City of Virginia Beach

Total Page:16

File Type:pdf, Size:1020Kb

City of Virginia Beach City of Virginia Beach Indian River Road and Kempsville Road 1 Congested Locations from page 30 of the Hampton Roads Congggestion Management Process 2010 Up date 2 Congested Locations from Page 30 of the Hampton Roads Congggestion Management Process 2010 Update 3 CMP Congested Corridors from Page 53 of the Hampton Roads Congestion Management Process 2010 Update 3 4 Intersection Problems From 2006 to 2009 Virginia Beach Congested Intersections List: Ranked #1 in congestion 2009 Volume/Capacity Ratio: 1.86 5 6 7 Needed Capacity Excess Capacity -120% -70% -20% 80% 30% 1 7 Signalized Intersections:V/CRank 13 19 Indian River at Kempsville 25 Needed Capacity 31 37 43 49 Remaining CapacityofSignalized Intersections 55 61 67 73 79 85 91 97 =1 Volume /Capacity 103 109 115 121 127 133 139 145 151 157 163 169 175 Excess Capacity 181 187 193 199 205 Capacity 211 217 223 229 235 241 247 253 259 265 271 277 283 289 295 301 307 313 319 325 331 337 343 Traffic Volumes 36,252 29,884 79,427 6,964 69,905 11,790 64,288 55, 776 35,308 8 Existing PM Peak Hour Volumes F F = Level of Service 9 CtCost of TditilTraditional Improvemen t AlttiAlternatives SfSurface l anes 1 additional eastbound and westbound Indian River Road through lane 1 additional northbound and southbound Kempsville Road through lane Cost: ≈ $37 million 10 11 Kempsville Rd. Additional Surface Lanes Cost of Traditional Improvement Alternatives Grade separation Single Point Urban Interchange CtCost: ≈ $60.5 milli on 12 13 Kempsville Rd Grade Separation 12+ Non-Traditional At-Grade Intersections Object ive o f Arter ia ls (AASHTO): prov ide t he greatest surface-street mobility with limited or provisional access to adjacent land use At-Grade Minimal Bowtie pedestrian/bicycle Continuous Flow activity Continuous Green-T ½ - 1 mile signal Double Wide spacing Jughandle Wide right of way MdiMedian U-Turn Wide setbacks Multi-Lane Roundabout Paired Intersections More pedestrian/bicycle QdQuadran tRdt Roadway activ ity Superstreet Closer signal spacing Split Intersection Limited right of Throughabouts way Small setbacks 14 Initial Alternatives Evaluation RltiRelative ROW/ Ability to Business Impacts Handle Benefit/Cost Viable Alternative Traffic Ratio Alternative High Low Volumes Superstreet Median U‐Turn Quadrant Roadway Jughandle Displaced Left Turns Roundabout 15 Median U-Turn (MU) Indian River Road 16 Displaced Lefts (DL) Kempsville Road 17 MU/DL Concept 18 VISSIM Model Double Click Image to Play 19 Alternatives Evaluation Measures of Effectiveness Alternative Percent Volume Intersection Hourly Network Hourly Served at LOS “D” Exit Rate (vph) Exit Rate (vph) Existing 67% 5, 378 6, 616 Median U-turns on Indian River Road 69% 5,938 6,660 Displaced lefts on Kempsville Road 75% 5, 916 7, 224 Median U-turns on Indian River Road and Displaced Lefts on Kempsville Road 100% 7,936 9,014 (MU/DL) MOE’s developed in Synchro/Simtraffic 20 Cost Comparison of Improvement Alternatives Surface lanes 2 additional eastbound Indian River Road through lanes 1 additional northbound and southbound Kempsville Road through lane Cost: ≈ $37 million Grade separation Single Point Urban Interchange Cost: ≈ $60.5 million MU/DL Concept Cost: ≈ $10 milli on 21 Benefits of the MU/DL Concept Increased Capacity per lane than traditional designs Increased Safety du e to few er conflict points (≈50%) Decreased Cost from fewer lanes to build and maintain Decreased Emissions (≈25%-30%) Longer Service Life as a result of higher capacity per lane 22 Public Education and Acceptance 23 Displaced Left Turn Video 24 Fenton, Missouri Highway 30 at Summit Drive/Gravois Bluffs Blvd. Baton Rouge LA Airline Higgyhway 25 West Valley City, Utah Bangerter Highway at 3500 South. Shirley, New York Entrance to Dowing College 26 Next Steps City Engineer Brief Public Works Director Brief DCM Brief MLT Brief City T ransport ati on C ommitt ee VDOT Brief District City Council Brief – 6/08/10 and 6/15/10 FHWA Brief – 6/16/10 City Council Brief 7/6/10 TPO Brief 10/6/10 Public Information Meeting 27 Questions? Ranked #3 on CMP congested corridors list Most con gested in ter secti on in Vir gini a B each Volume/Capacity Ratio: 1.86 Approximately 100,000 vehicles pass through the intersection each day. $37 million to add surface lanes $$gp60.5 million for grade separation $10 million for (MU/DL) improvements Increase cappy()acity (100%) and Safety Decrease construction and R/W costs Reduce emissions (≈25%-30%) Provide longer service life 28.
