Gauss Curvature? Editors

Total Page:16

File Type:pdf, Size:1020Kb

Gauss Curvature? Editors THE GRADUATE STUDENT SECTION WHAT IS... Gauss Curvature? Editors Gaussian curvature is a curvature intrinsic to a two- Take the curvature of the slice-curve. Thus you get a dimensional surface, something you’d never expect a curvature in every direction. The largest (positive, upward) surface to have. A bug living inside a curve cannot tell if and smallest (most negative) such curvatures are called it is curved or not; all the bug can do is walk forward and the principal curvatures, and they occur in orthogonal backward, measuring distance. But a very intelligent bug directions. Their average is called the mean curvature, living on a surface can, by walking around, never leaving and their product is called the Gauss curvature. For the the surface, measure its Gaussian curvature. unit sphere, both principal curvatures are 1 and hence The Definition. Assuming you know how to define the the Gauss curvature is 1. For a unit cylinder, the principal curvature of a curve, how would you define the curvature curvatures are 1 and 0 and hence the Gauss curvature of a surface at a point 푝? Slice the surface by a plane is 0. For a suitable hyperbolic paraboloid as in Figure 2, normal to the surface at 푝, as in Figure 1. the principal curvatures are 1 and −1, and the Gauss curvature is −1. , Figure 3.1. Riemannian Geometry Image courtesy of Cesar E. Silva. Image by J. Bredt; ©Frank Morgan, Figure 2. For this hyperbolic paraboloid, the Gauss Figure 1. To define the Gauss curvature, consider the curvature is (+1)(−1) = −1. curvature of slice curves. The Gauss curvature is the product of the largest (positive) and the smallest or Gauss’s Theorema Egregium says that this Gauss cur- most negative such curvatures. vature is intrinsic; in other words, it can be measured by a bug within the surface. That means that if you bend the surface without stretching it, the Gauss curvature cannot For permission to reprint this article, please contact: change. If you roll the plane up into a cylinder, as in [email protected]. Figure 3, the principal curvatures change from 0, 0 to 0, 1, DOI: http://dx.doi.org/10.1090/noti1333 but the Gauss curvature remains 0. 144 Notices of the AMS Volume 63, Number 2 THE GRADUATE STUDENT SECTION As you can read in the article on Nirenberg (page 126), in 1970 Nirenberg1 asked which functions on the sphere can be the Gauss curvature for some embedding of the sphere in space. By the Gauss-Bonnet Theorem, the integral must be 4휋. Are there any other conditions? Riemannian 1Technically Nirenberg considered not only spheres embedded in space but more abstract Riemannian surfaces given by a Rie- mannian metric on the sphere. But since Nash (who’ll be featured in the May Notices) proved that any such sphere can be embedded , Figure 3.7. in high-dimensional space, it really doesn’t matter. Image by J. Bredt;Geometry ©Frank Morgan, Figure 3. Rolling a piece of plane into a cylinder of radius 푟 changes the principal curvatures from 0, 0 to 1/푟, 0 but the Gauss curvature–the product–remains 0. One way a bug can measure the Gauss curvature of a surface at a point 푝 is by looking at a tiny “geodesic” circle of tiny radius 푟 about 푝: {푥 ∶ dist(푝, 푥) = 푟}. If the Gauss curvature is 0, the circumference is 2휋푟 to high order. If the Gauss curvature is positive as on the sphere, the circumference is smaller. If the Gauss curvature is negative as on the hyperbolic paraboloid, the circumference is greater. In general, for Gauss curvature 퐺, the circumference is given by 푟3 2휋푟 − 퐺휋 + … . Moving? 