Integrative Taxonomy of the Pavlovophyceae (Haptophyta): a Reassessment

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Taxonomy of the Pavlovophyceae (Haptophyta): a Reassessment Protist, Vol. 162, 738–761, November 2011 http://www.elsevier.de/protis Published online date 28 June 2011 ORIGINAL PAPER Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment El Mahdi Bendifa,b,1, Ian Proberta,2, Annie Hervéc, Chantal Billardb, Didier Gouxd, Christophe Lelongb, Jean-Paul Cadoretc, and Benoît Vérona,b,3 aUniversité de Caen Basse-Normandie, Algobank-Caen, IFR 146, 14032 Caen, France bUniversité de Caen Basse-Normandie, UMR 100 PE2 M - IFREMER, 14032 Caen, France cIFREMER, Laboratoire de Physiologie et Biotechnologie des Algues, rue de l’Ile d’Yeu, BP21105, 44311 Nantes, France dUniversité de Caen Basse-Normandie, Centre de Microscopie Appliquée à la Biologie, IFR 146, 14032 Caen, France Submitted October 18, 2010; Accepted March 15, 2011 Monitoring Editor: Barry S. C. Leadbeater. The Pavlovophyceae (Haptophyta) contains four genera (Pavlova, Diacronema, Exanthemachrysis and Rebecca) and only thirteen characterised species, several of which are important in ecological and eco- nomic contexts. We have constructed molecular phylogenies inferred from sequencing of ribosomal gene markers with comprehensive coverage of the described diversity, using type strains when avail- able, together with additional cultured strains. The morphology and ultrastructure of 12 of the described species was also re-examined and the pigment signatures of many culture strains were determined. The molecular analysis revealed that sequences of all described species differed, although those of Pavlova gyrans and P. pinguis were nearly identical, these potentially forming a single cryptic species complex. Four well-delineated genetic clades were identified, one of which included species of both Pavlova and Diacronema. Unique combinations of morphological/ultrastructural characters were iden- tified for each of these clades. The ancestral pigment signature of the Pavlovophyceae consisted of a basic set of pigments plus MV chl cPAV, the latter being entirely absent in the Pavlova + Diacronema clade and supplemented by DV chl cPAV in part of the Exanthemachrysis clade. Based on this com- bination of characters, we propose a taxonomic revision of the class, with transfer of several Pavlova species to an emended Diacronema genus. The evolution of the class is discussed in the context of the phylogenetic reconstruction presented. © 2011 Elsevier GmbH. All rights reserved. Key words: 18S rDNA; Haptophyta; Pavlovophyceae; phylogeny; taxonomy; ultrastructure. Introduction The Haptophyta is a phylum of chlorophyll a + c 1Present address: CNRS-UMPC (Université Paris-06), UMR 7144, Groupe Plancton, Station Biologique de Roscoff, BP74, containing unicellular algae characterised by the 29682 Roscoff cedex, France presence of a unique filamentous appendage, the 2Present address: Roscoff Culture Collection, CNRS-UMPC haptonema, and comprising two distinct classes, (Université Paris-06), FR2424, Station Biologique de Roscoff, the Prymnesiophyceae Hibberd emend. Cavalier- BP74, 29682 Roscoff cedex, France Smith and the Pavlovophyceae (Cavalier-Smith) 3Corresponding author; fax +33 2 31 56 53 46 e-mail [email protected] (B. Véron). Green et Medlin. The erection of a third class of © 2011 Elsevier GmbH. All rights reserved. doi:10.1016/j.protis.2011.05.001 Integrative Taxonomy of the Pavlovophyceae (Haptophyta): A Reassessment 739 haptophytes was recently proposed based exclu- (Green 1980) or modified hairs (Cavalier-Smith sively on molecular data (Shi et al. 2009). The 1994), often form a dense investment on the longer Prymnesiophyceae contains ca. 400 described flagellum together with fine hairs. The process of species including many well known taxa such mitosis in the Pavlovophyceae differs notably from as Phaeocystis, Chrysochromulina, Prymnesium that in the Prymnesiophyceae (Green and Hori and the coccolithophores that can periodically 1988; Hori and Green 1994). The Pavlovophyceae form blooms in coastal and oceanic environ- are also known to synthesise certain specific sterols ments and thereby have a highly visible impact on and conjugates, the pavlovols (Véron et al. 1996; marine ecosystem functioning, global biogeochem- Volkman et al. 1997) and a unique photosynthetic ical cycles and global climate change (Moestrup pigment (Van Lenning et al. 2003). 