSE A Thesis Submitted For The Degree Of Doctor Of Philosophy In The Faculty Of Science by Abir Sarkar Under the supervision of Prof. Shiv K Sethi Raman Research Institute Joint Astronomy Programme (JAP) Department of Physics Indian Institute of Science BANGALORE - 560012 JULY, 2017 c Abir Sarkar JULY 2017 All rights reserved Declaration I, Abir Sarkar, hereby declare that the work presented in this doctoral thesis titled `Probing The Nature of Dark Matter in the Universe', is entirely original. This work has been carried out by me under the supervision of Prof. Shiv K Sethi at the Department of Astronomy and Astrophysics, Raman Research Institute under the Joint Astronomy Programme (JAP) of the Department of Physics, Indian Institute of Science. I further declare that this has not formed the basis for the award of any degree, diploma, membership, associateship or similar title of any university or institution. Department of Physics Abir Sarkar Indian Institute of Science Date : Bangalore, 560012 INDIA TO My family, without whose support this work could not be done Acknowledgements First and foremost I would like to thank my supervisor Prof. Shiv K Sethi in Raman Research Institute(RRI). He has always spent substantial time whenever I have needed for any academic discussions. I am thankful for his inspirations and ideas to make my Ph.D. experience produc- tive and stimulating. I am also grateful to our collaborator Prof. Subinoy Das of Indian Institute of Astrophysics, Bangalore, India. I am thankful to him for his insightful comments not only for our publica- tions but also for the thesis.
    [Show full text]
  • Gerard Lemson Alex Szalay, Mike Rippin DIBBS/Sciserver Collaborative Data-Driven Science
    Collaborative data-driven science Gerard Lemson Alex Szalay, Mike Rippin DIBBS/SciServer Collaborative data-driven science } Started with the SDSS SkyServer } Built in a few months in 2001 } Goal: instant access to rich content } Idea: bring the analysis to the data } Interac@ve access at the core } Much of the scien@fic process is about data ◦ Data collec@on, data cleaning, data archiving, data organizaon, data publishing, mirroring, data distribu@on, data analy@cs, data curaon… 2 Collaborative data-driven science Form Based Queries 3 Collaborative data-driven science Image Access Collaborative data-driven science Custom SQL Collaborative data-driven science Batch Queries, MyDB Collaborative data-driven science Cosmological Simulations Collaborative data-driven science Turbulence Database Collaborative data-driven science Web Service Access through Python Collaborative data-driven science } Interac@ve science on petascale data } Sustain and enhance our astronomy effort } Create scalable open numerical laboratories } Scale system to many petabytes } Deep integraon with the “Long Tail” } Large footprint across many disciplines ◦ Also: Genomics, Oceanography, Materials Science } Use commonly shared building blocks } Major naonal and internaonal impact 10 Collaborative data-driven science } Offer more compung resources server side } Augment and combine SQL queries with easy- to-use scrip@ng tools } Heavy use of virtual machines } Interac@ve portal via iPython/Matlab/R } Batch jobs } Enhanced visualizaon tools 11 Collaborative data-driven science
    [Show full text]
  • Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets Year 1 Progress Report & Year 2 Proposal
    January 27, 2007 NASA GSRP Proposal Page 1 of 5 Ioan Raicu Harnessing Grid Resources to Enable the Dynamic Analysis of Large Astronomy Datasets Year 1 Progress Report & Year 2 Proposal 1 Year 1 Proposal In order to setup the context for this progress report, this section covers a brief motivation for our work and summarizes the Year 1 Proposal we originally submitted under grant number NNA06CB89H. Large datasets are being produced at a very fast pace in the astronomy domain. In principle, these datasets are most valuable if and only if they are made available to the entire community, which may have tens to thousands of members. The astronomy community will generally want to perform various analyses on these datasets to be able to extract new science and knowledge that will both justify the investment in the original acquisition of the datasets as well as provide a building block for other scientists and communities to build upon to further the general quest for knowledge. Grid Computing has emerged as an important new field focusing on large-scale resource sharing and high- performance orientation. The Globus Toolkit, the “de facto standard” in Grid Computing, offers us much of the needed middleware infrastructure that is required to realize large scale distributed systems. We proposed to develop a collection of Web Services-based systems that use grid computing to federate large computing and storage resources for dynamic analysis of large datasets. We proposed to build a Globus Toolkit 4 based prototype named the “AstroPortal” that would support the “stacking” analysis on the Sloan Digital Sky Survey (SDSS).
