Tritone Paradox)

Total Page:16

File Type:pdf, Size:1020Kb

Tritone Paradox) PSYC 230 Assignment (Tritone Paradox) Name: _____________________________________________ R:______________________ Background: Shepard tones are musical notes that include the sine-wave frequencies in all octaves of a music note (A, A#, B, C, C#, D, D#, E, F, F#, G, and G#). When played in succession on a chromatic scale, a Shepard tone will always sound higher in pitch than the Shepard tones preceding it and will always sound lower in pitch than the Shepard tones that follow. Hence, there is a bit of circularity to a musical scale that is played with Shepard tones. Specifically, Shepard tones can be arranged on a circular pitch-class scale . A tritone is any pair of notes on opposite sides of a pitch-class scale (e.g., C-F#, C#-G); whereas a semitone is any non-opposite pair of notes (e.g., C-C#, C-B). If notes in a tritone are played in succession, it is difficult to tell whether the two tones ascend in pitch or descend in pitch; whereas the pitch -change (ascending or descending) for semitones is easy to detect. Interestingly, while one person may hear a particular tritone ascend in pitch, another person may hear it descend. Thus, the pitch class scale is unique for each individual; with the note at the top representing the first note in a tritone that a person most often hears descending in pitch. Purpose: To familiarize you with auditory perception and pitch changes by constructing your own pitch class circle. A discussion of the tritone illusion is here http://philomel.com/musical_illusions/tritone.php Task: You will use the PsyCog CD for this assignment. Before beginning the task, check out demo B1.1, which presents the infinite scale illusion using Shepard tones. Next, check out demo B1.4 to see what tritones sound like. When you are ready, begin the Triton Paradox experiment (B1.2a), by following the instructions here and on the CD. On each trial, you will her the two Shepard tone notes in a tritone pair played in succession. Some pairs will sound as through the pair is ascending in pitch, others will sound as though the pair is descending in pitch. Your task is to decide whether the second tone in each pair sounds higher in pitch or lower in pitch than the first tone. There really is no right or wrong answer, just listen carefully and respond appropriately. Data Analysis: Your data will be somewhat analyzed already. The CD will construct a graph with the tritone pairs on the x-axis (the first note in each pair is the tone played first), and the percentage of times that you heard each tritone pair descending in pitch on the y-axis. Included in the graph will be your own pitch class circle. (I have found that the pitch-class circle may not be oriented correctly sometimes.) Print out your results and hand them in in with this assignment, and then answer the following: 1) Which tritone pair did you most often hear descend in pitch? (Use result from the graph.) PSYC 230 Assignment (Tritone Paradox) 2) Why do you think that pitch class scale differs across people? That is, what are some factors that might affect the orientation of the pitch class scale? 3) Why do you think perception of the pitch change in a tritone is ambiguous and difficult to identify, but the pitch change in a semitone (e.g., C-D) is easy to detect? What is it about a tritone that leads to this ambiguity? .
Recommended publications
  • Founding a Family of Fiddles
    The four members of the violin family have changed very little In hundreds of years. Recently, a group of musi- cians and scientists have constructed a "new" string family. 16 Founding a Family of Fiddles Carleen M. Hutchins An article from Physics Today, 1967. New measmement techniques combined with recent acoustics research enable us to make vioUn-type instruments in all frequency ranges with the properties built into the vioHn itself by the masters of three centuries ago. Thus for the first time we have a whole family of instruments made according to a consistent acoustical theory. Beyond a doubt they are musically successful by Carleen Maley Hutchins For three or folti centuries string stacles have stood in the way of practi- quartets as well as orchestras both cal accomplishment. That we can large and small, ha\e used violins, now routinely make fine violins in a violas, cellos and contrabasses of clas- variety of frequency ranges is the re- sical design. These wooden instru- siJt of a fortuitous combination: ments were brought to near perfec- violin acoustics research—showing a tion by violin makers of the 17th and resurgence after a lapse of 100 years— 18th centuries. Only recendy, though, and the new testing equipment capa- has testing equipment been good ble of responding to the sensitivities of enough to find out just how they work, wooden instruments. and only recently have scientific meth- As is shown in figure 1, oiu new in- ods of manufactiu-e been good enough struments are tuned in alternate inter- to produce consistently instruments vals of a musical fourth and fifth over with the qualities one wants to design the range of the piano keyboard.
