Morphological and Genetic Characterization of Phaeocystis Cordata and P

Total Page:16

File Type:pdf, Size:1020Kb

Morphological and Genetic Characterization of Phaeocystis Cordata and P J. Phycol. 35, 1322±1337 (1999) MORPHOLOGICAL AND GENETIC CHARACTERIZATION OF PHAEOCYSTIS CORDATA AND P. JAHNII (PRYMNESIOPHYCEAE), TWO NEW SPECIES FROM THE MEDITERRANEAN SEA1 Adriana Zingone 2 Stazione Zoologica A. Dohrn, Villa Comunale, I-80121 Naples, Italy Marie-JoseÁphe ChreÂtiennot-Dinet 3 Observatoire Oceanologique de Banyuls, Universite Pierre et Marie Curie I.N.S.U., C.N.R.S, Laboratoire Arago, F-66650 Banyuls-sur-Mer, France Martin Lange 4 and Linda Medlin4 Alfred Wegener Institute, Am Handelshafen, 12, D-27570 Bremerhaven, Germany Two new Phaeocystis species recently discovered in the available data on the evolution of the world's the Mediterranean Sea are described using light and oceans. electron microscopy, and their systematic position is discussed on the basis of an analysis of their nuclear- Key index words: Mediterranean Sea; Phaeocystis cor- encoded small-subunit ribosomal RNA gene (SSU data, sp. nov.; Phaeocystis jahnii, sp. nov.; phylogeny; rRNA) sequences. Phaeocystis cordata Zingone et Prymnesiophyceae; SSU rRNA gene analysis; tax- ChreÂtiennot-Dinet was observed only as ¯agellated onomy; ultrastructure unicells. Cells are heart shaped, with two ¯agella of Abbreviations: DMS, dimethyl sulphide; LM, light slightly unequal length and a short haptonema. The microscopy; MPN, most probable number; SDC, se- cell body is covered with two layers of thin scales. rial dilution culture; SSU rRNA, small-subunit ribo- The outermost layer scales are oval, with a faint ra- somal RNA gene diating pattern, a raised rim, and a modest central knob. The inner-layer scales are smaller and have a faint radiate pattern and an in¯exed rim. Cells swim Phaeocystis Lagerheim is a cosmopolitan genus with their ¯agella close together, obscuring the hap- that includes bloom-forming species that play a key tonema, pushing the cell, and causing it to rotate role in many nutrient-rich areas of the world's about its longitudinal axis while moving forward. oceans (Davidson and Marchant 1992, Baumann et Phaeocystis jahnii Zingone was isolated as a nonmo- al. 1994b). Phaeocystis blooms constitute a recurrent tile colony. It forms loose aggregates of cells em- stage in phytoplankton succession in Arctic, Antarc- bedded in a mucilaginous, presumably polysaccha- tic, and North Sea waters (Lancelot and Rousseau ride matrix without a de®nite shape or visible ex- 1994, Lancelot et al. 1998). Large-scale blooms may ternal envelope. The ¯agellated stage has the fea- also have a direct in¯uence on climate because tures typical of other Phaeocystis species. Cells are Phaeocystis cells contribute to the release of DMS rounded in shape and slightly larger than P. cordata. (Baumann et al. 1994a, Matrai et al. 1995), which The cell body is covered with extremely thin scales in¯uences cloud albedo and possibly the heat ¯ux of two different sizes with a very faint radiating pat- to the earth's surface (Charlson et al. 1987, Ayers et tern toward their margin. Swimming behavior is sim- al. 1997). Blooms directly interfere with human ac- ilar to that of P. cordata, with the ¯agella in a pos- tivities by producing net-clogging (Savage 1930, terior position as the cells swim. The SSU rRNA se- Chang 1983) or dense foams (Lancelot et al. 1987) quence analysis indicated that both species are dis- or by affecting wild-®sh taste (Levasseur et al. 1994). tinct from other cultivated Phaeocystis species In recent years, investigations have focused on sequenced to date. Regions previously identi®ed as Phaeocystis species with the aim of clarifying their speci®c for the genus Phaeocystis are not found in physiological characteristics, life-history traits, and P. jahnii, and new genus-speci®c regions have been potential role in the trophic chain, but many aspects identi®ed. P. cordata is more closely related to the are still to be unequivocally elucidated. colonial species P. globosa, P. antarctica, and