Recommended publications
  • SIMULATION of DIFFERENT INTERSECTION DESIGN for IMPROVING TRAFFIC FLOW with FACTORS CONSIDERING LOCATION, POPULATION and DRIVER EXPECTANCY Sourabh Kumar Singh Dr
    Science, Technology and Development ISSN : 0950-0707 SIMULATION OF DIFFERENT INTERSECTION DESIGN FOR IMPROVING TRAFFIC FLOW WITH FACTORS CONSIDERING LOCATION, POPULATION AND DRIVER EXPECTANCY Sourabh Kumar Singh Dr. Anil kunte Associate Professor, Research Scholar, Associate Professor, Department of Civil Department of Civil Department of Civil Engineering Engineering, Shri JJT Engineering, Shri JJT Noida International University University University Dr. Paritosh Srivastava Abstract: In today’s economic growth the vehicular traffic is increasing day by day, which leads to failure of intersections before their time period. To increase the efficiency of these failed intersections the engineers added lanes to the existing major and minor roads, but this method do not give results which it used to deliver in the past, hence other methods were adopted. So to increase the efficiency and fulfil the criteria for successful intersection ,to cape with it several intersection are designed which are unconventional in nature like jug handle, bow tie, continuous flow intersection and median u turn which are very effective in increasing green time on highway and minor roads. The software used in this study is Auto- cad for planning and drawing purpose which can be used in sim-traffic software which will be used for simulation purpose of the traffic flow on different designs of intersections. The factors which are considered in this study are -location of town centre, population of the zone and driver expectancy. The final conclusion of this study is that continuous flow intersection provides the best results when the traffic is increased. The construction cost is least in median u turn and giving maximum result than all other intersections.
    [Show full text]
  • Transportation Network Plan Middleton, WI
    Report Transportation Network Plan City of Middleton, WI December 2006 Report for City of Middleton, Wisconsin Transportation Network Plan Prepared by: Traffic Associates LLC and STRAND ASSOCIATES, INC.® 910 West Wingra Drive Madison, WI 53715 www.strand.com December 2006 Approved by Middleton City Council November 21, 2006 TABLE OF CONTENTS Page No. or Following SECTION 1–INTRODUCTION AND EXECUTIVE SUMMARY 1.01 Overview.................................................................................................... 1-1 1.02 Executive Summary................................................................................... 1-3 SECTION 2–EXISTING TRANSPORTATION SYSTEM 2.01 Existing Transportation System................................................................. 2-1 2.02 Traffic Data Collection................................................................................ 2-14 2.03 Existing Conditions Modeling..................................................................... 2-16 SECTION 3–FUTURE CONDITIONS 3.01 Future Traffic Forecasting.......................................................................... 3-1 3.02 Future Conditions Traffic Operations Modeling ......................................... 3-4 3.03 Prioritization of Future Motor Vehicle Needs ............................................. 3-6 SECTION 4–SOLUTION TYPES 4.01 Transportation Solutions............................................................................ 4-1 4.02 Traffic Management Perspective ..............................................................