    [Show full text]
  • The Devil's Interval by Jerry Tachoir
    Sound Enhanced Hear the music example in the Members Only section of the PAS Web site at www.pas.org The Devil’s Interval BY JERRY TACHOIR he natural progression from consonance to dissonance and ii7 chords. In other words, Dm7 to G7 can now be A-flat m7 to resolution helps make music interesting and satisfying. G7, and both can resolve to either a C or a G-flat. Using the TMusic would be extremely bland without the use of disso- other dominant chord, D-flat (with the basic ii7 to V7 of A-flat nance. Imagine a world of parallel thirds and sixths and no dis- m7 to D-flat 7), we can substitute the other relative ii7 chord, sonance/resolution. creating the progression Dm7 to D-flat 7 which, again, can re- The prime interval requiring resolution is the tritone—an solve to either a C or a G-flat. augmented 4th or diminished 5th. Known in the early church Here are all the possibilities (Note: enharmonic spellings as the “Devil’s interval,” tritones were actually prohibited in of- were used to simplify the spelling of some chords—e.g., B in- ficial church music. Imagine Bach’s struggle to take music stead of C-flat): through its normal progression of tonic, subdominant, domi- nant, and back to tonic without the use of this interval. Dm7 G7 C Dm7 G7 Gb The tritone is the characteristic interval of all dominant bw chords, created by the “guide tones,” or the 3rd and 7th. The 4 ˙ ˙ w ˙ ˙ tritone interval can be resolved in two types of contrary motion: &4˙ ˙ w ˙ ˙ bbw one in which both notes move in by half steps, and one in which ˙ ˙ w ˙ ˙ b w both notes move out by half steps.
    [Show full text]
  • Boris's Bells, by Way of Schubert and Others
    Boris's Bells, By Way of Schubert and Others Mark DeVoto We define "bell chords" as different dominant-seventh chords whose roots are separated by multiples of interval 3, the minor third. The sobriquet derives from the most famous such pair of harmonies, the alternating D7 and AI? that constitute the entire harmonic substance of the first thirty-eight measures of scene 2 of the Prologue in Musorgsky's opera Boris Godunov (1874) (example O. Example 1: Paradigm of the Boris Godunov bell succession: AJ,7-D7. A~7 D7 '~~&gl n'IO D>: y 7 G: y7 The Boris bell chords are an early milestone in the history of nonfunctional harmony; yet the two harmonies, considered individually, are ofcourse abso­ lutely functional in classical contexts. This essay traces some ofthe historical antecedents of the bell chords as well as their developing descendants. Dominant Harmony The dominant-seventh chord is rightly recognized as the most unambiguous of the essential tonal resources in classical harmonic progression, and the V7-1 progression is the strongest means of moving harmony forward in immediate musical time. To put it another way, the expectation of tonic harmony to follow a dominant-seventh sonority is a principal component of forehearing; we assume, in our ordinary and long-tested experience oftonal music, that the tonic function will follow the dominant-seventh function and be fortified by it. So familiar is this everyday phenomenon that it hardly needs to be stated; we need mention it here only to assert the contrary case, namely, that the dominant-seventh function followed by something else introduces the element of the unexpected.
