Plant of the Month

Total Page:16

File Type:pdf, Size:1020Kb

Plant of the Month Plant of the Month - July by Allan Carr Leptocarpus tenax slender twine-rush Pronunciation: lep-toe-KAR-pus TEN-aks RESTIONACEAE Derivation: Leptocarpus, from the Greek, leptos – slender, thin and carpos – fruit; tenax, from teneo – tenacious, tough Male and female flowers Habit in Wallum heathland (female plants) Leptocarpus is a genus of about 22 species in Australia most of which are found in south- west WA. This species is one of 6 in Qld and is found in all states. Based on evidence from fossil pollens, the Restionaceae likely originated more than 65 million years ago during the Late Cretaceous period, when the southern continents were still part of the super continent Gondwana. Description: L. tenax is an upright round stemmed restiad to 1 m high with short creeping rhizomes to 7 mm diameter and found on the edges of wallum wetland areas in south-east Qld - sandy acid, nutrient poor soils periodically water-logged. Stems to 1 m x 2 mm are mostly unbranched. The species is *dioecious. Leaves to 8 mm are reduced to brown stem-clasping open leaf sheaths on flowering stems. These leaf sheaths are split down one side. Flowers are male or female occurring on separate plants from November to February. Male - drooping clusters of terminal *panicles to 4 mm, dark brown flowers. Female - erect clusters of *spikelets to 15 mm, reddish flowers with pointed *glumes. These flowers are wind pollinated. Fruits are pale brown narrow 3-angled nuts to 3 mm long. *dioecious = having the male and female reproductive structures on separate plants *spikelet = a unit of inflorescence in grasses, sedges and restiads, consisting of one to many flowers and associated *glumes *panicle = a much-branched flower spike with the youngest flowers at the top *glume = a bract in the inflorescence of a grass, sedge or restiad Brown stem-clasping leaf sheath .
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections.
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • The Smut Fungi (Ustilaginomycetes) of Restionaceae S. Lat
    MYCOLOGIA BALCANICA 3: 19–46 (2006) 19 Th e smut fungi (Ustilaginomycetes) of Restionaceae s. lat. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 2 October 2005 / Accepted 25 October 2005 Abstract. Smut fungi of Restionaceae s. lat. were studied. Th ey are classifi ed into two genera, Restiosporium and Websdanea. Problems of species delimitation in these smuts are discussed. In addition to the nine known smut fungi, thirteen new species are described and illustrated: Restiosporium anarthriae, R. apodasmiae, R. chaetanthi, R. desmocladii, R. eurychordae, R. fl exuosum, R. hypolaenae, R. lepyrodiae, R. pallentis, R. patei, R. proliferum, R. spathacei, and R. sphacelatum. Key words: new species, Restionaceae s. lat., Restiosporium, smut fungi, taxonomy, Websdanea Introduction and stained in 1 % aqueous uranyl acetate for 1 h in the dark. After fi ve washes in distilled water, the material was Th e monocotyledonous Restionaceae is a remarkable family dehydrated in acetone series, embedded in Spurr’s plastic, of Southern Hemisphere, evergreen, rush-like plants. Th ey and sectioned with a diamond knife. Semi-thin sections are concentrated mainly in SW Africa and in SW Australia. were stained with new fuchsin and crystal violet, mounted Th e c. 320 species of African Restionaceae, in 19 genera, were in ‘Entellan’ and studied in a light microscope. revised by Linder (1985, 1991). Th e 170 species of Australian Spore ball and spore morphology was studied using Restionaceae s. lat. were published by Meney & Pate (1999) a light microscope (LM) with an oil immersion lens at a in a beautifully illustrated monograph.
    [Show full text]
  • Low Risk Aquarium and Pond Plants
    Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
    Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells.
