News from the CE Joint Industry Project

Total Page:16

File Type:pdf, Size:1020Kb

News from the CE Joint Industry Project ENERGY News from the ♠CE Joint Industry Project Alleviating Cyclone and Earthquake Challenges for Wind Farms Global Offshore Wind Summit Taiwan Marcus Klose 14 October 2020 1 DNV GL © 14 October 2020 SAFER, SMARTER, GREENER Outline 01 Introduction 02 Background / Motivation 03 The JIP concept 04 Project status 05 Summary / Outlook 2 DNV GL © 14 October 2020 Challenge: Agree on industry approach how wind turbine structures should be designed for Cyclones and Earthquakes 3 DNV GL © 14 October 2020 How it started… 4 DNV GL © 14 October 2020 Challenges of the customer / pains 5 DNV GL © 14 October 2020 How Might We deal with tropical cyclone 6 DNV GL © 14 October 2020 How Might We deal with seismic impact 7 DNV GL © 14 October 2020 Backgrounds and pains – design of offshore wind turbines in new markets Earthquakes . Uncertainty in design conditions: geotechnical conditions, combination of wind and earthquake loads. Inconsistency in approaches used to design for earthquakes. International / local codes & standards not sufficiently detailed / harmonized Cyclones . Uncertainty in extreme wind speed. Uncertainty in transferring local building code requirements to large offshore turbines . Detailed modelling is expensive and uncertain. Lack of measurements available for calibration/verification of detailed models. Statistical treatment is difficult. 8 DNV GL © 14 October 2020 Why a JIP? Designers Developers and Authorities Certification bodies Manufacturers owners Minimize cost, warranty and liability risk Optimize for seismic and typhoon conditions at an early stage Balance between safety and cost Understand safety level and the risk associated 9 DNV GL © 14 October 2020 JIP hypothesis – what we understood . Timeline is important . Both seismic and typhoon challenges are equally important, but stakeholders may have a focus on only one of them . Many projects/stakeholders in new markets suffer from similar issues . Common interest to achieve a joint solution in order to obtain clarity and acceptance . No need for new or additional research, but for consensus on how to use existing knowledge. Strong focus on Taiwan, US and Japan . Important to involve local specialists 10 DNV GL © 14 October 2020 Partners and consultants 11 DNV GL © 14 October 2020 Work packages for cyclone workstream (overview) . Task C1 Critical review of available cyclone measurements ( JMA, …) and state-of-the-art modelling (analytical models, hybrid models, WRF, …) . Task C2 Selection of a few well documented cyclones / locations and models to be studied, covering sites with no/weak land interaction as well as sites with strong land interaction . Task C3 Benchmarking of selected models based on measurements (work-in-kind contributions possible and desired). Task C4 Quantification of strength, weakness and limitation of today’s cyclone models. Task C5 Endorsement of engineering models (different models for sites with and without land interaction) and if possible – design wind speed maps – guidance on velocity profiles, turbulence levels etc. 12 DNV GL © 14 October 2020 Ongoing studies Typhoon measurements from Taiwan and Japan, comparison with predictions Typhoon Megi, September 2016 Typhoon Dujuan, September 2015 Typhoon Hagibis, October 2019 Max. windspeed (1min) 130 mph Max. windspeed (1min) 150 mph Max. windspeed (1min) 160 mph Source: https://en.wikipedia.org/wiki/Typhoon_Hagibis https://en.wikipedia.org/wiki/Typhoon_Megi_(2016) https://en.wikipedia.org/wiki/Typhoon_Dujuan_(2015) 13 DNV GL © 14 October 2020 Work packages for seismic workstream (overview) . WP E1: Summary of existing standards and methods (ISO, IEC, local codes, response spectrum, time domain) . WP E2: Geotechnical challenges – damping and liquefaction . WP E3: Benchmarking of different approaches (time vs frequency domain, integrated vs submodel approach) for different turbine and foundation types . WP E4: Calibration and validation, defining limitations of simplified methods . WP E5: Development of process description including interface definition, required input, … 14 DNV GL © 14 October 2020 Proposal for updated planning - E3 case studies Starting point: 15 DNV GL © 14 October 2020 Update on time schedule 2019 2020 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov WP C-1 WP C-2 WP C-3 WP C-4 WP C-5 WP E-1 WP E-2 WP E-3 WP E-4 WP E-5 13/14th May Workshop Midterm Workshop Hamburg Hamburg Sept.23rd/24th Workshop Projectt Closing Workshop (Online) (Online) Workshop Closing Projectt 16 DNV GL © 14 October 2020 Summary and outlook . The ACE Joint Industry Project is an initiative organized by DNV GL with support from >20 major wind industry stakeholders. Main task: Agree on industry approach on how wind turbine structures should be designed for cyclone and earthquake impact . The project kicked-off end of 2019 and is expected to be finalized by end of 2020. The project results are confidential and jointly owned by the project partners. DNV GL’s Recommended Practices based on the JIP results to be available in 2021. – Provide guidance for transfer of the results to local standards and benefit for current and future projects. 