P. One of the most striking characteristics of Phaeo- pouchetii and has branched prior to the divergence cystis species is their complex life cycle, with differ- of the warm-water P. globosa species complex from ent ¯agellate stages alternating with nonmotile sin- the cold-water species P. antarctica and P. pouchetii. gle-celled and colonial stages in a series that is not These results are discussed within a framework of yet fully understood (Kornmann 1955, Rousseau et al. 1994). This feature, coupled with the notable morphological similarity among Phaeocystis species, 1 Received 9 March 1999. Accepted 6 August 1999. has resulted in confused circumscriptions of the dif- 2 Author for reprint requests; e-mail [email protected]. ferent taxa within the genus. Nine Phaeocystis species 1322 PHAEOCYSTIS CORDATA AND P. JAHNII 1323 have been validly published, but information on pigments and genome size (Vaulot et al. 1994) was morphology and distinguishing features for most of isolated from the Gulf of Naples (Mediterranean them is rather super®cial (Sournia 1988). The most Sea). This strain did not form colonies or nonmotile widely accepted opinion for some years (Sournia cells. It consisted only of ¯agellated cells having 1988, Davidson and Marchant 1992) has been that morphological characters and swimming behavior a single species, P. pouchetii (Hariot in Pouchet) Lag- different from other Phaeocystis species. We provide erheim, existed, having a broad geographical distri- a morphological description of this species, Phaeo- bution, and that the only other distinct species in cystis cordata Zingone et ChreÂtiennot Dinet. Another the genus was P. scrobiculata Moestrup, described Phaeocystis strain isolated from the same area was ini- from New Zealand waters (Moestrup 1979). Subse- tially interpreted as the colonial stage of P. cordata quently, four different species have been recognized but subsequently released swarmers that were differ- on the basis of morphological and ecophysiological ent from those of P. cordata. We describe it as Phaeo- traits: P. pouchetii, P. scrobiculata, P. globosa Scherffel, cystis jahnii Zingone and provide information on its and P. antarctica Karsten (Moestrup and Larsen distinctive morphological features. A sequence anal- 1992, Baumann et al. 1994b). These species are also ysis of the SSU rRNA gene was done to assess the distinct in terms of their geographic range. Of the position of the two new species within Phaeocystis. ®ve remaining species, P. fuscescens (Braun) De Toni and P. giraudyi (DerbeÁs et Solier) Hamel have de®- MATERIALS AND METHODS nitely been shown not to belong to this genus (Sour- Cultures. A unialgal culture of Phaeocystis cordata, Phaeonap1, nia 1988), whereas P. brucei Mangin, P. amoeboidea was established by serial dilution of a seawater sample collected with a Niskin bottle in the Gulf of Naples, at the station MC BuÈttner, and P. sphaeroidea BuÈttner have not been (408499 N; 148159 E), at 20 m on 15 March 1991. The culture was studied since they were described. isolated and grown in K±Si medium (Keller et al. 1987) and kept Recently, pigment complement, genome size at 188 to 258 C. Irradiance was at 100 mmol quanta´m22´s21 emit- (Vaulot et al. 1994), and genetic similarities (Medlin ted from Osram L36W/20 cool-white ¯uorescent tubes with a 12: et al. 1994) have been utilized as valuable characters 12 h LD (light:dark) cycle. Three more strains were examined for comparison of live material and body scales: Phaeonap2, iso- to substantiate and circumscribe Phaeocystis species. lated from the same site at0mon28March 1994, and MEDNS2 These studies have con®rmed that, besides the pre- and MEDNS3, isolated by Nathalie Simon from the northwestern viously mentioned four valid species, other strains Mediterranean Sea (408459 N; 6879 E, 20 July 1993, and 428519 N; can be separated on the basis of more than one 38479 E, 30 July 1993) and kindly provided by D. Vaulot. Addi- tional information and illustrations were obtained from other character, and these probably correspond to as yet mixed dilution cultures