    [Show full text]
  • Chapter 19 Role of Root Clusters in Phosphorus
    CHAPTER 19 ROLE OF ROOT CLUSTERS IN PHOSPHORUS ACQUISITION AND INCREASING BIOLOGICAL DIVERSITY IN AGRICULTURE H. LAMBERS AND M.W. SHANE School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. E-mail: [email protected] Abstract. Soils in the south-west of Western Australia and South Africa are among the most phosphorus- impoverished in the world, and at the same time both of these regions are Global Biodiversity Hotspots. This unique combination offers an excellent opportunity to study root adaptations that are significant in phosphorus (P) acquisition. A large proportion of species from these P-poor environments cannot produce an association with mycorrhizal fungi, but, instead, produce ‘root clusters’. In Western Australia, root- cluster-bearing Proteaceae occur on the most P-impoverished soils, whereas the mycorrhizal Myrtaceae tend to inhabit the less P-impoverished soils in this region. Root clusters are an adaptation both in structure and in functioning; characterized by high densities of short lateral roots that release large amounts of exudates, in particular carboxylates (anions of di- and tri-carboxylic acids). The functioning of root clusters in Proteaceae (’proteoid’ roots) and Fabaceae (‘cluster’ roots) has received considerable attention, but that of ‘dauciform’ root clusters developed by species in Cyperaceae has barely been explored. Research on the physiology of ‘capillaroid’ root clusters formed by species in Restionaceae has yet to be published. Root-cluster initiation and growth in species of the Cyperaceae, Fabaceae and Proteaceae are systemically stimulated when plants are grown at a very low P supply, and are suppressed as leaf P concentrations increase.
    [Show full text]
  • Vascular Flora of Gus Engeling Wildlife Management Area, Anderson County, Texas
    2003SOUTHEASTERN NATURALIST 2(3):347–368 THE VASCULAR FLORA OF GUS ENGELING WILDLIFE MANAGEMENT AREA, ANDERSON COUNTY, TEXAS 1 2,3 2 JASON R. SINGHURST , JAMES C. CATHY , DALE PROCHASKA , 2 4 5 HAYDEN HAUCKE , GLENN C. KROH , AND WALTER C. HOLMES ABSTRACT - Field studies in the Gus Engeling Wildlife Management Area, which consists of approximately 4465.5 ha (11,034.1 acres) of the Post Oak Savannah of Anderson County, have resulted in an annotated checklist of the vascular flora corroborating its remarkable species richness. A total of 930 taxa (excluding family names), belonging to 485 genera and 145 families are re- corded. Asteraceae (124 species), Poaceae (114 species), Fabaceae (67 species), and Cyperaceae (61 species) represented the largest families. Six Texas endemic taxa occur on the site: Brazoria truncata var. pulcherrima (B. pulcherrima), Hymenopappus carrizoanus, Palafoxia reverchonii, Rhododon ciliatus, Trades- cantia humilis, and T. subacaulis. Within Texas, Zigadenus densus is known only from the study area. The area also has a large number of species that are endemic to the West Gulf Coastal Plain and Carrizo Sands phytogeographic distribution patterns. Eleven vegetation alliances occur on the property, with the most notable being sand post oak-bluejack oak, white oak-southern red oak-post oak, and beakrush-pitcher plant alliances. INTRODUCTION The Post Oak Savannah (Gould 1962) comprises about 4,000,000 ha of gently rolling to hilly lands that lie immediately west of the Pineywoods (Timber belt). Some (Allred and Mitchell 1955, Dyksterhuis 1948) consider the vegetation of the area as part of the deciduous forest; i.e., burned out forest that is presently regenerating.
    [Show full text]
  • (Centrolepidaceae) in Australia
    J. Adelaide Bot. Gard. 15(1): 1-63 (1992) A TAXONOMIC REVISION OF CENTROLEPIS (CENTROLEPIDACEAE) IN AUSTRALIA D. A. Cooke Animal and Plant Control Commission of South Australia GPO Box 1671, Adelaide, South Australia 5001 Abstract Centrdepis in Australia is revised and twenty species are recognised. This revision is based on morphological features that are discussed in relation to the biology of the genus. One new species, C. curta, and a new subspecies, C. strigosa subsp. rupestris, are described and illustrated. The new combinations C. monogyna subsp. paludicola and C. strigosa subsp. pulvinata are made. Introduction Centrolepis is a genus of small annual and perennial monocots. It forms, with Aphelia and Gaimardia, the minor family Centrolepidaceae. The family has its main centre of diversity in Australia with 29 species; a few occur in New Zealand, south-eastern Asia and South America. The close affinity of the Centrolepidaceae to the Restionaceae, and its remoteness from the two genera segregated by Hamann (1976) as the Hydatellaceae, are widely recognised in contemporary systems of classification (Cronquist, 1981; Dahlgren & Clifford, 1982; Takhtajan, 1980). Taxonomic history The genus first became known from material of the near-coastal species sent to Europe by the early botanist-explorers and collectors. In 1770 Banks and Solander on the Endeavour collected specimens of Centrolepis, now referred to C. banksii and C. exserta, that they tentatively labelled as species of Schoenus (Cyperaceae). Labillardière (1804) based the new genus Centrolepis, which he placed under Monandria Monogynia in the Linnaean system, on a Tasmanian specimen. Robert Brown (1810), using Banks' and Solander's material and his own collections from the voyage of the Investigator around Australia in 1801-4, drafted manuscript epithets for a further twelve Centrolepis species.
