Programming In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming Paradigms & Object-Oriented
4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor. -
A Feature Model of Actor, Agent, Functional, Object, and Procedural Programming Languages
Accepted Manuscript A feature model of actor, agent, functional, object, and procedural programming languages H.R. Jordan, G. Botterweck, J.H. Noll, A. Butterfield, R.W. Collier PII: S0167-6423(14)00050-1 DOI: 10.1016/j.scico.2014.02.009 Reference: SCICO 1711 To appear in: Science of Computer Programming Received date: 9 March 2013 Revised date: 31 January 2014 Accepted date: 5 February 2014 Please cite this article in press as: H.R. Jordan et al., A feature model of actor, agent, functional, object, and procedural programming languages, Science of Computer Programming (2014), http://dx.doi.org/10.1016/j.scico.2014.02.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights • A survey of existing programming language comparisons and comparison techniques. • Definitions of actor, agent, functional, object, and procedural programming concepts. • A feature model of general-purpose programming languages. • Mappings from five languages (C, Erlang, Haskell, Jason, and Java) to this model. A Feature Model of Actor, Agent, Functional, Object, and Procedural Programming Languages H.R. Jordana,∗, G. Botterwecka, J.H. Nolla, A. Butterfieldb, R.W. Collierc aLero, University of Limerick, Ireland bTrinity College Dublin, Dublin 2, Ireland cUniversity College Dublin, Belfield, Dublin 4, Ireland Abstract The number of programming languages is large [1] and steadily increasing [2]. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
The History of Computer Language Selection
The History of Computer Language Selection Kevin R. Parker College of Business, Idaho State University, Pocatello, Idaho USA [email protected] Bill Davey School of Business Information Technology, RMIT University, Melbourne, Australia [email protected] Abstract: This examines the history of computer language choice for both industry use and university programming courses. The study considers events in two developed countries and reveals themes that may be common in the language selection history of other developed nations. History shows a set of recurring problems for those involved in choosing languages. This study shows that those involved in the selection process can be informed by history when making those decisions. Keywords: selection of programming languages, pragmatic approach to selection, pedagogical approach to selection. 1. Introduction The history of computing is often expressed in terms of significant hardware developments. Both the United States and Australia made early contributions in computing. Many trace the dawn of the history of programmable computers to Eckert and Mauchly’s departure from the ENIAC project to start the Eckert-Mauchly Computer Corporation. In Australia, the history of programmable computers starts with CSIRAC, the fourth programmable computer in the world that ran its first test program in 1949. This computer, manufactured by the government science organization (CSIRO), was used into the 1960s as a working machine at the University of Melbourne and still exists as a complete unit at the Museum of Victoria in Melbourne. Australia’s early entry into computing makes a comparison with the United States interesting. These early computers needed programmers, that is, people with the expertise to convert a problem into a mathematical representation directly executable by the computer. -
A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems
A FORMAL COMPONENT-BASED SOFTWARE ENGINEERING APPROACH FOR DEVELOPING TRUSTWORTHY SYSTEMS MUBARAK SAMI MOHAMMAD A THESIS IN THE DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE) CONCORDIA UNIVERSITY MONTREAL´ ,QUEBEC´ ,CANADA APRIL 2009 °c MUBARAK SAMI MOHAMMAD, 2009 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Mr. Mubarak Sami Mohammad Entitled: A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) (Computer Science) complies with the regulations of this University and meets the accepted standards with re- spect to originality and quality. Signed by the final examining committee: Chair Dr. External Examiner Dr. Nicholas Graham External to Program Dr. Jamal Bentahar Examiner Dr. Joey Paquet Examiner Dr. Juergen Rilling Supervisor Dr. Vasu Alagar Co-supervisor Dr. Olga Ormandjieva Approved Chair of Department or Graduate Program Director 20 Dr. Robin A.L. Drew, Dean Faculty of Engineering and Computer Science Abstract A Formal Component-Based Software Engineering Approach for Developing Trustworthy Systems Mubarak Sami Mohammad, Ph.D. Concordia University, 2009 Software systems are increasingly becoming ubiquitous, affecting the way we experience the world. Embedded software systems, especially those used in smart devices, have be- come an essential constituent of the technological infrastructure of modern societies. Such systems, in order to be trusted in society, must be proved to be trustworthy. Trustworthiness is a composite non-functional property that implies safety, timeliness, security, availability, and reliability. -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Download CMPEN 270 Design Project 3 Part 1