and natural samples collected at the sta- undescribed species or subspecies. tion MC (Mare Chiara) on different sampling dates. Unfortunately, progress made in understanding Phaeocystis jahnii strains were obtained from a serial dilution these new species' separation based on genetic and culture (SDC) of a natural sample collected in surface waters of biochemical characteristics has not been supported by the Gulf of Naples (St. MC) on 6 March 1996. This was a mixed culture in which nonmotile cells and mucilaginous colonies of adequate morphological discrimination. The shape similar cells were noticed along with Phaeocystis-like ¯agellates and and internal organization of Phaeocystis colonies has other species. Colonies of four to eight cells were isolated by mi- been described for all the species, with the exception cropipetting and placed into multiwell plates ®lled with K±Si me- of P. scrobiculata, for which only ¯agellate stages are dium. After a few days, colonies were transferred to culture tubes with the same medium. Single nonmotile cells were subsequently known. However, complete ultrastructural data are isolated from these cultures by micropipetting, and two cultures not yet available to compare both colonial and ¯ag- were established, A1 and B5, and grown as previously described. ellated stages of all species. Size and ornamentation Cultured material of both species was observed and photo- pattern of organic scales covering the ¯agellated cells graphed using a Zeiss Axiophot microscope equipped with phase constitute a reliable character in prymnesiophyte tax- contrast and differential interferential contrast. Data on the distribution of Phaeocystis spp. were obtained from onomy but are described only for P. globosa (as P. SDCs (Throndsen 1995) established from seawater samples from pouchetii in Parke et al. 1971) and P. scrobiculata (Moes- the Gulf of Naples and from the Sicily Channel. Cell concentra- trup 1979). Complete ultrastructural data are so far tions were estimated with most probable number (MPN) tables available only for the ¯agellate stages of P.
Recommended publications
  • Phaeocystis Cf. Globosa F
    HELGOL,~NDER MEERESUNTERSUCHUNGEN Helgolfinder Meeresunters. 49, 283-293 (1995) Trophic interactions between zooplankton and Phaeocystis cf. globosa F. C. Hansen Netherlands Institute for Sea Research; PO Box 59, 1790 AB Den Burg, The Netherlands ABSTRACT: Mesozooplankton grazing on Phaeocystis cf. globosa was investigated by laboratory and field studies. Tests on 18 different species by means of laboratory incubation experiments, carried out at the Biologische Anstalt Helgotand, revealed that Phaeocystis was ingested by 5 meroplanktonic and 6 holoplanktonic species; filtering and ingestion rates of the latter were determined. Among copepods, the highest feeding rates were found for Calanus helgolandicus and Temora longicornis. Copepods fed on all size-classes of Phaeocystis offered (generally 4-500 [~m equivalent spherical diameter [ESD]), but they preferred the colonies. Female C. helgolandicus and female 7". longicornis preferably fed on larger colonies (ESD > 200 [~m and ESD > 100 gm, respec- tively. However. a field study, carried out in the Marsdiep ~Dutch Wadden Seal showed phytoplank. ton grazing by the dominant copepod -femora longicorms to be negligible during the Phaeocysti, spring bloom. T longicornis gut fluorescence was inversely related to Phaeocystis dominance. Th~ hypothesis has been put forward that 7". 1ongicornis preferentially feeds on microzooplankton and b) this may enhance rather than depress Phaeocystis blooms. Results from laboratory incubatioc experiments, including three trophic levels - Phaeocystis cf globosa (algael. Strombidinopsis sp Iciliatel and Temora longicornis (copepod) - support this hypothesis. INTRODUCTION The colony-forming prymnesiophyte Phaeocystis cf. 91obosa builds up high bio- masses in the continental coastal areas of the North Sea during intense phytoplankton blooms tn spring and summer, where it can be the dominant species (Joiris et al., 1982; Veldhuis et al., 1986).