17 DNV GL © 14 October 2020 Thank you for your attention Marcus Klose [email protected] +49 40 36149 7143 www.dnvgl.com The trademarks DNV GL®, DNV®, the Horizon Graphic and Det Norske Veritas® SAFER, SMARTER, GREENER are the properties of companies in the Det Norske Veritas group. All rights reserved. 18 DNV GL © 14 October 2020.
Recommended publications
  • The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010)
    atmosphere Article The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010) Xingliang Guo ID and Wei Zhong * Institute of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China; [email protected] * Correspondence: [email protected] Received: 3 October 2017; Accepted: 7 December 2017; Published: 20 December 2017 Abstract: Sensitivity tests based on a spectral nudging (SN) technique are conducted to analyze the effect of large-scale environmental factors on the movement of typhoon Megi (2010). The error of simulated typhoon track is effectively reduced using SN and the impact of dynamical factors is more significant than that of thermal factors. During the initial integration and deflection period of Megi (2010), the local steering flow of the whole and lower troposphere is corrected by a direct large-scale wind adjustment, which improves track simulation. However, environmental field nudging may weaken the impacts of terrain and typhoon system development in the landfall period, resulting in large simulated track errors. Comparison of the steering flow and inner structure of the typhoon reveals that the large-scale circulation influences the speed and direction of typhoon motion by: (1) adjusting the local steering flow and (2) modifying the environmental vertical wind shear to change the location and symmetry of the inner severe convection. Keywords: spectral nudging; typhoon track; environmental factors 1. Introduction Although the forecasting accuracy of typhoon tracks has been effectively improved in recent years through observations, numerical simulations, data assimilation and studies of the physical mechanisms affecting typhoon movement [1], the accurate prediction of abnormal typhoon tracks, including their continuous changes and abrupt deflection, is still not possible [2].
    [Show full text]
  • Layoutvorgaben Für Die Erstellung Der Beiträge
    Analysis of the Influence of Joint Operation of Shihmen and Feitsui Reservoirs on Downstream Flood Peaks for Flood Control Chung-Min Tseng, Ming-Chang Shieh, Chao-Pin Yeh, Jun-Pin Chow, Wen Sen Lee Abstract The Tamsui River Basin covers the Greater Taipei Metropolitan Area, which is the most important economic center in Taiwan. Shihmen Reservoir and Feitsui Reservoir are located in the upper reaches of Tamsui River, play an important role for regulate the water use and flood control in the basin. During flood events, release of floodwaters from Shihmen and Feitsui reservoirs is necessary due to excessive inflows. Since Tamsui River is a tidal river, downstream tide changes need to be considered to avoid disastrous water levels caused by released discharges and simultaneous tidal water flows into the estuary. The joint operation of the two reservoirs has an absolute impact on the safety of the river downstream. In this study, we took real typhoon events as examples, based on actual rainfalls, reservoir release and tidal changes, used a 1-D numerical river flow model to simulate the unsteady river dynamics of Tamsui River. The goal was to understand the interaction between the two reservoirs’ joint operation and the tide. The impact on water levels and flows in Tamsui River is used do draw conclusions for future flood control operations. Keywords: Joint operation for flood control, tidal river, disastrous water levels, numerical river model 1 General Introduction 1.1 Basin Overview The Tamsui River Basin is located in the northern part of Taiwan, has a length of about 159 kilometers and a drainage area of about 2,726 square kilometers.
