AAS Newsletter (ISSN 8750-9350) Is Amateur
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae Brian P
Curriculum Vitae Brian P. Schmidt AC FAA FRS Address: Office of the Vice Chancellor The Australian National University Canberra, ACT 2600, Australia Birthdate: 24 February 1967, Missoula Montana USA Citizenship: United States of America and Australia Telephone: +61 2 6125 2510 email: [email protected] Academic Qualifications: 1993: Ph.D. in Astronomy, Harvard University 1992: A.M. in Astronomy, Harvard University 1989: B.S. in Physics, University of Arizona 1989: B.S. in Astronomy, University of Arizona PhD thesis: Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale – Supervisor: Robert P. Kirshner Research and other Interests: Observational Cosmology, Studies of Supernovae, Gamma Ray Bursts, Large Surveys, Photometry and Calibration, Extremely Metal Poor Stars, Exoplanet Discovery Public Policy in the Areas of Education, Science, and Innovation Vigneron and Grape Grower: Maipenrai Vineyard and Winery Academic Positions Held: 2016- Vice Chancellor and President, The Australian National University 2013-2015 Public Policy Fellow, Crawford School, The Australian National University 2010- Distinguished Professor, The Australian National University 2010-2015 Australian Research Council Laureate Fellow (ANU) 2005-2009 Australian Research Council Federation Fellow (ANU) 2003-2005 Australian Research Council Professorial Fellow, (ANU) 1999-2002 Fellow, The Australian National University (RSAA) 1997-1999 Research Fellow, The Australian National University (MSSSO) 1995-1996 Postdoctoral Fellow, The Australian National University -
Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles)
Entropy 2015, 17, 6200-6212; doi:10.3390/e17096200 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Concept Paper Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles) Michael A. Persinger Biomolecular Sciences and Behavioural Neuroscience Programs, Laurentian University, Sudbury, ON P3E 2C6, Canada; E-Mail: [email protected] Academic Editor: Kevin H. Knuth Received: 15 July 2015 / Accepted: 28 August 2015 / Published: 7 September 2015 Abstract: The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle) and the other ½ is virtual (wave). The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+) and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. -
The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
Origins of Life: Transition from Geochemistry to Biogeochemistry
December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times. -
The Orgueil Meteorite (Atlas of Microfossils)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/349917258 The Orgueil meteorite (Atlas of microfossils) Book · October 2020 CITATION READS 1 348 8 authors, including: Richard Brice Hoover Krasavin Eugene The University of Buckingham Joint Institute for Nuclear Research 436 PUBLICATIONS 3,388 CITATIONS 171 PUBLICATIONS 1,121 CITATIONS SEE PROFILE SEE PROFILE Olga Samylina Anton Ryumin Winogradsky Institute Of Microbiology Joint Institute for Nuclear Research 49 PUBLICATIONS 190 CITATIONS 3 PUBLICATIONS 3 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: NAA of Carbonaceous Meteorites View project Radiation DNA damage and DNA double strend break repair and misrepair View project All content following this page was uploaded by Anton Ryumin on 10 March 2021. The user has requested enhancement of the downloaded file. Объединенный институт ядерных исследований Палеонтологический институт им. А.А. Борисяка РАН Институт микробиологии имени С.Н. Виноградского РАН Космический и Ракетный Центр Соединенных Штатов, Хантсвилл, Алабама, США Научный совет РАН по астробиологии МЕТЕОРИТ ОРГЕЙ АТЛАС МИКРОФОССИЛИЙ А.Ю. Розанов, Р.Б. Хувер, Е.А. Красавин, О.С. Самылина, А.К. Рюмин, М.И. Капралов, Е.А. Сапрыкин, А.Н. Афанасьева Объединенный инстиут Палеонтологический институт Институт микробиологии U.S. Space ядерных исследований им. А.А. Борисяка им. С.Н. Виноградского & Rocket Center Российской академии наук Российской академии наук Joint Institute for Nuclear Research A.A. Borissyak Paleontological Institute, Russian Academy of Sciences S.N. Vinogradsky Institute of Microbiology, Russian Academy of Sciences United States Space and Rocket Center, Huntsville, Alabama, USA Scientific Council on Astrobiology, Russian Academy of Sciences THE ORGUEIL METEORITE (ATLAS OF MICROFOSSILS) A. -
The Role of Project Science in the Chandra X-Ray Observatory
Modeling, Systemes Engineering, and Project Management for Astronomy II, edited by Martin J. Cullum & George Z. Angeli, Proc. SPIE 6271 (2006) The role of project science in the Chandra X-ray Observatory Stephen L. O’Dell a* & Martin C. Weisskopf a a NASA Marshall Space Flight Center, NSSTC/VP62, 320 Sparkman Dr., Huntsville, AL 35805 ABSTRACT The Chandra X-ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community—including the thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to serving as an interface between the scientific community and the Project, Project Science performed what we term “science systems engineering”. This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science. Keywords: Modeling and simulation, project management, project science, space observatories, x-ray astronomy 1. INTRODUCTION On 1999 July 23 4:31 UTC, NASA’s shuttle mission STS-93 launched (Figure 1) the Chandra X-ray Observatory. About 8 hours later, the orbiter Columbia deployed Chandra from its payload bay. Another hour later, the attached Inertial Upper Stage (IUS) fired and separated, sending Chandra toward a high elliptical orbit. -
Download the AAS 2011 Annual Report