    [Show full text]
  • RECENT ADVANCES and ISSUES in Astronomy
    RECENT ADVANCES AND ISSUES IN Astronomy Christopher G. De Pree Kevin Marvel Alan Axelrod GREENWOOD PRESS RECENT ADVANCES AND ISSUES IN Astronomy Recent Titles in the Frontiers of Science Series Recent Advances and Issues in Chemistry David E. Newton Recent Advances and Issues in Physics David E. Newton Recent Advances and Issues in Environmental Science Joan R. Callahan Recent Advances and Issues in Biology Leslie A. Mertz Recent Advances and Issues in Computers Martin K. Gay Recent Advances and Issues in Meteorology Amy J. Stevermer Recent Advances and Issues in the Geological Sciences Barbara Ransom and Sonya Wainwright Recent Advances and Issues in Molecular Nanotechnology David E. Newton Frontiers of Science Series RECENT ADVANCES AND ISSUES IN Astronomy Christopher G. De Pree, Kevin Marvel, and Alan Axelrod An Oryx Book GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data De Pree, Christopher Gordon. Recent advances and issues in astronomy / Christopher G. De Pree, Kevin Marvel, and Alan Axelrod. p. cm. “An Oryx Book” Includes bibliographical references and index. ISBN 1–57356–348–X (alk. paper) 1. Astronomy. I. Marvel, Kevin. II. Axelrod, Alan. III. Title. QB43.3.D4 2003 520—dc21 2002067831 British Library Cataloguing in Publication Data is available. Copyright ᭧ 2003 by Christopher G. De Pree, Kevin Marvel, and Alan Axelrod All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2002067831 ISBN: 1-57356-348-X First published in 2003 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc.
    [Show full text]
  • Warmth Elevating the Depths: Shallower Voids with Warm Dark Matter
    MNRAS 451, 3606–3614 (2015) doi:10.1093/mnras/stv1087 Warmth elevating the depths: shallower voids with warm dark matter Lin F. Yang,1‹ Mark C. Neyrinck,1 Miguel A. Aragon-Calvo,´ 2 Bridget Falck3 and Joseph Silk1,4,5 1Department of Physics & Astronomy, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA 2Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA 3Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Rd, Portsmouth PO1 3FX, UK 4Institut d’Astrophysique de Paris – 98 bis boulevard Arago, F-75014 Paris, France 5Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH, UK Downloaded from https://academic.oup.com/mnras/article/451/4/3606/1101530 by guest on 28 September 2021 Accepted 2015 May 12. Received 2015 May 1; in original form 2014 December 11 ABSTRACT Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic ‘sub- web’ inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the ZOBOV algorithm, and cosmic-web components with the ORIGAMI algorithm.
    [Show full text]
  • Cosmic Search Issue 06 Page 32
    North American AstroPhysical Observatory (NAAPO) Cosmic Search: Issue 6 (Volume 2 Number 2; Spring (Apr., May, June) 1980) [Article in magazine started on page 32] ABCs of Space By: John Kraus A. How Do You Harness a Black Hole? Nowadays universities have astronomy departments, aeronautical engineering departments and even astronautical engineering departments. As yet, however, I am not aware of any astro-engineering departments. But some day there may be and what kind of courses might be offered? Probably ones on the mining of asteroids, construction of space habitats and even possibly one on "Harnessing of Black Holes." A first consideration regarding the last item would be data on critical distances and strategies on how to approach a black hole without falling in. A second consideration would be a discussion of how a black hole is a potential source of great amounts of energy if you go at it right. And finally, the instructor would probably get down to the details of the astroengineering required with blueprints of a design and calculations of the expected power generating capability. This may sound a bit futuristic and it is, but the famous text "Gravitation" by Charles Misner, Kip Thorne and John Wheeler includes a hypothetical example about how an advanced civilization could construct a rigid platform around a black hole and build a city on the platform. The discussion goes on to say that every day garbage trucks carry a million tons of garbage collected from all over the city to a dump point where the garbage goes into special containers which are then dropped one after the other down toward the black hole at the center of the city.
    [Show full text]
  • Large Scale Structures of the Universe Proceedings of the 130Th Symposium of the International Astronomical Union, Dedicated to the Memory of Marc A
    springer.com Physics : Astronomy, Observations and Techniques Audouze, J., Pelletan, M.-C., Szalay, A. (Eds.) Large Scale Structures of the Universe Proceedings of the 130th Symposium of the International Astronomical Union, Dedicated to the Memory of Marc A. Aaronson (1950–1987), Held in Balatonfured, Hungary, June 15–20, 1987 Ten years ago in August 1977 Malcom Longair and Jan Einasto organized IAU Symposium nO 79 on exactly the same exciting and most important topic i.e. the Large Scale Structure of the Universe. Many of us have the recollection of an outstanding meeting which fulfilled two goals (i) establish most of the foundation of a fast growing field (ii) set up a confrontation between the excellent observational and theoretical work performed in eastern and western countries. A decade after such a meeting Alex Szalay and I have felt the need to reassemble the Springer cosmologists working actively on problems dealing with the Uni• verse as a whole. Indeed a 1988, XXXIV, 622 p. lot of progress has been achieved in the building of large surveys in the discovery of voids, 1st sponges and filaments in the galaxy clus• ter distribution, in refined numerical simulations, in edition experimental and theoretical particle physics (outcome of new particles (cold particles) and unification (GUT, supersymmetry) schemes), in research of quantum gravity and inflation scenarios etc ... A new confrontation between all the specialists working all throughout the Printed book world on such questions appeared to us to be most timely. This is why the location of Hardcover Balatonfiired in Hungary to be accessible to anyone as Tallin in 1977 has been chosen.
    [Show full text]