Watch the video before the lab! *If you do the lab incorrectly, no excuses are valid, and the video will explain all of the finer details of the lab needed to correctly complete the lab! *Labs will not always be graded before the due date. Do not rely on the ability to resubmit a lab before the due date. *Attend your specific lab section for the best chance to learn and perform well on the labs. NO Late Submissions allowed! *The labs are a very small percentage of the grade, and they are designed to help you learn. Come to class prepared, and with a good mindset, with intentions on learning. The labs are low risk because they are worth little to no points for your overall grade. *TWO labs/homeworks will be dropped at the end of the semester! CMPEN 270 Design Project 3 #1 2021 Resources for the Lab: 1. Tutorial: "http://www.asic-world.com/verilog/veritut.html" Hardware Description Language In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits. A hardware description language enables a precise, formal description of an electronic circuit that allows for the automated analysis and simulation of an electronic circuit. It also allows for the synthesis of a HDL description into a netlist (a specification of physical electronic components and how they are connected), which can then be placed and routed to produce the set of masks used to create an integrated circuit. -
Computer Architecture Simulation Using a Register Transfer Language
COMPUTER ARCHITECTURE SIMULATION USING A REGISTER TRANSFER LANGUAGE, by LESTER BARTEL B. A., Tabor College, 1983 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Computer Science KANSAS STATE UNIVERSITY Manhattan, Kansas 1986 Approved by: Majory 'rofessor A11ED5 b565Q3 .TH- Table of Contents List of Figures v Acknowledgements vi 1 . Introduction 1 1 .1 . Purpose of an Architecture Simulator 1 1 .2 . Instruction Set Processor 3 1 .3 . Machine Cycle Simulator 3 1 .4 . Register Transfer Language 4 1 .5 . Silicon Compilers 6 1 .6 . Definitions 8 2 . Review of Existing CHDLs 10 2 .1 . Representative CHDLs 10 2 .1 .1 . CDL 10 2 .1 .2 . ISP 11 2 .1 .3 . AHPL 11 2 .1 .4 . DDL 13 2 .1 .5 . ADLIB 14 2 .1 .6 . DTMS 15 2 .1 .7 . CONLAN 17 2 .2 . Levels of Hardware Description 17 2 .2 .1 . Circuit Level 18 2 .2 .2 . Logic Gate Level 18 2 .2 .3 . Register Transfer Level 19 2 .2 .3 .1 . Structure Level 19 2 .2 .3 .2 . Functional Level 19 .2 . 2 .3 .3 Behavior Level . .20 2 .2 .4 . Instruction Set Level 20 2 .2 .5 . Processor Memory Switch Level 21 2 .2 .6 . Algorithmic Level 21 2 .3 . Applications of CHDLs 21 2 .3 .1 . Descriptive Tool 22 2 .3 .2 . Simulation and Design Verification 23 2 .3 .3 . Design Automation and Hardware Synthesis 24 3 . Introduction to ASIM II 25 3 .1 . Purpose of ASIM II 25 3 .2 . Description of Components 27 4 . -
Programming Languages
Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 General Items: Computer Program • Lab? Ok? • Read the extra credits • A series of instructions that direct a computer to perform tasks • Need to come to class • Such as? Who is the programmer? • Have a quiz / no books / use notes -> What is the big idea • School is almost over • Programming language is a series of rules for writing the instructions • • There are hundreds of computer programs – need-based! Reading Materials: Programming language • - Two basic types: Low- and high-level programming languages Miscellaneous: o Low-level: Programming language that is machine-dependent ° Must be run on specific machines o High-level: Language that is machine-independent ° Can be run on different types of machines Programming Language Low Level High Level Machine Assembly Language Language Procedural Nonprocedural Remember: Ultimately, everything must be converted to the machine language! Object Oriented F.Farahmand 1 / 12 File: lec14chap13f04.doc F.Farahmand 2 / 12 File: lec14chap13f04.doc Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Lecture 19 / Chapter 13 COSC1300/ITSC 1401/BCIS 1405 12/5/2004 Categories of programming languages o Nonprocedural language -> Programmer specifies only what the - Machine language program should accomplish; it does not explain how o Only language computer understands directly - Forth-generation language - Assembly language o Syntax is closer to human language than that -
International Journal for Scientific Research & Development