3 For a closed surface, there is the amazing Gauss- Please make sure that the AMS Notices Bonnet formula relating the Gauss curvature 퐺 and and Bulletin find their new home. the Euler characteristic 휒. The Euler characteristic is a ISSN 0002-9920 (print) ISSN 1088-9477 (online) purely combinatorial quantity, easily computed from any Volume 61, Number 1 of the American Mathematical Society triangulation as the number of vertices minus the number January 2014 The Legacy of Vladimir Andreevich Steklov page 9 Common Core State Standards for Geometry: An Alternative Approach of edges plus the number of regions. The Gauss-Bonnet page 24 Infrastructure: Structure Inside the Class Group of a Real Quadratic Field page 36 Hypergeometric Functions, How Special Are They? Theorem says that page 48 Knoxville Meeting page 100 Baltimore Meeting page 103 Albuquerque Meeting page 107 Lubbock Meeting page 111 Tel Aviv Meeting ∫ 퐺 = 2휋휒. page 114 About the cover: Plain geometry (see page 88) Since the Euler characteristic of the sphere is 2, this says • that the integral of the Gaussian curvature is 4휋. This is Email your new address to us: easy to check for the round unit sphere: since the Gauss [email protected] • curvature is 1, it just says that the area is 4휋. The amazing or make the change yourself online at: thing is that it remains true for a deformed sphere of any www.ams.org/cml-update size and shape. • or send the information to: The Gauss-Bonnet Theorem is an amazing equality Member and Customer Services of the geometric and the combinatorial. It immediately American Mathematical Society implies that the Euler characteristic is independent of 201 Charles Street triangulation, because the integral of the Gauss curvature Providence, RI 02904-2294 USA is. Similarly it implies that the integral of the Gauss Phone: (800) 321-4267 (US & Canada) curvature remains constant under deformations, because (401) 455-4000 (Worldwide) the Euler characteristic does. February 2016 Notices of the AMS 145.
Recommended publications
  • An Introduction to Topology the Classification Theorem for Surfaces by E
    An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5.
    [Show full text]
  • Surface Physics I and II
    Surface physics I and II Lectures: Mon 12-14 ,Wed 12-14 D116 Excercises: TBA Lecturer: Antti Kuronen, [email protected] Exercise assistant: Ane Lasa, [email protected] Course homepage: http://www.physics.helsinki.fi/courses/s/pintafysiikka/ Objectives ● To study properties of surfaces of solid materials. ● The relationship between the composition and morphology of the surface and its mechanical, chemical and electronic properties will be dealt with. ● Technologically important field of surface and thin film growth will also be covered. Surface physics I 2012: 1. Introduction 1 Surface physics I and II ● Course in two parts ● Surface physics I (SPI) (530202) ● Period III, 5 ECTS points ● Basics of surface physics ● Surface physics II (SPII) (530169) ● Period IV, 5 ECTS points ● 'Special' topics in surface science ● Surface and thin film growth ● Nanosystems ● Computational methods in surface science ● You can take only SPI or both SPI and SPII Surface physics I 2012: 1. Introduction 2 How to pass ● Both courses: ● Final exam 50% ● Exercises 50% ● Exercises ● Return by ● email to [email protected] or ● on paper to course box on the 2nd floor of Physicum ● Return by (TBA) Surface physics I 2012: 1. Introduction 3 Table of contents ● Surface physics I ● Introduction: What is a surface? Why is it important? Basic concepts. ● Surface structure: Thermodynamics of surfaces. Atomic and electronic structure. ● Experimental methods for surface characterization: Composition, morphology, electronic properties. ● Surface physics II ● Theoretical and computational methods in surface science: Analytical models, Monte Carlo and molecular dynamics sumilations. ● Surface growth: Adsorption, desorption, surface diffusion. ● Thin film growth: Homoepitaxy, heteroepitaxy, nanostructures.