    [Show full text]
  • Comparison of Typhoon Locations Over Ocean Surface Observed by Various Satellite Sensors
    Remote Sens. 2013, 5, 3172-3189; doi:10.3390/rs5073172 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Comparison of Typhoon Locations over Ocean Surface Observed by Various Satellite Sensors Yufang Pan 1, Antony K. Liu 1,2, Shuangyan He 2,*, Jingsong Yang 1,2 and Ming-Xia He 3 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China; E-Mails: [email protected] (Y.P.); [email protected] (J.Y.) 2 Ocean College, Zhejiang University, Hangzhou 310058, China; E-Mail: [email protected] 3 Ocean Remote Sensing Institute, Ocean University of China, Qingdao 266003, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-571-8820-8890; Fax: +86-571-8820-8891. Received: 5 May 2013; in revised form: 13 June 2013 / Accepted: 13 June 2013 / Published: 28 June 2013 Abstract: In this study, typhoon eyes have been delineated using wavelet analysis from the synthetic aperture radar (SAR) images of ocean surface roughness and from the warm area at the cloud top in the infrared (IR) images, respectively. Envisat SAR imagery, and multi-functional transport satellite (MTSAT) and Feng Yun (FY)-2 Chinese meteorological satellite IR imagery were used to examine the typhoons in the western North Pacific from 2005 to 2011. Three cases of various typhoons in different years, locations, and conditions have been used to compare the typhoon eyes derived from SAR (on the ocean surface) with IR (at the cloud-top level) images.
    [Show full text]
  • Drop Size Distribution Characteristics of Seven Typhoons in China
    Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Drop Size Distribution Characteristics of Seven 10.1029/2017JD027950 Typhoons in China Key Points: Long Wen1,2,3 , Kun Zhao1,2 , Gang Chen1,2, Mingjun Wang1,2 , Bowen Zhou1,2 , • Raindrops of typhoons in continental 1,2 4 5 6 China are smaller and more spherical Hao Huang , Dongming Hu , Wen-Chau Lee , and Hanfeng Hu with higher concentration than that of 1 the Pacific and Atlantic Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Science, Nanjing University, Nanjing, 2 • More accurate precipitation China, State Key Laboratory of Severe Weather and Joint Center for Atmospheric Radar Research, CMA/NJU, Beijing, China, estimation, raindrop size distribution, 3Xichang Satellite Launch Center, Xichang, China, 4Guangzhou Central Meteorological Observatory, Guangzhou, China, and polarimetric radar parameters are 5Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, 6Key Laboratory for obtained for typhoon rainfall • Warm rain processes dominate the Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and formation and evolution of typhoon Technology, Nanjing, China rainfall in continental China Abstract This study is the first attempt to investigate the characteristics of the drop size distribution (DSD) and drop shape relation (DSR) of seven typhoons after making landfall in China. Four typhoons were sampled Correspondence to: K. Zhao, by a C-band polarimetric radar (CPOL) and a two-dimensional video disdrometer (2DVD) in Jiangsu Province [email protected] (East China) while three typhoons were sampled by two 2DVDs in Guangdong Province (south China). Although the DSD and DSR are different in individual typhoons, the computed DSD parameters in these two μ Λ Citation: groups of typhoons possess similar characteristics.
    [Show full text]
  • Member Report (2016)
    MEMBER REPORT (2016) ESCAP/WMO Typhoon Committee 11th Integrated Workshop China MERANTI (1614) October 24-28, 2016 Cebu, Philippines Contents I. Review of Tropical Cyclones Which Have Affected/Impacted Members since the Previous Session 1.1 Meteorological and hydrological assessment ....................................................................................... 1 1.2 Socio-economic assessment ................................................................................................................ 13 1.3 Regional cooperation assessment ....................................................................................................... 15 II. SUMMARY OF KEY RESULT AREAS Typhoon forecast, prediction and research 2.1 Typhoon forecasting technique .......................................................................................................... 20 2.2 Typhoon numerical modeling and data assimilation .......................................................................... 21 2.3 Typhoon research ................................................................................................................................ 23 2.4 Journal of tropical cyclone research and review ................................................................................. 25 Typhoon observation, satellite application and data broadcasting 2.5 Ocean observing system and observation experiments ..................................................................... 26 2.6 GF-4 satellite applied in typhoon monitoring ....................................................................................