2011 ANNUAL REPORT AMERICAN ASTRONOMICAL SOCIETY aas mission and vision statement The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe. 1. The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public. 2. The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests. 3. The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science. 4. The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy. A 5. The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering. Adopted 7 June 2009 A S 2011 ANNUAL REPORT - CONTENTS 4 president’s message 5 executive officer’s message 6 financial report 8 press & media 9 education & outreach 10 membership 12 charitable donors 14 AAS/division meetings 15 divisions, committees & workingA groups 16 publishing 17 public policy A18 prize winners 19 member deaths 19 society highlights Established in 1899, the American Astronomical Society (AAS) is the major organization of professional astronomers in North America. -
Newsletter 110 ª June 2002 NEWSLETTER
Newsletter 110 ª June 2002 NEWSLETTER The American Astronomical Societys2000 Florida Avenue, NW, Suite 400sWashington, DC [email protected] AAS NEWS PRESIDENT’S COLUMN Wallerstein is Anneila I. Sargent, Caltech, [email protected] My term as President of the American Astronomical Society Russell Lecturer will end with our meeting in Albuquerque in June 2002. Usually This year, the AAS this letter would be the appropriate place to consider my bestows its highest honor, expectations and goals when I took up the gavel and compare the Henry Norris Russell these with what actually happened. Lectureship on George The events of 11 September 2001 caused me to write that kind Wallerstein, Professor of reflective letter in the December issue of this Newsletter.I Emeritus of Astronomy at won’t repeat myself here except to note that at that time there the University of seemed to be less enthusiasm to fund research in the physical Washington. Wallerstein is sciences than we had grown to expect when I took office. recognized in the award citation for “...his As I write this column, the prospects look much less bleak. In contributions to our another part of this Newsletter, Kevin Marvel discusses how understanding of the astronomy fared in the President’s FY ’03 budget request. George Wallerstein of the University of NASA’s Office of Space Science is doing very well indeed. In Washington will deliver his Russell Lecture abundances of the at the Seattle Meeting in January 2003. elements in stars and fact, the OSS budget has been increasing steadily since 1996 and clusters. -
Benjamin J. Owen - Curriculum Vitae
BENJAMIN J. OWEN - CURRICULUM VITAE Contact information Mail: Texas Tech University Department of Physics & Astronomy Lubbock, TX 79409-1051, USA E-mail: [email protected] Phone: +1-806-834-0231 Fax: +1-806-742-1182 Education 1998 Ph.D. in Physics, California Institute of Technology Thesis title: Gravitational waves from compact objects Thesis advisor: Kip S. Thorne 1993 B.S. in Physics, magna cum laude, Sonoma State University (California) Minors: Astronomy, German Research advisors: Lynn R. Cominsky, Gordon G. Spear Academic positions Primary: 2015{ Professor of Physics & Astronomy Texas Tech University 2013{2015 Professor of Physics The Pennsylvania State University 2008{2013 Associate Professor of Physics The Pennsylvania State University 2002{2008 Assistant Professor of Physics The Pennsylvania State University 2000{2002 Research Associate University of Wisconsin-Milwaukee 1998{2000 Research Scholar Max Planck Institute for Gravitational Physics (Golm) Secondary: 2015{2018 Adjunct Professor The Pennsylvania State University 2012 (2 months) Visiting Scientist Max Planck Institute for Gravitational Physics (Hanover) 2010 (6 months) Visiting Associate LIGO Laboratory, California Institute of Technology 2009 (6 months) Visiting Scientist Max Planck Institute for Gravitational Physics (Hanover) Honors and awards 2017 Princess of Asturias Award for Technical and Scientific Research (with the LIGO Scientific Collaboration) 2017 Albert Einstein Medal (with the LIGO Scientific Collaboration) 2017 Bruno Rossi Prize for High Energy Astrophysics (with the LIGO Scientific Collaboration) 2017 Royal Astronomical Society Group Achievement Award (with the LIGO Scientific Collab- oration) 2016 Gruber Cosmology Prize (with the LIGO Scientific Collaboration) 2016 Special Breakthrough Prize in Fundamental Physics (with the LIGO Scientific Collabora- tion) 2013 Fellow of the American Physical Society 1998 Milton and Francis Clauser Prize for Ph.D. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
The Chandra X-Ray Observatory
Bull. Astr. Soc. India (2011) 39, 225–241 The Chandra X-ray observatory Gordon P. Garmire¤ Penn State University, PA 16802, USA Received 2011 February 03; accepted 2011 March 12 Abstract. This paper describes a brief history of the development of the Chandra X-ray observatory, based on the talk which was presented on October 17, 2010 at the Chandrasekhar Centennial Symposium held in the campus of the University of Chicago. Keywords : X-rays: general – telescopes – space vehicles: instruments 1. Introduction First, I would like to thank the organizing committee for inviting me to this very interesting con- ference. Nobel laureate Subrahmanyan Chandrasekhar is certainly deserving of such an accolade. I would like to turn from the theoretical topics that have occupied most of today’s lectures, to a more experimental topic, that of the history of the Chandra X-ray Observatory. This Observatory was built to explore the high energy Universe which features such exotic objects as neutron stars and black holes. Chandra was very interested in black holes as is illustrated by his description that “The black holes of nature are the most perfect macroscopic objects there are in the Universe: the only elements in their construction are our concepts of space and time.” One of the closest examples of a massive black hole is the one at the centre of our Galaxy in SgrA¤ shown in Fig. 1 from a 500 ks Chandra image obtained by Muno et al. (2003). This remarkable object is emitting X-rays at a rate of only 2 £ 1033 ergs/s which is nearly nine orders of magnitude below that of an active galactic nucleus (AGN).