    [Show full text]
  • The Development of Duke Ellington's Compositional Style: a Comparative Analysis of Three Selected Works
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2001 THE DEVELOPMENT OF DUKE ELLINGTON'S COMPOSITIONAL STYLE: A COMPARATIVE ANALYSIS OF THREE SELECTED WORKS Eric S. Strother University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Strother, Eric S., "THE DEVELOPMENT OF DUKE ELLINGTON'S COMPOSITIONAL STYLE: A COMPARATIVE ANALYSIS OF THREE SELECTED WORKS" (2001). University of Kentucky Master's Theses. 381. https://uknowledge.uky.edu/gradschool_theses/381 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS THE DEVELOPMENT OF DUKE ELLINGTON’S COMPOSITIONAL STYLE: A COMPARATIVE ANALYSIS OF THREE SELECTED WORKS Edward Kennedy “Duke” Ellington’s compositions are significant to the study of jazz and American music in general. This study examines his compositional style through a comparative analysis of three works from each of his main stylistic periods. The analyses focus on form, instrumentation, texture and harmony, melody, tonality, and rhythm. Each piece is examined on its own and their significant features are compared. Eric S. Strother May 1, 2001 THE DEVELOPMENT OF DUKE ELLINGTON’S COMPOSITIONAL STYLE: A COMPARATIVE ANALYSIS OF THREE SELECTED WORKS By Eric Scott Strother Richard Domek Director of Thesis Kate Covington Director of Graduate Studies May 1, 2001 RULES FOR THE USE OF THESES Unpublished theses submitted for the Master’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors.
    [Show full text]
  • Frequency Ratios and the Perception of Tone Patterns
    Psychonomic Bulletin & Review 1994, 1 (2), 191-201 Frequency ratios and the perception of tone patterns E. GLENN SCHELLENBERG University of Windsor, Windsor, Ontario, Canada and SANDRA E. TREHUB University of Toronto, Mississauga, Ontario, Canada We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted for judgments of consonance and dissonance and for judgments of similarity across a wide range of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by musically experienced and inexperienced listeners. These findings confirm the generality ofpre­ vious suggestions of perceptual processing advantages for pairs of tones related by simple fre­ quency ratios. Since the time of Pythagoras, the relative simplicity of monics of a single complex tone. Currently, the degree the frequency relations between tones has been consid­ of perceived consonance is believed to result from both ered fundamental to consonance (pleasantness) and dis­ sensory and experiential factors. Whereas sensory con­ sonance (unpleasantness) in music. Most naturally OCCUf­ sonance is constant across musical styles and cultures, mu­ ring tones (e.g., the sounds of speech or music) are sical consonance presumably results from learning what complex, consisting of multiple pure-tone (sine wave) sounds pleasant in a particular musical style. components. Terhardt (1974, 1978, 1984) has suggested Helmholtz (1885/1954) proposed that the consonance that relations between different tones may be influenced of two simultaneous complex tones is a function of the by relations between components of a single complex tone. ratio between their fundamental frequencies-the simpler For single complex tones, ineluding those of speech and the ratio, the more harmonics the tones have in common.
    [Show full text]
  • Musical Techniques
    Musical Techniques Musical Techniques Frequencies and Harmony Dominique Paret Serge Sibony First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2017 The rights of Dominique Paret and Serge Sibony to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2016960997 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-058-4 Contents Preface ........................................... xiii Introduction ........................................ xv Part 1. Laying the Foundations ............................ 1 Introduction to Part 1 .................................. 3 Chapter 1. Sounds, Creation and Generation of Notes ................................... 5 1.1. Physical and physiological notions of a sound .................. 5 1.1.1. Auditory apparatus ............................... 5 1.1.2. Physical concepts of a sound .......................... 7 1.1.3.
    [Show full text]
  • A LIGHTWEIGHT NOTATION for PLAYING PIANO for FUN by R.J.A
    A LIGHTWEIGHT NOTATION FOR PLAYING PIANO FOR FUN by R.J.A. Buhr 1. INTRODUCTION Music notation gets in the way of the joy of making music on the piano that can be had without first spending thousands of hours at the keyboard to develop piano “wizardry,” meaning a combination of keyboard skill and mastery of music notation. The message of this document is the joy can be had, without any loss of musical substance, with no more wizardry than is required to read and play single melody lines. The vehicle is a lightweight notation I call PKP (for Picturing Keyboard Patterns) for annotating the core flow of harmony in interval terms above the staff. I developed the notation as an adult beginner with no training in music theory after becoming frustrated with the way music notation obscures the keyboard simplicity of harmony. That the notation has substance in spite of this humble origin is indicated by the following opinion of PKP provided by a music theorist specializing in improvisational music (see supplementary pages): “The hook ... , at least in my opinion, is that it's possible to attain a deep understanding of chords (and their constituent intervals) without recourse to Western notation. This has direct consequences for physical patterning, fingerings, etc. Essentially, your method combines the utility of a play-by-ear approach with the depth of a mathematically-informed theory of music.” PKP follows from two observations that anyone can make. One is the piano keyboard supplies only 12 piano keys to play all the notes of an octave that music notation describes in many more than 12 ways by key signatures and accidentals (sharps, flats, naturals).