    [Show full text]
  • A Simulation Study on the Rapid Intensification of Typhoon Megi (2010) in Vertical Wind Shear
    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 17: 630–638 (2016) Published online 11 November 2016 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asl.713 A simulation study on the rapid intensification of Typhoon Megi (2010) in vertical wind shear , , Mengxia Li,1 Fan Ping,1 2 * Jun Chen1 and Liren Xu3 1School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, China 2Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Beijing Institute of Applied Meteorology, Beijing, China *Correspondence to: Abstract F. Ping, School of Geography and The improved Weather Research and Forecasting model was used to simulate Typhoon Megi, Remote Sensing, Nanjing University of Information Science which experienced rapid intensification (RI) and gradual intensification processes. The model and Technology, No. 219, Ningliu reproduced the typhoon track and intensity in accordance with the best-track observations. Rd, Pukou District, Nanjing Our study has shown that in small or moderate shear environments, the great latent heat 210044, China. released in the upper troposphere through the enhancement of convective bursts, which E-mail: [email protected] enhanced the upper-level warm core and caused the intensification of typhoon. During the onset of RI, strong convective cells were found gathering in downshear eyewall quadrant or the left side of shear. They also indicated an asymmetric structure in the eyewall. As Megi intensified rapidly, the strong convective activity occurred both in upshear and downshear Received: 12 June 2016 quadrants, then the symmetrical structures developed well. Revised: 3 October 2016 Accepted: 5 October 2016 Keywords: rapid intensification; typhoon; vertical wind shear; convective burst 1.
    [Show full text]
  • Real-Time Rainfall Forecasts Based on Radar Reflectivity During
    sensors Article Real-Time Rainfall Forecasts Based on Radar Reflectivity during Typhoons: Case Study in Southeastern Taiwan Chih-Chiang Wei * and Chen-Chia Hsu Department of Marine Environmental Informatics & Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] * Correspondence: [email protected] Abstract: This study developed a real-time rainfall forecasting system that can predict rainfall in a particular area a few hours before a typhoon’s arrival. The reflectivity of nine elevation angles obtained from the volume coverage pattern 21 Doppler radar scanning strategy and ground-weather data of a specific area were used for accurate rainfall prediction. During rainfall prediction and analysis, rainfall retrievals were first performed to select the optimal radar scanning elevation angle for rainfall prediction at the current time. Subsequently, forecasting models were established using a single reflectivity and all elevation angles (10 prediction submodels in total) to jointly predict real-time rainfall and determine the optimal predicted values. This study was conducted in southeastern Taiwan and included three onshore weather stations (Chenggong, Taitung, and Dawu) and one offshore weather station (Lanyu). Radar reflectivities were collected from Hualien weather surveillance radar. The data for a total of 14 typhoons that affected the study area in 2008–2017 were collected. The gated recurrent unit (GRU) neural network was used to establish the forecasting model, and extreme gradient boosting and multiple linear regression were used as the benchmarks. Typhoons Nepartak, Meranti, and Megi were selected for simulation. The results revealed that the Citation: Wei, C.-C.; Hsu, C.-C.
    [Show full text]
  • The Tropics—H
    4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. b. ENSO and the Tropical Pacific—G. Bell, M. L’Heureux, a. Overview—H. J. Diamond and C. J. Schreck and M. S. Halpert In 2016 the Tropics were dominated by a transition The El Niño–Southern Oscillation (ENSO) is a from El Niño to La Niña. The year started with an on- coupled ocean–atmosphere climate phenomenon going El Niño that proved to be one of the strongest in over the tropical Pacific Ocean, with opposing phases the 1950–2016 record. After its peak in late 2015/early called El Niño and La Niña. For historical purposes, 2016, this El Niño weakened until it was officially NOAA’s Climate Prediction Center (CPC) classifies declared to have ended in May. El Niño–Southern and assesses the strength and duration of El Niño and Oscillation conditions were briefly neutral during the La Niña using the Oceanic Niño index (ONI; shown transition period before a weak La Niña developed for 2015 and 2016 in Fig. 4.1). The ONI is the 3-month in October. A negative Indian Ocean dipole is com- average of sea surface temperature (SST) anomalies monly associated with the transition from El Niño in the Niño-3.4 region (5°N–5°S, 170°–120°W; black to La Niña, and 2016 was one of the most strongly box in Fig. 4.3e) calculated as the departure from the negative on record. The transition was also reflected 1981–2010 base period. El Niño is classified when in the dichotomy of precipitation patterns between the ONI is at or warmer than 0.5°C for at least five the first and second halves of the year.