1994). By contrast, the Pavlovophyceae contains Due to their trophic, economic and phyloge- only 13 described species that inhabit littoral, brack- netic importance, the Pavlovophyceae represent ish water and sometimes freshwater environments, a highly relevant model for genomic studies. and which have consequently not received a great Pavlova lutheri was part of the protist EST program deal of attention in the context of global issues. (http://megasun.bch.umontreal.ca/pepdb/pep.html, The Pavlovophyceae is nevertheless a class Tonon et al. 2005) and the genome size and struc- of interest for a number of reasons, not least ture of two species, P. gyrans and Diacronema sp., because it is seemingly a very common compo- have been estimated using Pulse Field Gel Elec- nent of near coastal phytoplankton communities in trophoresis with a view to the possibility of initiating widespread locations. The Pavlovophyceae synthe- a full genome sequencing project (Nosenko et al. size long chain polyunsaturated fatty acids such 2007). as docosahexaenoic (DHA) and eicosapentaenoic The 13 described species of Pavlovophyceae (EPA) acids and certain species, notably Pavlova are classified in a single subclass, the Pavlovophy- lutheri and P. gyrans, are extensively used as feed- cideae Cavalier-Smith, one order, the Pavlovales stocks in the aquaculture of bivalves, crustaceans Green, and one family, the Pavlovaceae Green, that and fish (Gayral 1980; Green 1975; Meireles et al. is composed of 4 genera: Diacronema (Prauser) 2003; Ponis et al. 2006). The separation of the two Green et Hibberd, Exanthemachrysis Lepailleur, known haptophyte classes is genetically well sup- Pavlova (Butcher) Green and Rebecca Green ported with 6% divergence in 18S rDNA phylogeny (Table 1). Butcher (1952) erected the genus (Edvardsen et al. 2000). Using molecular clocks Pavlova with the description of P.gyrans as the type calibrated with the coccolithophore fossil record, species. Based mostly on TEM ultrastructural stud- the time of divergence of these two classes of the ies of culture strains, new species were sporadically Haptophyta has been estimated at between 805 described until 1992. The last major taxonomic sur- and 1000 million years ago (de Vargas et al. 2007; vey of the class was conducted over a quarter of Liu et al. 2010; Medlin et al. 2008). This deep a century ago (Green 1980), when a determina- divergence provides a model of key interest for evo- tion key was proposed for the three existing genera, lutionary studies on the origin of the Haptophyta Diacronema, Pavlova and Exanthemachrysis. More and the early radiation of eukaryotes. recently, the availability of 18S rDNA sequences for In this context, the Pavlovophyceae are generally a sub-set of pavlovophycean taxa led to the transfer perceived to be representative of the primitive state, of two Pavlova species to the new genus Rebecca with characteristics likely to be related to those of (Edvardsen et al. 2000). In addition, analysis of the ancestral haptophyte. Structural features com- photosynthetic pigment profiles of a selection of mon to all or most members of the Pavlovophyceae species demonstrated that such profiles are phylo- that distinguish them from the Prymnesiophyceae genetically informative (Van Lenning et al. 2003). include the markedly anisokont nature of the In both of these latter studies, however, a com- heterodynamic flagella and the relatively simple plete reinvestigation of the class was not carried arrangement of microtubular and fibrous roots of out. Undescribed species are frequently observed the pavlovophycean flagellar-haptonematal basal in miscellaneous samples (Gayral 1980) and the complex (Green and Hori 1994). This flagel- majority of the main microalgal culture collections lar arrangement results in pavlovophycean cells hold several unidentified Pavlovophyceae strains exhibiting a characteristic swimming movement. In that are likely to include new species. addition, pavlovophycean scales, when present, Using type cultures when still available (11 of the consist of small dense bodies in contrast to the plate 13 described species), we conducted a combined scales of the Prymnesiophyceae. These so-called morphological, pigmentary