    [Show full text]
  • DISCRETE DIFFERENTIAL GEOMETRY: an APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 Curvature—Overview • Intuitively, describes “how much a shape bends” – Extrinsic: how quickly does the tangent plane/normal change? – Intrinsic: how much do quantities differ from flat case? N T B Curvature—Overview • Driving force behind wide variety of physical phenomena – Objects want to reduce—or restore—their curvature – Even space and time are driven by curvature… Curvature—Overview • Gives a coordinate-invariant description of shape – fundamental theorems of plane curves, space curves, surfaces, … • Amazing fact: curvature gives you information about global topology! – “local-global theorems”: turning number, Gauss-Bonnet, … Curvature—Overview • Geometric algorithms: shape analysis, local descriptors, smoothing, … • Numerical simulation: elastic rods/shells, surface tension, … • Image processing algorithms: denoising, feature/contour detection, … Thürey et al 2010 Gaser et al Kass et al 1987 Grinspun et al 2003 Curvature of Curves Review: Curvature of a Plane Curve • Informally, curvature describes “how much a curve bends” • More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent Equivalently: Here the angle brackets denote the usual dot product, i.e., . Review: Curvature and Torsion of a Space Curve •For a plane curve, curvature captured the notion of “bending” •For a space curve we also have torsion, which captures “twisting” Intuition: torsion is “out of plane bending” increasing torsion Review: Fundamental Theorem of Space Curves •The fundamental theorem of space curves tells that given the curvature κ and torsion τ of an arc-length parameterized space curve, we can recover the curve (up to rigid motion) •Formally: integrate the Frenet-Serret equations; intuitively: start drawing a curve, bend & twist at prescribed rate.
    [Show full text]
  • Surface Water
    Chapter 5 SURFACE WATER Surface water originates mostly from rainfall and is a mixture of surface run-off and ground water. It includes larges rivers, ponds and lakes, and the small upland streams which may originate from springs and collect the run-off from the watersheds. The quantity of run-off depends upon a large number of factors, the most important of which are the amount and intensity of rainfall, the climate and vegetation and, also, the geological, geographi- cal, and topographical features of the area under consideration. It varies widely, from about 20 % in arid and sandy areas where the rainfall is scarce to more than 50% in rocky regions in which the annual rainfall is heavy. Of the remaining portion of the rainfall. some of the water percolates into the ground (see "Ground water", page 57), and the rest is lost by evaporation, transpiration and absorption. The quality of surface water is governed by its content of living organisms and by the amounts of mineral and organic matter which it may have picked up in the course of its formation. As rain falls through the atmo- sphere, it collects dust and absorbs oxygen and carbon dioxide from the air. While flowing over the ground, surface water collects silt and particles of organic matter, some of which will ultimately go into solution. It also picks up more carbon dioxide from the vegetation and micro-organisms and bacteria from the topsoil and from decaying matter. On inhabited watersheds, pollution may include faecal material and pathogenic organisms, as well as other human and industrial wastes which have not been properly disposed of.
    [Show full text]
  • 3D Modeling: Surfaces
    CS 430/536 Computer Graphics I Overview • 3D model representations 3D Modeling: • Mesh formats Surfaces • Bicubic surfaces • Bezier surfaces Week 8, Lecture 16 • Normals to surfaces David Breen, William Regli and Maxim Peysakhov • Direct surface rendering Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University 1 2 http://gicl.cs.drexel.edu 1994 Foley/VanDam/Finer/Huges/Phillips ICG 3D Modeling Representing 3D Objects • 3D Representations • Exact • Approximate – Wireframe models – Surface Models – Wireframe – Facet / Mesh – Solid Models – Parametric • Just surfaces – Meshes and Polygon soups – Voxel/Volume models Surface – Voxel – Decomposition-based – Solid Model • Volume info • Octrees, voxels • CSG • Modeling in 3D – Constructive Solid Geometry (CSG), • BRep Breps and feature-based • Implicit Solid Modeling 3 4 Negatives when Representing 3D Objects Representing 3D Objects • Exact • Approximate • Exact • Approximate – Complex data structures – Lossy – Precise model of – A discretization of – Expensive algorithms – Data structure sizes can object topology the 3D object – Wide variety of formats, get HUGE, if you want each with subtle nuances good fidelity – Mathematically – Use simple – Hard to acquire data – Easy to break (i.e. cracks represent all primitives to – Translation required for can appear) rendering – Not good for certain geometry model topology applications • Lots of interpolation and and geometry guess work 5 6 1 Positives when Exact Representations Representing 3D Objects • Exact