    [Show full text]
  • Ecology of Oceanic Coccolithophores. I. Nutritional Preferences of the Two Stages in the Life Cycle of Coccolithus Braarudii and Calcidiscus Leptoporus
    AQUATIC MICROBIAL ECOLOGY Vol. 44: 291–301, 2006 Published October 10 Aquat Microb Ecol Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus Aude Houdan, Ian Probert, Céline Zatylny, Benoît Véron*, Chantal Billard Laboratoire de Biologie et Biotechnologies Marines, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France ABSTRACT: Coccolithus braarudii and Calcidiscus leptoporus are 2 coccolithophores (Prymnesio- phyceae: Haptophyta) known to possess a complex heteromorphic life cycle, with alternation between a motile holococcolith-bearing haploid stage and a non-motile heterococcolith-bearing diploid stage. The ecological implications of this type of life cycle in coccolithophores are currently poorly known. The nutritional preferences of each stage of both species, and their growth response to conditions of turbulence were investigated by varying their growth conditions. Of the different cul- ture media tested, only the synthetic seawater medium did not support the growth of both stages of C. braarudii and C. leptoporus. With natural seawater-based media, the growth rate of the haploid phase of both coccolithophores was stimulated by the addition of soil extract (K/2: 0.23 ± 0.02 d–1 and K/2 with soil extract 0.35 ± 0.01 d–1 for the C. braarudii haploid stage), while the diploid phase was not, indicating that the motile stage is capable of utilizing compounds present in soil extract or ingest- ing bacteria that are activated in enriched media. The addition of sodium acetate to the medium also stimulated the haploid phase of C.
    [Show full text]
  • Giantism and Its Role in the Harmful Algal Bloom Species Phaeocystis Globosa
    Deep-Sea Research II ] (]]]]) ]]]–]]] Contents lists available at SciVerse ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Giantism and its role in the harmful algal bloom species Phaeocystis globosa Walker O. Smith Jr.a,n, Xiao Liu a,1, Kam W. Tang a, Liza M. DeLizo a, Nhu Hai Doan b, Ngoc Lam Nguyen b, Xiaodong Wang c a Virginia Institute of Marine Science, College of William & Mary, Gloucester Pt., VA 23062, United States b Institute of Oceanography, Vietnam Academy of Science & Technology, 01 Cau Da, Nha Trang, Viet Nam c Research Center for Harmful Algae and Aquatic Environment, Jinan University, Guangzhou, China article info abstract The cosmopolitan alga Phaeocystis globosa forms large blooms in shallow coastal waters off the Viet Keywords: Nam coast, which impacts the local aquaculture and fishing industries substantially. The unusual Phaeocystis feature of this alga is that it forms giant colonies that can reach up to 3 cm in diameter. We conducted Colonies experiments designed to elucidate the ecophysiological characteristics that presumably favor the Size development of giant colonies. Satellite images of chlorophyll fluorescence showed that the coastal Envelope bloom was initiated in summer and temporally coincident with the onset of monsoonally driven DOC upwelling. While determining the spatial distribution of Phaeocystis was not feasible, we sampled it in Sinking the near-shore region. A positive relationship was found between colony size and colonial cell densities, in contrast to results from the North Sea. Mean chlorophyll a concentration per cell was 0.45 pg cellÀ1, lower than in laboratory or temperate systems.
    [Show full text]
  • Phytoplankton As Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate
    sustainability Review Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate Samarpita Basu * ID and Katherine R. M. Mackey Earth System Science, University of California Irvine, Irvine, CA 92697, USA; [email protected] * Correspondence: [email protected] Received: 7 January 2018; Accepted: 12 March 2018; Published: 19 March 2018 Abstract: The world’s oceans are a major sink for atmospheric carbon dioxide (CO2). The biological carbon pump plays a vital role in the net transfer of CO2 from the atmosphere to the oceans and then to the sediments, subsequently maintaining atmospheric CO2 at significantly lower levels than would be the case if it did not exist. The efficiency of the biological pump is a function of phytoplankton physiology and community structure, which are in turn governed by the physical and chemical conditions of the ocean. However, only a few studies have focused on the importance of phytoplankton community structure to the biological pump. Because global change is expected to influence carbon and nutrient availability, temperature and light (via stratification), an improved understanding of how phytoplankton community size structure will respond in the future is required to gain insight into the biological pump and the ability of the ocean to act as a long-term sink for atmospheric CO2. This review article aims to explore the potential impacts of predicted changes in global temperature and the carbonate system on phytoplankton cell size, species and elemental composition, so as to shed light on the ability of the biological pump to sequester carbon in the future ocean.