    [Show full text]
  • Rural Expressway Intersection Synthesis of Practice and Crash Analysis
    RURAL EXPRESSWAY INTERSECTION SYNTHESIS OF PRACTICE AND CRASH ANALYSIS Sponsored by the Iowa Department of Transportation (CTRE Project 03-157) Final Report October 2004 Disclaimer Notice The opinions, fi ndings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation. The sponsor(s) assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specifi cation, or regulation. The sponsor(s) do not endorse products or manufacturers. About CTRE/ISU The mission of the Center for Transportation Research and Education (CTRE) at Iowa State Uni- versity is to develop and implement innovative methods, materials, and technologies for improv- ing transportation effi ciency, safety, and reliability while improving the learning environment of students, faculty, and staff in transportation-related fi elds. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CTRE Project 03-157 4. Title and Subtitle 5. Report Date Rural Expressway Intersection Synthesis of Practice and Crash Analysis October 2004 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. T. H. Maze, Neal R. Hawkins, and Garrett Burchett 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research and Education Iowa State University 11. Contract or Grant No. 2901 South Loop Drive, Suite 3100 Ames, IA 50010-8634 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Iowa Department of Transportation Final Report 800 Lincoln Way 14. Sponsoring Agency Code Ames, IA 50010 15.
    [Show full text]
  • Median U-Turn Intersections Cost
    System Modification Innovative Intersections MEDIAN U-TURN INTERSECTIONS COST TIME MODERATE STATE MINOR STREET MINOR STREET O REGI NAL IMPACT LOCAL RID OR OR MAJOR STREET MAJOR STREET C PT HO HURDES MAJOR STREET MOVEMENTS MINOR STREET MOVEMENTS CITSTATE RIHT-O-A PUIC ACCEPTANCE More Information: tti.tamu.edu/policy/how-to-fix-congestion SUCCESS STORIES Description How Will This Help? Plano, Texas. In 2011, the City Median U-turn intersections (also called • Costs less and is faster to of Plano installed the state’s only a thruturn or Michigan left) guide all traf- deploy than other innovative median U-turn intersection at fic, except left-turning vehicles, through intersection designs. Legacy Drive and Preston Road. the main intersection. Left-turning vehi- • Simplifies the traffic signal cles turn through U-turn openings in the The intersection timings for the intersection and dramatically improved median beyond the main intersection. whole corridor by eliminating the congestion by reducing Eliminating the left turn at the main need for a left-turn arrow. intersection wait intersection simplifies signal timings and times by 65%. provides more green time and less con- • Increases safety at the gestion to the major direction. intersection by eliminating traffic However, the design conflicts caused by left turns. was abandoned in 2014 Median U-turn intersections are similar due to a lack of public to superstreets but differ in that medi- Implementation Issues understanding and an U-turns allow minor street traffic to This intersection design can require acceptance. pass straight through the intersection. additional right-of-way to accommodate Superstreet intersections require all the U-turn turning radius in the median.
    [Show full text]
  • In Safe Hands How the Fia Is Enlisting Support for Road Safety at the Highest Levels
    INTERNATIONAL JOURNAL OF THE FIA: Q1 2016 ISSUE #14 HEAD FIRST RACING TO EXTREMES How racing driver head From icy wastes to baking protection could be deserts, AUTO examines how revolutionised thanks to motor sport conquers all pioneering FIA research P22 climates and conditions P54 THE HARD WAY WINNING WAYS Double FIA World Touring Car Formula One legend Sir Jackie champion José Maria Lopez on Stewart reveals his secrets for his long road to glory and the continued success on and off challenges ahead P36 the race track P66 P32 IN SAFE HANDS HOW THE FIA IS ENLISTING SUPPORT FOR ROAD SAFETY AT THE HIGHEST LEVELS ISSUE #14 THE FIA The Fédération Internationale ALLIED FOR SAFETY de l’Automobile is the governing body of world motor sport and the federation of the world’s One of the keys to bringing the fight leading motoring organisations. Founded in 1904, it brings for road safety to global attention is INTERNATIONAL together 236 national motoring JOURNAL OF THE FIA and sporting organisations from enlisting support at the highest levels. over 135 countries, representing Editorial Board: millions of motorists worldwide. In this regard, I recently had the opportunity In motor sport, it administers JEAN TODT, OLIVIER FISCH the rules and regulations for all to engage with some of the world’s most GERARD SAILLANT, international four-wheel sport, influential decision-makers, making them SAUL BILLINGSLEY including the FIA Formula One Editor-in-chief: LUCA COLAJANNI World Championship and FIA aware of the pressing need to tackle the World Rally Championship. Executive Editor: MARC CUTLER global road safety pandemic.