and molecular genetic ‘knob scales’, considered to be modified scales analysis in order to assess the validity of the current 740 E.M. Bendif et al. Table 1. Actual Pavlovophyceae taxonomy and authorities. Haptophyta Hibberd Cavalier-Smith ex Edvardsen et Eikrem in Edvardsen et al. 2000 Pavlovophyceae Cavalier-Smith ex Green et Medlin in Edvardsen et al. 2000 Pavlovales Green 1976 Pavlovaceae Green 1976 Diacronema (Prauser) Green et Hibberd 1977 Diacronema vlkianum (Prauser) Green et Hibberd 1977 Exanthemachrysis Lepailleur 1970 Exanthemachrysis gayraliae Lepailleur 1970 Pavlova Butcher 1952 Pavlova calceolata van der Veer 1976 Pavlova ennorea van der Veer et Leewis 1977 Pavlova granifera (Mack) Green 1973 Pavlova gyrans (Butcher) Green et Manton 1970 Pavlova lutheri (Droop) Green 1975 Pavlova noctivaga (Kalina 1970) van der Veer et Leewis 1977 Pavlova pinguis Green 1967 Pavlova virescens Billard 1976 Pavlova viridis Tseng, Chen et Zhang 1992 Rebecca Green 2000 Rebecca helicata (van der Veer) Green 2000 Rebecca salina
Recommended publications
  • Ecology of Oceanic Coccolithophores. I. Nutritional Preferences of the Two Stages in the Life Cycle of Coccolithus Braarudii and Calcidiscus Leptoporus
    AQUATIC MICROBIAL ECOLOGY Vol. 44: 291–301, 2006 Published October 10 Aquat Microb Ecol Ecology of oceanic coccolithophores. I. Nutritional preferences of the two stages in the life cycle of Coccolithus braarudii and Calcidiscus leptoporus Aude Houdan, Ian Probert, Céline Zatylny, Benoît Véron*, Chantal Billard Laboratoire de Biologie et Biotechnologies Marines, Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France ABSTRACT: Coccolithus braarudii and Calcidiscus leptoporus are 2 coccolithophores (Prymnesio- phyceae: Haptophyta) known to possess a complex heteromorphic life cycle, with alternation between a motile holococcolith-bearing haploid stage and a non-motile heterococcolith-bearing diploid stage. The ecological implications of this type of life cycle in coccolithophores are currently poorly known. The nutritional preferences of each stage of both species, and their growth response to conditions of turbulence were investigated by varying their growth conditions. Of the different cul- ture media tested, only the synthetic seawater medium did not support the growth of both stages of C. braarudii and C. leptoporus. With natural seawater-based media, the growth rate of the haploid phase of both coccolithophores was stimulated by the addition of soil extract (K/2: 0.23 ± 0.02 d–1 and K/2 with soil extract 0.35 ± 0.01 d–1 for the C. braarudii haploid stage), while the diploid phase was not, indicating that the motile stage is capable of utilizing compounds present in soil extract or ingest- ing bacteria that are activated in enriched media. The addition of sodium acetate to the medium also stimulated the haploid phase of C.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • An Explanation for the 18O Excess in Noelaerhabdaceae Coccolith Calcite
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 189 (2016) 132–142 www.elsevier.com/locate/gca An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite M. Hermoso a,⇑, F. Minoletti b,c, G. Aloisi d,e, M. Bonifacie f, H.L.O. McClelland a,1, N. Labourdette b,c, P. Renforth g, C. Chaduteau f, R.E.M. Rickaby a a University of Oxford – Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom b Sorbonne Universite´s, UPMC Universite´ Paris 06 – Institut de Sciences de la Terre de Paris (ISTeP), 4 Place Jussieu, 75252 Paris Cedex 05, France c CNRS – UMR 7193 ISTeP, 4 Place Jussieu, 75252 Paris Cedex 05, France d Sorbonne Universite´s, UPMC Universite´ Paris 06 – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France e CNRS – UMR 7159 LOCEAN, 4 Place Jussieu, 75005 Paris, France f Institut de Physique du Globe de Paris, Sorbonne Paris Cite´, Universite´ Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, 75238 Paris Cedex, France g Cardiff University – School of Earth and Ocean Sciences, Parks Place, Cardiff CF10 3AT, United Kingdom Received 10 November 2015; accepted in revised form 11 June 2016; available online 18 June 2016 Abstract Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals pro- duced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the ‘‘vital effect”, which overprints the oceanic temperatures recorded in coccolith calcite.