    [Show full text]
  • Aquatic Species Program Review Proceedings of the March 1985 Principal Investigators Meeting
    NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legai liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Printed in the United States of America Available from: National Technical Information Service U.S. Departmenr of Commerce 5285 Port Royal Road Springfield, VA 221 61 Price: Microfiche A01 Printed Copy A1 6 Codes are ~sedfor pricing ail publications. The code is determined by the number of pages in the publication. lnformation pertaining to the pricing codes can be found in the current issue of the following publications, which are generally available in most tibraries; Energy Research Abstracts. (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR;; and publication. NTIS-PR-360 available from NT1S at the above address. SER IICP-231-2700 UC Category: 61c DE85Ol2137 Aquatic Species Program Review Proceedings of the March 1985 Principal Investigators Meeting 20 - 21 March 1985 Golden, CO June 1985 Prepared under Task No. 4513.10 FTP No. 513 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401 Prepared for the U.S. Department of Energy Contract No. DE-AC02-83CH10093 PREFACE This volume contains progress reports presented by the Aquatic Species Program subcontractors and SERl researchers at the SERl Aquatic Species Review held at SERI, March 20 and 2 1, 1985.
    [Show full text]
  • Differences in the Formation Mechanism of Giant Colonies in Two Phaeocystis Globosa Strains
    International Journal of Molecular Sciences Article Differences in the Formation Mechanism of Giant Colonies in Two Phaeocystis globosa Strains 1,2, 2, 2 2, 1, Dayong Liang y, Xiaodong Wang y, Yiping Huo , Yan Wang * and Shaoshan Li * 1 Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; [email protected] 2 Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; [email protected] (X.W.); [email protected] (Y.H.) * Correspondence: [email protected] (Y.W.); [email protected] (S.L.) The authors contributed equally to this work as co-first authors. y Received: 13 June 2020; Accepted: 27 July 2020; Published: 29 July 2020 Abstract: Phaeocystis globosa has become one of the primary causes of harmful algal bloom in coastal areas of southern China in recent years, and it poses a serious threat to the marine environment and other activities depending upon on it (e.g., aquaculture, cooling system of power plants), especially in the Beibu Gulf. We found colonies of P. globosa collected form Guangxi (China) were much larger than those obtained from Shantou cultured in lab. To better understand the causes of giant colonies formation, colonial cells collected from P. globosa GX strain (GX-C) and ST strain (ST-C) were separated by filtration. Morphological observations, phylogenetic analyses, rapid light-response curves, fatty acid profiling and transcriptome analyses of two type cells were performed in the laboratory. Although no differences in morphology and 18S rRNA sequences of these cells were observed, the colonies of GX strain (4.7 mm) are 30 times larger than those produced by the ST strain (300 µm).
    [Show full text]
  • Differential Gene Expression Supports a Resource-Intensive, Defensive Role
    bioRxiv preprint doi: https://doi.org/10.1101/461756; this version posted November 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Differential gene expression supports a resource-intensive, defensive role for colony 2 production in the bloom-forming haptophyte, Phaeocystis globosa 3 4 Margaret Mars Brisbina and Satoshi Mitaraia 5 6 a Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, 7 Okinawa, Japan 8 9 Correspondence 10 M. Mars Brisbin, Marine Biophysics Unit, Okinawa Institute of Science and Technology 11 Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan 12 e-Mail: [email protected] 13 14 Abstract 15 16 Phaeocystis globosa forms dense, monospecific blooms in teMperate, northern waters. Blooms 17 are usually dominated by the colonial morphotype—non-flagellated cells eMbedded in a secreted 18 Mucilaginous mass. Colonial Phaeocystis blooms significantly affect food-web structure and 19 function and negatively iMpact fisheries and aquaculture, but factors initiating colony production 20 reMain enigmatic. Destructive P. globosa blooms have been reported in tropical and subtropical 21 regions more recently and warm-water blooms could become more comMon with continued 22 cliMate change and coastal eutrophication. We therefore assessed genetic pathways associated 23 with colony production by investigating differential gene expression between colonial and 24 solitary cells in a warm-water Phaeocystis globosa strain. Our results illustrate a transcriptional 25 shift in colonial cells with Most of the differentially expressed genes downregulated, supporting a 26 reallocation of resources associated with colony production.