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces, meaning polygonal curves and triangulated polyhedral surfaces. We find that the most useful analogs are those which preserve integral relations for curvature, like the Gauß/Bonnet theorem. For simplicity, we usually restrict our attention to curves and surfaces in euclidean three space E3, although many of the results would easily generalize to other ambient manifolds of arbitrary dimension. Most of the material here is not new; some is even quite old. Although some refer- ences are given, no attempt has been made to give a comprehensive bibliography or an accurate picture of the history of the ideas. 1. Smooth curves, Framings and Integral Curvature Relations A companion article [Sul06] investigated the class of FTC (finite total curvature) curves, which includes both smooth and polygonal curves, as a way of unifying the treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape invariant under Euclidean motions. The only first-order information is the tangent line; since all lines in space are equivalent, there are no first-order invariants. Second-order information is given by the osculating circle, and the invariant is its curvature κ = 1/r. For a plane curve given as a graph y = f(x) let us contrast the notions of curvature and second derivative.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Surface Topology
    2 Surface topology 2.1 Classification of surfaces In this second introductory chapter, we change direction completely. We dis- cuss the topological classification of surfaces, and outline one approach to a proof. Our treatment here is almost entirely informal; we do not even define precisely what we mean by a ‘surface’. (Definitions will be found in the following chapter.) However, with the aid of some more sophisticated technical language, it not too hard to turn our informal account into a precise proof. The reasons for including this material here are, first, that it gives a counterweight to the previous chapter: the two together illustrate two themes—complex analysis and topology—which run through the study of Riemann surfaces. And, second, that we are able to introduce some more advanced ideas that will be taken up later in the book. The statement of the classification of closed surfaces is probably well known to many readers. We write down two families of surfaces g, h for integers g ≥ 0, h ≥ 1. 2 2 The surface 0 is the 2-sphere S . The surface 1 is the 2-torus T .For g ≥ 2, we define the surface g by taking the ‘connected sum’ of g copies of the torus. In general, if X and Y are (connected) surfaces, the connected sum XY is a surface constructed as follows (Figure 2.1). We choose small discs DX in X and DY in Y and cut them out to get a pair of ‘surfaces-with- boundaries’, coresponding to the circle boundaries of DX and DY.
    [Show full text]
  • CURVATURE E. L. Lady the Curvature of a Curve Is, Roughly Speaking, the Rate at Which That Curve Is Turning. Since the Tangent L
    1 CURVATURE E. L. Lady The curvature of a curve is, roughly speaking, the rate at which that curve is turning. Since the tangent line or the velocity vector shows the direction of the curve, this means that the curvature is, roughly, the rate at which the tangent line or velocity vector is turning. There are two refinements needed for this definition. First, the rate at which the tangent line of a curve is turning will depend on how fast one is moving along the curve. But curvature should be a geometric property of the curve and not be changed by the way one moves along it. Thus we define curvature to be the absolute value of the rate at which the tangent line is turning when one moves along the curve at a speed of one unit per second. At first, remembering the determination in Calculus I of whether a curve is curving upwards or downwards (“concave up or concave down”) it may seem that curvature should be a signed quantity. However a little thought shows that this would be undesirable. If one looks at a circle, for instance, the top is concave down and the bottom is concave up, but clearly one wants the curvature of a circle to be positive all the way round. Negative curvature simply doesn’t make sense for curves. The second problem with defining curvature to be the rate at which the tangent line is turning is that one has to figure out what this means. The Curvature of a Graph in the Plane.