    [Show full text]
  • Interchange Modification Report
    INTERSTATE 75 AND STATE ROAD 884 (COLONIAL BOULEVARD) INTERCHANGE LEE COUNTY, FLORIDA INTERCHANGE MODIFICATION REPORT Prepared for: Florida Department of Transportation – District One February 2015 Interchange Modification Report Interstate 75 and State Road 884 (Colonial Boulevard), Lee County, Florida I, Akram M. Hussein, Florida P.E. Number 58069, have prepared or reviewed/supervised the traffic analysis contained in this study. The study has been prepared in accordance and following guidelines and methodologies consistent with FHWA, FDOT and Lee County policies and technical standards. Based on traffic count information, general data sources, and other pertinent information, I certify that this traffic analysis has been prepared using current and acceptable traffic engineering and transportation planning practices and procedures. ______________________________ Akram M. Hussein, P.E. #58069 ______________________________ Date TABLE OF CONTENTS Page SECTION 1 EXECUTIVE SUMMARY ......................................................................... 1-1 SECTION 2 PURPOSE AND NEED .............................................................................. 2-1 SECTION 3 METHODOLOGY ...................................................................................... 3-1 SECTION 4 EXISTING CONDITIONS ......................................................................... 4-1 4.1 DATA COLLECTION METHODOLOGY ........................................................................ 4-5 4.2 TRAFFIC FACTORS .........................................................................................................
    [Show full text]
  • SPOT Pre-6 Division 6
    SPOT Online Specific Improvement Local comments (from Design notes from Coordination SpotID Project Category ROUTE Cross Street To Street First MPO/RPO First Division TTS Notes Description provided by Requestor Analysis Team Recommendation Design Comments Response to Requestor Submitter Type SPOT online) calls with MPOs/RPOs/DOT US 74/76 BUS @ SR 1005 ‐ Construct a US 76 BUS, US 74 BUS, NC SR 1005 (Peacock 10 ‐ Improve Will analyze and report H184044 Cape Fear RPO Regional Impact Cape Fear RPO Division 6 ‐19000 roundabout on US 74/64 BUS/NC 130 As requested 1 Lane Roundabout 130 (Chadbourn Hwy) Rd) Intersection travel time savings (Chadbourn Hwy) at SR 1005 (Peacock Hwy). What is different this time? H170193 analyzed from 701 to Pireway. This request is from Pireway to 5th Street (NC 410). They also US 701 BYP ‐ Widen US 701 Bypass to a 4‐lane US 701 Superstreet for intersections of US requested H184206 that goes to Joe Brown Hwy. R‐5952 only for Directional Cross‐Over Superstreet at Pireway and 5th SR 1305 4 ‐ Upgrade Arterial superstreet from R‐5952 at SR 1503 (Complex Will analyze and report H184205 Cape Fear RPO Regional Impact US 701 BYP BUS/NC 410 Cape Fear RPO Division 6 68000 701 with 5th and Pireway (R‐5952 Complex and 701? Have model Have counts. Expand Complex St OD. with 1‐Lane Bulb Outs Street. Discuss further with (Complex St) to Superstreet St) to US 701 Business/NC 410 (E 5th St) in travel time savings (E 5th St) was just for 701 and Complex) Take H170193 model, extend model to include NC 410 Bus (5th Street).