    [Show full text]
  • Literature Review of the Microalga Prymnesium Parvum and Its Associated Toxicity
    Literature Review of the Microalga Prymnesium parvum and its Associated Toxicity Sean Watson, Texas Parks and Wildlife Department, August 2001 Introduction Recent large-scale fish kills associated with the golden-alga, Prymnesium parvum, have imposed monetary and ecological losses on the state of Texas. This phytoflagellate has been implicated in fish kills around the world since the 1930’s (Reichenbach-Klinke 1973). Kills due to P. parvum blooms are normally accompanied by water with a golden-yellow coloration that foams in riffles (Rhodes and Hubbs 1992). The factors responsible for the appearance of toxic P. parvum blooms have yet to be determined. The purpose of this paper is to present a review of the work by those around the globe whom have worked with Prymnesium parvum in an attempt to better understand the biology and ecology of this organism as well as its associated toxicity. I will concentrate on the relevant biology important in the ecology and identification of this organism, its occurrence, nutritional requirements, factors governing its toxicity, and methods used to control toxic blooms with which it is associated. Background Biology and Diagnostic Features Prymnesium parvum is a microalga in the class Prymnesiophyceae, order Prymnesiales and family Prymnesiaceae, and is a common member of the marine phytoplankton (Bold and Wynne 1985, Larsen 1999, Lee 1980). It is a uninucleate, unicellular flagellate with an ellipsoid or narrowly oval cell shape (Lee 1980, Prescott 1968). Green, Hibberd and Pienaar (1982) reported that the cells range from 8-11 micrometers long and 4-6 micrometers wide. The authors also noted that the cells are PWD RP T3200-1158 (8/01) 2 Lit.
    [Show full text]
  • PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), a NEW TOXIC SPECIES from the MEDITERRANEAN SEA J Fresnel, I
    PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA J Fresnel, I. Probert, C. Billard To cite this version: J Fresnel, I. Probert, C. Billard. PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIO- PHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2001, pp.89-97. hal-03192104 HAL Id: hal-03192104 https://hal.sorbonne-universite.fr/hal-03192104 Submitted on 7 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU, 2001, 51 (1-2) : 89-97 PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA /. FRESNEL, I. PROBERT, C. BILLARD Laboratoire de Biologie et Biotechnologies Marines, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France PRYMNESIUM FAVEOLATUM SP. NOV. ABSTRACT. - A new marine species of Prymnesium is described based on cultu- PRYMNESIOPHYCEAE red material originating from a sublittoral sample collected on the eastern French SCALES Mediterranean coast. Prymnesium faveolatum sp. nov. exhibits typical generic cha- ULTRASTRUCTURE TOXICITY racters in terms of cell morphometry, swimming mode and organelle arrangement. MEDITERRANEAN Organic body scales, présent in several proximal layers, have a narrow inflexed rim and are ornamented with a variably developed cross.