    [Show full text]
  • The Consecutive-Semitone Constraint on Scalar Structure: a Link Between Impressionism and Jazz1
    The Consecutive-Semitone Constraint on Scalar Structure: A Link Between Impressionism and Jazz1 Dmitri Tymoczko The diatonic scale, considered as a subset of the twelve chromatic pitch classes, possesses some remarkable mathematical properties. It is, for example, a "deep scale," containing each of the six diatonic intervals a unique number of times; it represents a "maximally even" division of the octave into seven nearly-equal parts; it is capable of participating in a "maximally smooth" cycle of transpositions that differ only by the shift of a single pitch by a single semitone; and it has "Myhill's property," in the sense that every distinct two-note diatonic interval (e.g., a third) comes in exactly two distinct chromatic varieties (e.g., major and minor). Many theorists have used these properties to describe and even explain the role of the diatonic scale in traditional tonal music.2 Tonal music, however, is not exclusively diatonic, and the two nondiatonic minor scales possess none of the properties mentioned above. Thus, to the extent that we emphasize the mathematical uniqueness of the diatonic scale, we must downplay the musical significance of the other scales, for example by treating the melodic and harmonic minor scales merely as modifications of the natural minor. The difficulty is compounded when we consider the music of the late-nineteenth and twentieth centuries, in which composers expanded their musical vocabularies to include new scales (for instance, the whole-tone and the octatonic) which again shared few of the diatonic scale's interesting characteristics. This suggests that many of the features *I would like to thank David Lewin, John Thow, and Robert Wason for their assistance in preparing this article.
    [Show full text]
  • The Devil's Interval
    The Devil’s Interval By Jerry Tachoir Our modern music exists of dissonance – resolution. The prime characteristic interval requiring resolution is the Tritone - the interval of an augmented 4th or diminished 5th. This interval known in the early church as the “Devil’s Interval” was actually prohibited in official church music. Imagine Bach’s struggle to take music from its normal course of Tonic, Sub Dominant, Dominant and back again without the use of this interval. The tritone is the characteristic interval of all dominant chords. The guide tones or the 3rd and 7th of all dominants create this tritone interval and demand resolution in two possible directions; contrary motion where both notes move in by half steps and contrary motion where both notes move out by half steps. This resolution of tritones is what gives dominant chords their V7 to I resolution of what we have come to expect in traditional Western harmony (G7 to C). The guide tones of the G7 (B the 3rd and F the 7th of the G7 chord resolve to a C and E notes and allow the resolution to a C chord) This is a normal V7 to I resolution. Bb and F# become the other contrary resolution of the B and F tritone notes and form the root and 3rd of a Gb chord. Hence, the two possible resolutions of a G7 chord are down a fifth to a C chord or down a half step to a Gb chord. All dominant chords have these two possible points of primary resolution, down a 5th or down a half step.