    [Show full text]
  • Intersection and Interchange Geometrics PROJECT CASE STUDY
    Intersection and Interchange Geometrics PROJECT CASE STUDY For North Carolina, Implementation of Superstreets Means Travel Time Improvement, Reduction in Collisions, and Fewer Injuries and Fatalities Increasing traffic delays at intersections are a common problem faced by Departments of Transportation (DOTs) across the nation. North Carolina is making strides in tackling delays in suburban, high-volume arterial areas through the implementation of “superstreets,” also known as restricted crossing U-turns (RCUTs). These arterial surface roads can move high-traffic volumes with less delay by re-routing left-hand turns and crossing maneuvers coming from the side streets. Instead, at an RCUT, drivers make a right turn onto the major highway and then make a U-turn through a median. While this may seem time-consuming, studies show it can result in significant time savings. At signalized intersections, the overall time savings efficiencies are due to the ability of the major highway to have a greater percentage of green time to allow the heavy through volumes of traffic to proceed. At unsignalized intersections, traffic from the minor street may actually save time since drivers are not stuck waiting for the long traffic gaps needed to go across the bust thoroughfare or make the left-hand turn. North Carolina has deployed the superstreet concept at intersections across the state, including a corridor of signalized intersections along U.S. Route 17 near Wilmington. BENEFITS OF SUPERSTREETS Safety Travel Time Economic Development Fewer conflict
    [Show full text]
  • Alternative Intersections Comparative Analysis
    Alternative Intersections Comparative Analysis Morgan State University The Pennsylvania State University University of Maryland University of Virginia Virginia Polytechnic Institute & State University West Virginia University The Pennsylvania State University The Thomas D. Larson Pennsylvania Transportation Institute Transportation Research Building University Park, PA 16802-4710 Phone: 814-865-1891 Fax: 814-863-3707 www.mautc.psu.edu OPERATIONAL ANALYSIS OF ALTERNATIVE INTERSECTIONS By: John Sangster and Hesham Rakha Mid-Atlantic University Transportation Center Final Report Department of Civil and Environment Engineering Virginia Polytechnic Institute and State University July 23, 2015 1 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. VT-2012-03 4. Title and Subtitle 5. Report Date Operational Analysis of Alternative Intersections July 21, 2015 6. Performing Organization Code Virginia Tech 7. Author(s) 8. Performing Organization Report No. John Sangster and Hesham Rakha 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Virginia Tech Transportation Institute 3500 Transportation Research Plaza 11. Contract or Grant No. Blacksburg, VA 24061 DTRT12-G-UTC03 12. Sponsoring Agency Name and Address 13. Type of Report US Department of Transportation Final Report Research & Innovative Technology Admin UTC Program, RDT-30 14. Sponsoring Agency Code 1200 New Jersey Ave., SE Washington, DC 20590 15. Supplementary Notes 16. Abstract Alternative intersections and interchanges, such as the diverging diamond interchange (DDI), the restricted crossing u-turn (RCUT), and the displaced left-turn intersection (DLT), have the potential to both improve safety and reduce delay. However, partially due to lingering questions about analysis methods and service measures for these designs, their rate of implementation remains low.
    [Show full text]
  • Geometric Design Strategic Research TRANSPORTATION RESEARCH BOARD 2006 EXECUTIVE COMMITTEE OFFICERS
    TRANSPORTATION RESEARCH Number E-C110 January 2007 Geometric Design Strategic Research TRANSPORTATION RESEARCH BOARD 2006 EXECUTIVE COMMITTEE OFFICERS Chair: Michael D. Meyer, Professor, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta Vice Chair: Linda S. Watson, Executive Director, LYNX–Central Florida Regional Transportation Authority, Orlando Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board TRANSPORTATION RESEARCH BOARD 2006 TECHNICAL ACTIVITIES COUNCIL Chair: Neil J. Pedersen, State Highway Administrator, Maryland State Highway Administration, Baltimore Technical Activities Director: Mark R. Norman, Transportation Research Board Christopher P. L. Barkan, Associate Professor and Director, Railroad Engineering, University of Illinois at Urbana–Champaign, Rail Group Chair Shelly R. Brown, Principal, Shelly Brown Associates, Seattle, Washington, Legal Resources Group Chair Christina S. Casgar, Office of the Secretary of Transportation, Office of Intermodalism, Washington, D.C., Freight Systems Group Chair James M. Crites, Executive Vice President, Operations, Dallas–Fort Worth International Airport, Texas, Aviation Group Chair Arlene L. Dietz, C&A Dietz, LLC, Salem, Oregon, Marine Group Chair Robert C. Johns, Director, Center for Transportation Studies, University of Minnesota, Minneapolis, Policy and Organization Group Chair Patricia V. McLaughlin, Principal, Moore Iacofano Golstman, Inc., Pasadena, California, Public Transportation Group Chair Marcy S. Schwartz, Senior Vice President, CH2M HILL, Portland, Oregon, Planning and Environment Group Chair Leland D. Smithson, AASHTO SICOP Coordinator, Iowa Department of Transportation, Ames, Operations and Maintenance Group Chair L. David Suits, Executive Director, North American Geosynthetics Society, Albany, New York, Design and Construction Group Chair Barry M.