    [Show full text]
  • Emerging Interaction Patterns in the Emiliania Huxleyi-Ehv System
    viruses Article Emerging Interaction Patterns in the Emiliania huxleyi-EhV System Eliana Ruiz 1,*, Monique Oosterhof 1,2, Ruth-Anne Sandaa 1, Aud Larsen 1,3 and António Pagarete 1 1 Department of Biology, University of Bergen, Bergen 5006, Norway; [email protected] (R.-A.S.); [email protected] (A.P.) 2 NRL for fish, Shellfish and Crustacean Diseases, Central Veterinary Institute of Wageningen UR, Lelystad 8221 RA, The Nederlands; [email protected] 3 Uni Research Environment, Nygårdsgaten 112, Bergen 5008, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-5558-8194 Academic Editors: Mathias Middelboe and Corina Brussaard Received: 30 January 2017; Accepted: 16 March 2017; Published: 22 March 2017 Abstract: Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed. Keywords: Phycodnaviridae; Coccolithovirus; Coccolithophore; Haptophyta; Killing-the-winner; cost of resistance; infectivity trade-offs; algae virus; marine viral ecology; viral-host interactions 1.
    [Show full text]
  • Articles Combined (See, 5 %–32 % and 17 %–63 % Between 30–90 and 60–90◦ S, Re- E.G., Turner, 2015)
    Biogeosciences, 18, 251–283, 2021 https://doi.org/10.5194/bg-18-251-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the competition between Phaeocystis and diatoms in the Southern Ocean and implications for carbon export fluxes Cara Nissen and Meike Vogt Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland Correspondence: Cara Nissen ([email protected]) Received: 13 December 2019 – Discussion started: 31 January 2020 Revised: 30 October 2020 – Accepted: 1 December 2020 – Published: 14 January 2021 Abstract. The high-latitude Southern Ocean phytoplankton 1 Introduction community is shaped by the competition between Phaeo- cystis and silicifying diatoms, with the relative abundance Phytoplankton production in the Southern Ocean (SO) regu- of these two groups controlling primary and export produc- lates not only the uptake of anthropogenic carbon in marine tion, the production of dimethylsulfide, the ratio of silicic food webs but also controls global primary production via the acid and nitrate available in the water column, and the struc- lateral export of nutrients to lower latitudes (e.g., Sarmiento ture of the food web. Here, we investigate this competition et al., 2004; Palter et al., 2010). The amount and stoichiom- using a regional physical–biogeochemical–ecological model etry of these laterally exported nutrients are determined by (ROMS-BEC) configured at eddy-permitting resolution for the combined
    [Show full text]
  • Integrative Taxonomy of the Pavlovophyceae (Haptophyta): a Reassessment
    Protist, Vol. 162, 738–761, November 2011 http://www.elsevier.de/protis Published online date 28 June 2011 ORIGINAL PAPER Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment El Mahdi Bendifa,b,1, Ian Proberta,2, Annie Hervéc, Chantal Billardb, Didier Gouxd, Christophe Lelongb, Jean-Paul Cadoretc, and Benoît Vérona,b,3 aUniversité de Caen Basse-Normandie, Algobank-Caen, IFR 146, 14032 Caen, France bUniversité de Caen Basse-Normandie, UMR 100 PE2 M - IFREMER, 14032 Caen, France cIFREMER, Laboratoire de Physiologie et Biotechnologie des Algues, rue de l’Ile d’Yeu, BP21105, 44311 Nantes, France dUniversité de Caen Basse-Normandie, Centre de Microscopie Appliquée à la Biologie, IFR 146, 14032 Caen, France Submitted October 18, 2010; Accepted March 15, 2011 Monitoring Editor: Barry S. C. Leadbeater. The Pavlovophyceae (Haptophyta) contains four genera (Pavlova, Diacronema, Exanthemachrysis and Rebecca) and only thirteen characterised species, several of which are important in ecological and eco- nomic contexts. We have constructed molecular phylogenies inferred from sequencing of ribosomal gene markers with comprehensive coverage of the described diversity, using type strains when avail- able, together with additional cultured strains. The morphology and ultrastructure of 12 of the described species was also re-examined and the pigment signatures of many culture strains were determined. The molecular analysis revealed that sequences of all described species differed, although those of Pavlova gyrans and P. pinguis were nearly identical, these potentially forming a single cryptic species complex. Four well-delineated genetic clades were identified, one of which included species of both Pavlova and Diacronema. Unique combinations of morphological/ultrastructural characters were iden- tified for each of these clades.
    [Show full text]