    [Show full text]
  • Reviews and Reflections on 2016 Typhoon Season in Chinese Taipei
    ___________________________________________________________________________ 2017/SOM1/EPWG/030 Agenda Item: 10.2 Reviews and Reflections on 2016 Typhoon Season in Chinese Taipei Purpose: Information Submitted by: Chinese Taipei 11th Emergency Preparedness Working Group Meeting Nha Trang, Viet Nam 18-19 February 2017 2017/2/27 Reviews and Reflections on 2016 Typhoon Season in Chinese Taipei 11th APEC Emergency Preparedness Working Group Meeting 2017/02/18 2016 typhoon season of the west Pacific region • The first typhoon of 2016, Nepartak, formed in July – a late-first one compared with historical records – but reached Category 5, equivalent to a super typhoon • Wind damages to lifeline systems are major impacts – power, telecommunications and transportation systems • Typhoon Meranti and Typhoon Megi – million-household blackouts – Typhoon Megi caused up to 3.22 million households at blackout for days. 1 2017/2/27 Wind impacts to agriculture and power grid in recent year 3 of top 4 agricultural losses in last 4 years happened this year, over USD$ 209.7 million, in 2016 Number of blackouts by Megi is the second highest in decades Agricultural loss (unit: million USD) Blackouts (unit: million households) 4.49 105 3.95 68.8 35.9 1.10 2016 2016 2016 Super Typhoon Nepartak, the first typhoon in 2016 Warning time 72 hrs, direct impact time 9 hrs 0708/0550L Made a landfall 0709/1430L Dismissed all 0706/1430L warnings Issued sea warning 0708/1430L Left Chinese Taipei 0706/2030L Source: NASA issued land warning 9hr 72hr Vmax >= 51.0 m/s (Severe) Source: CWB Vmax 32.7~50.9 m/s (Moderate) Vmax 17.2~32.6 m/s (Mild) 2 2017/2/27 Information-based operations according to positions of typhoon – four operation stages Activation: 4 3 2 1 After CWB issues a sea warning for Quick the typhoon, Emergency Operation Emergency Pre-disaster Activation Recovery Response Preparedness Center starts operation.
    [Show full text]
  • DBCP TD No. 49
    Intergovernmental Oceanographic World Commission of UNESCO Meteorological Organization DATA BUOY COOPERATION PANEL PROCEEDINGS OF THE SECOND CAPACITY BUILDING WORKSHOP OF THE DBCP FOR THE NORTH PACIFIC OCEAN AND ITS MARGINAL SEAS (NPOMS-2), HANGZHOU, CHINA, 22-24 OCTOBER 2013 Application of Regional Ocean Observations for Increasing Society’s Understanding and Forecasting of Typhoons DBCP Technical Document No. 49 – 2014 – (Group photo) Intergovernmental Oceanographic World Commission of UNESCO Meteorological Organization DATA BUOY COOPERATION PANEL PROCEEDINGS OF THE SECOND CAPACITY BUILDING WORKSHOP OF THE DBCP FOR THE NORTH PACIFIC OCEAN AND ITS MARGINAL SEAS (NPOMS-2), HANGZHOU, CHINA, 22-24 OCTOBER 2013 Application of Regional Ocean Observations for Increasing Society’s Understanding and Forecasting of Typhoons Venue: LiuYing Hotel Hosted by China’s Key Lab of Satellite Ocean Environment Dynamics (SOED) Second Institute of Oceanography (SIO) State Oceanic Administration (SOA) Editor: Sidney Thurston, Ph.D. DBCP Task Team for Capacity Building DBCP Technical Document No. 49 2014 [page left intentionally blank] DBCP Technical Document No. 49 CONTENTS Workshop report ...........................................................................................................9 Annex 1 Workshop Agenda..............................................................................33 Annex 2 List of participants ..............................................................................36 Annex 3 Organizing committee ........................................................................39