    [Show full text]
  • TAC 2003 Jughandle Final
    UNCONVENTIONAL ARTERIAL DESIGN Jughandle Intersection Concept for McKnight Boulevard in Calgary G. FurtadoA, G. TenchaA and, H. DevosB A McElhanney Consulting Services Ltd., Surrey, BC B McElhanney Consulting Services Ltd., Edmonton, AB ABSTRACT: A functional planning study was initiated along McKnight Boulevard by the City of Calgary in response to the growing traffic and peak hour congestion routinely experienced along the corridor. The objective of the study was to identify and define, the most suitable improvements for medium term (2015 horizon) and long-term (2038 horizon) traffic demands, while conforming to a large number of independent constraints. Numerous alternatives were identified, and in due course rejected, due to their inability to adequately address the project requirements or satisfactorily meet stakeholder needs. Ultimately, a conventional intersection design involving widening along the south side of the corridor and the jughandle intersection concept were short listed for further evaluation and comparison. These design alternatives were subjected to a relatively rigorous appraisal that included performance, signing, laning and signalization requirements, property impacts, access and transit requirements, safety considerations, human factors and environmental impacts to name a few. It was found that operationally, the jughandle intersection design has compelling application potential in high volume corridors where local access is required and full grade separation is impractical or too costly. However, the jughandle property acquisition requirements and resulting costs along highly urbanized corridors, combined with their limited implementation experience in North America, can preclude their use in less than optimum circumstances. 1. INTRODUCTION Arterial roadways are typically designed and built with the intention of providing superior traffic service over collector and local roads (1).
    [Show full text]
  • Intersections - Final Report
    Operational Applications of Signalized Offset T- Intersections - Final Report Institute for Transportation Research and Education (ITRE) North Carolina State University Christopher M. Cunningham, P.E., P.I. Shannon Warchol, P.E., Co-P.I. Juwoon Baek Guangchuan Yang, Ph.D. NCDOT Project 2019-31 July 2020 NCDOT 2019-31 Project Report This page is intentionally blank. II North Carolina Department of Transportation Research Project No. 2019-31 Operational Applications of Signalized Offset T-Intersections Christopher M. Cunningham Shannon E. Warchol Juwoon Baek Guangchuan Yang July 2020 NCDOT 2019-31 Project Report 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-31 4. Title and Subtitle 5. Report Date Operational Applications of Signalized Offset T-Intersections July 22, 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Chris Cunningham, MSCE, P.E., Shannon Warchol, MSCE, P.E., Juwoon Baek, Guangchuan Yang, Ph.D. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Institute for Transportation Research and Education North Carolina State University 11. Contract or Grant No. Centennial Campus Box 8601 Raleigh, NC 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered North Carolina Department of Transportation Final Report Research and Analysis Group August 2017 – July 2020 104 Fayetteville Street Raleigh, North Carolina 27601 14. Sponsoring Agency Code 2019-31 Supplementary Notes: 16. Abstract NCDOT maintains a significant number of T intersections with developable land occupying the vacant fourth leg. When a need for a fourth leg is established, NCDOT must determine the optimal location of the leg.
    [Show full text]