    [Show full text]
  • Updated Angiosperm Family Tree for Analyzing Phylogenetic Diversity and Community Structure
    Acta Botanica Brasilica - 31(2): 191-198. April-June 2017. doi: 10.1590/0102-33062016abb0306 Updated angiosperm family tree for analyzing phylogenetic diversity and community structure Markus Gastauer1,2* and João Augusto Alves Meira-Neto2 Received: August 19, 2016 Accepted: March 3, 2017 . ABSTRACT Th e computation of phylogenetic diversity and phylogenetic community structure demands an accurately calibrated, high-resolution phylogeny, which refl ects current knowledge regarding diversifi cation within the group of interest. Herein we present the angiosperm phylogeny R20160415.new, which is based on the topology proposed by the Angiosperm Phylogeny Group IV, a recently released compilation of angiosperm diversifi cation. R20160415.new is calibratable by diff erent sets of recently published estimates of mean node ages. Its application for the computation of phylogenetic diversity and/or phylogenetic community structure is straightforward and ensures the inclusion of up-to-date information in user specifi c applications, as long as users are familiar with the pitfalls of such hand- made supertrees. Keywords: angiosperm diversifi cation, APG IV, community tree calibration, megatrees, phylogenetic topology phylogeny comprising the entire taxonomic group under Introduction study (Gastauer & Meira-Neto 2013). Th e constant increase in knowledge about the phylogenetic The phylogenetic structure of a biological community relationships among taxa (e.g., Cox et al. 2014) requires regular determines whether species that coexist within a given revision of applied phylogenies in order to incorporate novel data community are more closely related than expected by chance, and is essential information for investigating and avoid out-dated information in analyses of phylogenetic community assembly rules (Kembel & Hubbell 2006; diversity and community structure.
    [Show full text]
  • RESTIONACEAE 1. DAPSILANTHUS B. G. Briggs & L. A. S. Johnson, Telopea 7: 369. 1998
    Flora of China 24: 2. 2000. RESTIONACEAE 帚灯草科 zhou deng cao ke Wu Guofang (吴国芳 Wu Kuo-fang)1; Kai Larsen2 Herbs perennial, mostly dioecious, rarely monoecious or hermaphroditic. Rhizomes usually covered with imbricate scales; scales glabrous or with various types of unicellular or multicellular hairs. Stem erect, simple or branched, terete, quadrangular, or compressed; nodes solid; internodes solid or hollow. Leaves alternate, mostly scattered along stem, usually reduced to an open leaf sheath with a rudimentary blade; leaf sheath closely appressed to stem or inflated; ligule usually obscure or absent, apex sometimes elongate. Male and female inflorescences sometimes dissimilar, of (1- to) many-flowered spikelets or much branched and occasionally with leafy bracts; bracteoles chaffy. Flowers mostly unisexual, small; male flowers sometimes with a pistillode; female flowers sometimes with staminodes. Perianth usually in 2 whorls, seldom reduced or absent; segments scalelike. Stamens (1–)3(or 4), inserted opposite inner perianth segments; filaments free or rarely connate; anthers 1(or 2)-loculed, introrse or seldom latrorse, dehiscing by longitudinal slits; pollen grains 2- or 3-nucleate, 1-porate. Ovary 1–3-loculed; ovule 1 per locule, pendulous, orthotropous. Styles 1–3, free or basally connate; stigma elongate, often plumose. Fruit a nut or loculicidal capsule, usually small. Endosperm copious, mealy; embryo biconvex, small. About 55 genera and 490 species: widely distributed in the S hemisphere, best developed in SW Africa and SW Australia: one species in China. The largest genus in the family is Restio Rottbøll, with ca. 100 species. Characteristically, members of this family occur in sandy and nutrient-poor soils.
    [Show full text]