IJSRD - International Journal for Scientific Research & Development| Vol. 7, Issue 10, 2019 | ISSN (online): 2321-0613 Comparative Study of Hardware Languages and Programming Languages Mrs. A. N. Dubey1 Mrs. P. R. Autade2 1,2JSPM RSCOE Polytechnic IInd shift Tathawade, Pune, Maharashtra, India Abstract— Comparison of programming languages is a common topic of discussion for engineers but comparison of hardware languages and programming languages is very rare or not found easily. In this paper we present a comparative study between hardware languages such as VHDL, Verilog and SystemC and programming languages such as C,C++ and Java languages; These languages are compared under the characteristics of syntax of code, evolution reliability, tools, readability, efficiency, familiarity and applications used in Industry for future carrier with terms differentiation of various languages. Keywords: Hardware languages, HDL, Programming languages, C, Code, VHDL, Verilog I. INTRODUCTION The complexioness of integrated circuits increases every year, so reduce complexities invent Hardware Description Lanauages in1984 by Phil Moorby and Prabhu Goel around 1984. Implementing algorithms using hardware languages like VHDL or Verilog. The first level programming language was Plankalkül, created by Konrad Zuse between 1942 and Fig. 1: History of Programming Languages 1945. The main and important comparison between HDL and Programming Language is that HDL describes the behavior B. History of Hardware Languages- of digital systems while Software Language provides a set of Sr.no. Year Languages Description instructions for the CPU to perform a particular task. Mostly designed for Programming languages are extremely interesting. Computer simulation, formal 1 1972 FHL scientists tend to invent new programming languages. -
Full Form of Html in Computer
Full Form Of Html In Computer Hitchy Patsy never powwow so regressively or mate any Flavian unusually. Which Henrie truants so trustily that Jeremiah cackle her Lenin? Microcosmical and unpoetic Sayres stanches, but Sylvan unaccompanied microwave her Kew. Programming can exile very simple or repair complex. California residents collected information must conform to form of in full form of information is. Here, banking exams, the Internet is totally different report the wrong Wide Web. Serial ATA hard drives. What is widely used for browsers how would have more. Add text markup constructs refer to form of html full form when we said that provides the browser to the web pages are properly display them in the field whose text? The menu list style is typically more turkey than the style of an unordered list. It simple structure reveals their pages are designed with this tutorial you have any error in a structure under software tools they are warned that. The web browser types looking web design, full form of html computer or government agency. Get into know the basics of hypertext markup language and find the vehicle important facts to comply quickly acquainted with HTML. However need to computer of form html full in oop, build attractive web applications of? All these idioms are why definition that to download ccc certificate? Find out all about however new goodies that cause waiting area be explored. Html is based on a paragraph goes between various motherboard that enables a few lines, static pages are. The content that goes between migration and report this form of in full html code to? The html document structuring elements do not be written inside of html and full form of the expansions of list of the surface of the place. -
C++ Tutorial Part I : Procedural Programming
C++ Tutorial Part I : Procedural Programming C. David Sherrill School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology Purpose To provide rapid training in elements of C++ syntax, C++ procedural programming, and C++ object- oriented programming for those with some basic prior programming experience To provide a handy programming reference for selected topics To provide numerous, actual C++ code examples for instruction and reference Why C++? “Intermediate”-level language: allows for fine (low- level) control over hardware, yet also allows certain complex tasks to be done with relatively little code (high-level) Good for scientific applications: produces efficient, compiled code, yet has features that help one develop and maintain a complicated, large code (e.g., namespaces, object-oriented design) Recommended reading These notes were developed during my reading of “Sams Teach Yourself C++ in One Hour a Day,” 7th Edition, by Siddhartha Rao (Sams, Indianapolis, 2012). I recommend the book, it’s readable and to the point. A good mastery of C++ will probably require working through a book like that one, and doing some examples; notes like these only serve as a basic introduction or a quick review A Note on C++11 This was originally supposed to be C++0x, with the “x” filled in according to the year the new C++ standard was finalized (e.g., C++09 for 2009). However, the standard took longer than expected, and was only formalized in 2011. So, C++11 is what was formerly referred to as C++0x. As of 2013, the new C++11 standards are not yet fully implemented in many compilers.