    [Show full text]
  • Harmful Algae 91 (2020) 101587
    Harmful Algae 91 (2020) 101587 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Review Progress and promise of omics for predicting the impacts of climate change T on harmful algal blooms Gwenn M.M. Hennona,c,*, Sonya T. Dyhrmana,b,* a Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States b Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States c College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past Genomics twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have trans- Transcriptomics formed that data landscape of many fields including the study of HABs. Advances in technology have facilitated Proteomics the creation of many publicly available omics datasets that are complementary and shed new light on the Metabolomics mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity Climate change and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species Phytoplankton Harmful algae responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In Cyanobacteria this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Review of the Center for Computational Sciences, University of Tsukuba 2020
    Review of the Center for Computational Sciences, University of Tsukuba 2020 筑波大学計算科学研究センター 外部評価報告書 September 2020 2020 年 9月 Center for Computational Sciences University of Tsukuba Review of the Center for Computational Sciences, University of Tsukuba 2014-2019 Foreword This volume contains the Report of the External Review for Center for Computational Scineces (CCS), University of Tsukuba, which was carried out in FY2019. The objective of the External Review was to evaluate the research activities of CCS during the period from FY2014 to FY2019 since the previous external review which was held in FY2013, and the future strategy and plans. Originally formed as the Center for Computational Physics (CCP) in 1992, the CCS was reorganized, expanded and relaunched under its current name in April 2004. The mission of the Center for Computational Sciences (CCS) is the promotion of "Multidisciplinary Computational Sciences" through enhanced cooperation between, and the fusion of, computational and computer sciences. The most important characteristics of the research collaboration in the CCS is “codesigning” where the needs from application fields and seeds from system technologies to make a balanced and optimized system development as well as application program development. As a unique research center where both computational and computer scientists work together, our codesigning for advanced High Performance Computing (HPC) research has been continued from the beginning until today. The CCS has developed several supercomputers, and conducted computational sciences in the areas of particle physics, astrophysics, nuclear physics, materials science, life science, environmental science, high performance computing technology, and information science including database technology and computational media. Also, the CCS plays a significant role as a nation-wide joint-use facility that provides computational resources for external scientific researchers in all of these areas all over the world.
    [Show full text]
  • Aquatic Species Program Review Proceedings of the March 1985 Principal Investigators Meeting
    NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legai liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Printed in the United States of America Available from: National Technical Information Service U.S. Departmenr of Commerce 5285 Port Royal Road Springfield, VA 221 61 Price: Microfiche A01 Printed Copy A1 6 Codes are ~sedfor pricing ail publications. The code is determined by the number of pages in the publication. lnformation pertaining to the pricing codes can be found in the current issue of the following publications, which are generally available in most tibraries; Energy Research Abstracts. (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR;; and publication. NTIS-PR-360 available from NT1S at the above address. SER IICP-231-2700 UC Category: 61c DE85Ol2137 Aquatic Species Program Review Proceedings of the March 1985 Principal Investigators Meeting 20 - 21 March 1985 Golden, CO June 1985 Prepared under Task No. 4513.10 FTP No. 513 Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401 Prepared for the U.S. Department of Energy Contract No. DE-AC02-83CH10093 PREFACE This volume contains progress reports presented by the Aquatic Species Program subcontractors and SERl researchers at the SERl Aquatic Species Review held at SERI, March 20 and 2 1, 1985.