    [Show full text]
  • 11 – Music Temperament and Pitch
    11 – Music temperament and pitch Music sounds Every music instrument, including the voice, uses a more or less well defined sequence of music sounds, the notes, to produce music. The notes have particular frequencies that are called „pitch“ by musicians. The frequencies or pitches of the notes stand in a particular relation to each other. There are and were different ways to build a system of music sounds in different geographical regions during different historical periods. We will consider only the currently dominating system (used in classical and pop music) that was originated in ancient Greece and further developed in Europe. Pitch vs interval Only a small part of the people with normal hearing are able to percieve the absolute frequency of a sound. These people, who are said to have the „absolute pitch“, can tell what key has been hit on a piano without looking at it. The human ear and brain is much more sensitive to the relations between the frequencies of two or more sounds, the music intervals. The intervals carry emotional content that makes music an art. For instance, the major third sounds joyful and affirmative whereas the minor third sounds sad. The system of frequency relations between the sounds used in music production is called music temperament . 1 Music intervals and overtone series Perfect music intervals (that cannot be fully achieved practically, see below) are based on the overtone series studied before in this course. A typical music sound (except of a pure sinusiodal one) consists of a fundamental frequency f1 and its overtones: = = fn nf 1, n 3,2,1 ,..
    [Show full text]
  • Changd75304.Pdf
    Copyright by Chia-Lun Chang 2006 The Treatise Committee for Chia-Lun Chang Certifies that this is the approved version of the following treatise: FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION Committee: Elliott Antokoletz, Co-Supervisor Lita Guerra, Co-Supervisor Gregory Allen A. David Renner Rebecca A. Baltzer Reshma Babra Naidoo FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION by Chia-Lun Chang, B.A., M.M. Treatise Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Musical Arts The University of Texas at Austin December, 2006 Dedication To Mom and Dad Acknowledgements I wish to express my sincere gratitude to my academic supervisor, Professor Elliott Antokoletz, for his intelligence, unfailing energy and his inexhaustible patience. This project would not have been possible without his invaluable guidance and assistance. My deepest appreciation goes to my piano teacher, Professor Lita Guerra, whose unconditional support and encouragement gave me strength and faith to complete the treatise. Acknowledgment is gratefully made to the publisher for the use of the musical examples. Credit is given to Alexander Scriabin: Five Preludes, Op. 74 [public domain]. Piano score originally published by the Izdatel’stvo Muzyka [Music Publishing House], Moscow, 1967, reprinted 1973 by Dover Publications, Inc. Minneola, N.Y. v FIVE PRELUDES OPUS 74 BY ALEXANDER SCRIABIN: THE MYSTIC CHORD AS BASIS FOR NEW MEANS OF HARMONIC PROGRESSION Publication No._____________ Chia-Lun Chang, D.M.A.
    [Show full text]
  • Music Notation, but Not Action on a Keyboard, Influences
    No Effect of Action on the Tritone Paradox 315 MUSIC NOTATION , BUT NOT ACTION ON A KEYBOARD , INFLUENCES PIANISTS’ JUDGMENTS OF AMBIGUOUS MELODIES BRUNO H. REPP Hommel, Müsseler, Aschersleben, & Prinz, 2001; Proffitt, Haskins Laboratories 2006; Schütz-Bosbach & Prinz, 2007; Wilson & Knoblich, 2005). Almost all of these studies have been concerned ROBERT M. GOEHR K E with visual perception. However, Repp and Knoblich Yale University (2007, 2009) recently claimed to have found effects of action on auditory perception. PITCH INCREASES FROM LEFT TO RIGHT ON PIANO Their research was based on the fact that on a piano key- keyboards. When pianists press keys on a keyboard to board, the pitch of produced tones increases from left to hear two successive octave-ambiguous tones spanning a right. Pianists are continuously exposed to this relationship, tritone (half-octave interval), they tend to report hear- whereas other musicians and some nonmusicians merely ing the tritone go in the direction consistent with their know it but do not have sensorimotor experience with it. key presses (Repp & Knoblich, 2009). This finding has On each trial of their experiment, Repp and Knoblich been interpreted as an effect of action on perceptual (2009) showed participants a pair of two-digit numbers judgment. Using a modified design, the present study that corresponded to two keys on a labeled piano keyboard separated the effect of the action itself from that of the (a silent MIDI controller). The keys always spanned the visual stimuli that prompt the action. Twelve expert pia- musical interval of a tritone (half an octave), with the sec- nists reported their perception of octave-ambiguous ond key being either higher (i.e., to the right of) or lower three-note melodies ending with tritones in two condi- than (to the left of) the first key.
    [Show full text]