    [Show full text]
  • Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall
    Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall Kevin Cheung1, Zifeng Yu2, Russell L. Elsberry3, Michael Bell4, Haiyan Jiang5, Tsz Cheung Lee6, Kuo-Chen Lu7, Yoshinori Oikawa8, Liangbo Qi9, Robert F. Rogers10, Kazuhisa Tsuboki11 1Macquarie University, Australia 2Shanghai Typhoon Institute, China 3University of Colorado-Colorado Springs, USA 4Colorado State University, USA 5Florida International University, USA 6Hong Kong Observatory, Hong Kong 7Pacific Science Association 8RSMC Tokyo/Japan Meteorological Agency, Japan 9Shanghai Meteorological Service, China 10NOAA/AOML/Hurricane Research Division, USA 11Nagoya University, Japan February 2018 Tropical Cyclone Research and Review Special Issue Corresponding Author: Kevin Cheung, Department of Environmental Sciences Macquarie University, North Ryde, NSW 2109, Australia Email: [email protected] Abstract In preparation for the Fourth International Workshop on Tropical Cyclone Landfall Processes (IWTCLP-IV), a summary of recent research studies and the forecasting challenges of tropical cyclone (TC) rainfall has been prepared. The extreme rainfall accumulations in Hurricane Harvey (2017) near Houston, Texas and Typhoon Damrey (2017) in southern Vietnam are examples of the TC rainfall forecasting challenges. Some progress is being made in understanding the internal rainfall dynamics via case studies. Environmental effects such as vertical wind shear and terrain-induced rainfall have been studied, as well as the rainfall relationships with TC intensity and structure. Numerical model predictions of TC-related rainfall have been improved via data assimilation, microphysics representation, improved resolution, and ensemble quantitative precipitation forecast techniques. Some attempts have been made to improve the verification techniques as well. A basic forecast challenge for TC-related rainfall is monitoring the existing rainfall distribution via satellite or coastal radars, or from over- land rain gauges.
    [Show full text]
  • A Report on All Cyclones That Formed in 2016, with Detailed Season Statistics and Records That Were Achieved Worldwide This Year
    A report on all cyclones that formed in 2016, with detailed season statistics and records that were achieved worldwide this year. Compiled by Nathan Foy at Force Thirteen, December 2016, January 2017 Direct contact: [email protected] See last page of document for more contact details Cover photo: International Space Station photo of Super Typhoon Nepartak on July 7, 2016 Below: Himawari-8 visible image of Super Typhoon Haima on October 18, 2016 Contents 1. Background 3 2. The 2016 Datasheet 4 2.1 Peak Intensities 4 2.2 Amount of Landfalls and Nations Affected 7 2.3 Fatalities, Injuries, and Missing persons 10 2.4 Monetary damages 12 2.5 Buildings damaged and destroyed 13 2.6 Evacuees 15 2.7 Timeline 16 3. Notable Storms of 2016 22 3.1 Hurricane Alex 23 3.2 Cyclone Winston 24 3.3 Cyclone Fantala 25 3.4 June system in the Gulf of Mexico (“Colin”) 26 3.5 Super Typhoon Nepartak 27 3.6 Super Typhoon Meranti 28 3.7 Subtropical Storm in the Bay of Biscay 29 3.8 Hurricane Karl 30 3.9 Hurricane Matthew 31 3.10 Tropical Storm Tina 33 3.11 Hurricane Otto 34 4. 2016 Storm Records 35 4.1 Intensity and Longevity 36 4.2 Activity Records 39 4.3 Landfall Records 41 4.4 Eye and Size Records 42 4.5 Intensification Rate 43 4.6 Damages 44 5. Force Thirteen during 2016 45 5.1 Forecasting critique and storm coverage 46 5.2 Viewing statistics 47 6. Long Term Trends 48 7.
    [Show full text]