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture
    Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture 著者 西村 祐貴 内容記述 この博士論文は内容の要約のみの公開(または一部 非公開)になっています year 2016 その他のタイトル プロティストミトコンドリアの多様性と進化:イン トロン、遺伝子組成、ゲノム構造 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2015 報告番号 12102甲第7737号 URL http://hdl.handle.net/2241/00144261 Diversity and Evolution of Protist Mitochondria: Introns, Gene Content and Genome Architecture A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science (Doctral Program in Biologial Sciences) Yuki NISHIMURA Table of Contents Abstract ........................................................................................................................... 1 Genes encoded in mitochondrial genomes of eukaryotes ..................................................... 3 Terminology .......................................................................................................................... 4 Chapter 1. General introduction ................................................................................ 5 The origin and evolution of mitochondria ............................................................................ 5 Mobile introns in mitochondrial genome .............................................................................. 6 The organisms which are lacking in mitochondrial genome data ........................................ 8 Chapter 2. Lateral transfers of mobile introns
    [Show full text]
  • Literature Review of the Microalga Prymnesium Parvum and Its Associated Toxicity
    Literature Review of the Microalga Prymnesium parvum and its Associated Toxicity Sean Watson, Texas Parks and Wildlife Department, August 2001 Introduction Recent large-scale fish kills associated with the golden-alga, Prymnesium parvum, have imposed monetary and ecological losses on the state of Texas. This phytoflagellate has been implicated in fish kills around the world since the 1930’s (Reichenbach-Klinke 1973). Kills due to P. parvum blooms are normally accompanied by water with a golden-yellow coloration that foams in riffles (Rhodes and Hubbs 1992). The factors responsible for the appearance of toxic P. parvum blooms have yet to be determined. The purpose of this paper is to present a review of the work by those around the globe whom have worked with Prymnesium parvum in an attempt to better understand the biology and ecology of this organism as well as its associated toxicity. I will concentrate on the relevant biology important in the ecology and identification of this organism, its occurrence, nutritional requirements, factors governing its toxicity, and methods used to control toxic blooms with which it is associated. Background Biology and Diagnostic Features Prymnesium parvum is a microalga in the class Prymnesiophyceae, order Prymnesiales and family Prymnesiaceae, and is a common member of the marine phytoplankton (Bold and Wynne 1985, Larsen 1999, Lee 1980). It is a uninucleate, unicellular flagellate with an ellipsoid or narrowly oval cell shape (Lee 1980, Prescott 1968). Green, Hibberd and Pienaar (1982) reported that the cells range from 8-11 micrometers long and 4-6 micrometers wide. The authors also noted that the cells are PWD RP T3200-1158 (8/01) 2 Lit.
    [Show full text]
  • PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), a NEW TOXIC SPECIES from the MEDITERRANEAN SEA J Fresnel, I
    PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA J Fresnel, I. Probert, C. Billard To cite this version: J Fresnel, I. Probert, C. Billard. PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIO- PHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2001, pp.89-97. hal-03192104 HAL Id: hal-03192104 https://hal.sorbonne-universite.fr/hal-03192104 Submitted on 7 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU, 2001, 51 (1-2) : 89-97 PRYMNESIUM FAVEOLATUM SP. NOV. (PRYMNESIOPHYCEAE), A NEW TOXIC SPECIES FROM THE MEDITERRANEAN SEA /. FRESNEL, I. PROBERT, C. BILLARD Laboratoire de Biologie et Biotechnologies Marines, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France PRYMNESIUM FAVEOLATUM SP. NOV. ABSTRACT. - A new marine species of Prymnesium is described based on cultu- PRYMNESIOPHYCEAE red material originating from a sublittoral sample collected on the eastern French SCALES Mediterranean coast. Prymnesium faveolatum sp. nov. exhibits typical generic cha- ULTRASTRUCTURE TOXICITY racters in terms of cell morphometry, swimming mode and organelle arrangement. MEDITERRANEAN Organic body scales, présent in several proximal layers, have a narrow inflexed rim and are ornamented with a variably developed cross.
    [Show full text]