    [Show full text]
  • Chapter 13 Curvature in Riemannian Manifolds
    Chapter 13 Curvature in Riemannian Manifolds 13.1 The Curvature Tensor If (M, , )isaRiemannianmanifoldand is a connection on M (that is, a connection on TM−), we− saw in Section 11.2 (Proposition 11.8)∇ that the curvature induced by is given by ∇ R(X, Y )= , ∇X ◦∇Y −∇Y ◦∇X −∇[X,Y ] for all X, Y X(M), with R(X, Y ) Γ( om(TM,TM)) = Hom (Γ(TM), Γ(TM)). ∈ ∈ H ∼ C∞(M) Since sections of the tangent bundle are vector fields (Γ(TM)=X(M)), R defines a map R: X(M) X(M) X(M) X(M), × × −→ and, as we observed just after stating Proposition 11.8, R(X, Y )Z is C∞(M)-linear in X, Y, Z and skew-symmetric in X and Y .ItfollowsthatR defines a (1, 3)-tensor, also denoted R, with R : T M T M T M T M. p p × p × p −→ p Experience shows that it is useful to consider the (0, 4)-tensor, also denoted R,givenby R (x, y, z, w)= R (x, y)z,w p p p as well as the expression R(x, y, y, x), which, for an orthonormal pair, of vectors (x, y), is known as the sectional curvature, K(x, y). This last expression brings up a dilemma regarding the choice for the sign of R. With our present choice, the sectional curvature, K(x, y), is given by K(x, y)=R(x, y, y, x)but many authors define K as K(x, y)=R(x, y, x, y). Since R(x, y)isskew-symmetricinx, y, the latter choice corresponds to using R(x, y)insteadofR(x, y), that is, to define R(X, Y ) by − R(X, Y )= + .
    [Show full text]
  • Simulation of a Soap Film Catenoid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kanazawa University Repository for Academic Resources Simulation of A Soap Film Catenoid ! ! Pornchanit! Subvilaia,b aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan bDepartment of Mathematics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 Thailand E-mail: [email protected] ! ! ! Abstract. There are many interesting phenomena concerning soap film. One of them is the soap film catenoid. The catenoid is the equilibrium shape of the soap film that is stretched between two circular rings. When the two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero and the soap film is split. In our simulation, we show the evolution of the soap film when the rings move apart before the !film splits. We use the BMO algorithm for the evolution of a surface accelerated by the mean curvature. !Keywords: soap film catenoid, minimal surface, hyperbolic mean curvature flow, BMO algorithm !1. Introduction The phenomena that concern soap bubble and soap films are very interesting. For example when soap bubbles are blown with any shape of bubble blowers, the soap bubbles will be round to be a minimal surface that is the minimized surface area. One of them that we are interested in is a soap film catenoid. The catenoid is the minimal surface and the equilibrium shape of the soap film stretched between two circular rings. In the observation of the behaviour of the soap bubble catenoid [3], if two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero.
    [Show full text]
  • Mean Curvature in Manifolds with Ricci Curvature Bounded from Below
    Comment. Math. Helv. 93 (2018), 55–69 Commentarii Mathematici Helvetici DOI 10.4171/CMH/429 © Swiss Mathematical Society Mean curvature in manifolds with Ricci curvature bounded from below Jaigyoung Choe and Ailana Fraser Abstract. Let M be a compact Riemannian manifold of nonnegative Ricci curvature and † a compact embedded 2-sided minimal hypersurface in M . It is proved that there is a dichotomy: If † does not separate M then † is totally geodesic and M † is isometric to the Riemannian n product † .a; b/, and if † separates M then the map i 1.†/ 1.M / induced by W ! inclusion is surjective. This surjectivity is also proved for a compact 2-sided hypersurface with mean curvature H .n 1/pk in a manifold of Ricci curvature RicM .n 1/k, k > 0, and for a free boundary minimal hypersurface in an n-dimensional manifold of nonnegative Ricci curvature with nonempty strictly convex boundary. As an application it is shown that a compact .n 1/-dimensional manifold N with the number of generators of 1.N / < n 1 n cannot be minimally embedded in the flat torus T . Mathematics Subject Classification (2010). 53C20, 53C42. Keywords. Ricci curvature, minimal surface, fundamental group. 1. Introduction Euclid’s fifth postulate implies that there exist two nonintersecting lines on a plane. But the same is not true on a sphere, a non-Euclidean plane. Hadamard [11] generalized this to prove that every geodesic must meet every closed geodesic on a surface of positive curvature. Note that a k-dimensional minimal submanifold of a Riemannian manifold M is a critical point of the k-dimensional area functional.
    [Show full text]