The Vegetation of Antarctica Through Geological Time David J

Total Page:16

File Type:pdf, Size:1020Kb

The Vegetation of Antarctica Through Geological Time David J Cambridge University Press 978-0-521-85598-3 - The Vegetation of Antarctica through Geological Time David J. Cantrill and Imogen Poole Index More information Index Entries in bold refer to figures in the book. Ablation Point Formation, 169, 177 Amaranthaceae, 318, 417 Acantilados Allomember, 357, 358, 362 Amaryllidaceae, 353 Acantilados Allomember Flora, 329, 358, 359 Amblystegiaceae, 421, 422, 423 Acinosporites, 43, 44 Amery Group, 81, 108, 120, 121, 142 horlickensis, 43 Amery Ice Shelf, 415 Ackama, 265 Amundsen Province, 15, 16 Acmopyle, 338, 346 Anacardiaceae, 318, 327, 333, 340, 345, 417 Aculea, 200, 219, 227, 228 Anacolosa, 317, 318 bifida, 200 Anapiculatisporites cf. eifeliensis, 43 Adelaide Island, 320 Anatolia, 106 Adiantaceae, 278, 340, 459 Anchorage Formation, 177, 215 Admiralen Peak, 321, 343 Anchorage Formation Flora 177 Admiralen Peak Flora, 343, 458 Ancyrospora, 41 Admiralty Bay, 261, 277, 280, 281, 321, 333, 432 Anderson Formation, 169, 174 Aextoxicaceae, 323 Anderson Formation Flora 174 Aextoxicon punctatum, 323 Anfiteatro de Ticó Formation, 207 Afropollis, 199 Angaran Flora, 112 Agathis, 229, 416 Angaran Province, 65 Agathoxylon, 215 Annonaceae, 273 Agavaceae, 353, 417 Annularia, 77 Aghulas Current, 29 Antarctic Circumpolar Current, 2, 11, 17, 312, 390, Aglaophyton, 44 391, 393, 394, 395, 396, 397, 398 Akania, 317 Antarctic Convergence, 2 Akaniaceae, 317 Antarctic Ice Sheet, 396–399, 400, 402, 408, 409, 436 Alamatus, 206, 228 Antarctic Peninsula, 2, 3, 4, 5, 7, 8, 10, 12, 15, 16, 68, Alexander I, Tsar, 2 163, 164, 171, 174–179, 195, 198–200, 202, Alexander Island, 2, 8, 16, 171, 175, 197, 207, 210, 207–211, 213–221, 232, 251, 253, 257, 258, 262, 214, 215, 220, 221–232, 223, 224, 262, 279, 320 264, 268, 272, 273, 275–277, 281, 282, 285, 286, Fore Arc Basin, 215 287, 317, 319, 320–323, 327, 333, 347, 348, 352, Alexander Island Flora, 222 353, 355, 361, 364, 365, 366, 391, 398, 400, Alfies Elbow, 125 401–406, 409, 432, 433, 436, 438, 439, 458 Alienopteris, 219 Antarctic Peninsula block, 348 Alisporites, 124, 139, 144, 173 Antarctic Peninsula Ice Sheet, 404, 405, 432 Allan Hills, 3, 79, 90, 124, 125, 127, 128, 130, 136, Antarctic Peninsula Volcanic Arc, 178 138, 139, 140, 142, 171 Antarctic Peninsula Volcanic Group, 175 cf. Allocladus, 172 Antarctic Plate, 16, 323 Alsophila, 356 Antarctic Plateau, 406 Altar Mountain Sandstone, 40 Antarctic seaway, 392–394, 401 466 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85598-3 - The Vegetation of Antarctica through Geological Time David J. Cantrill and Imogen Poole Index More information Index 467 Antarcticoxylon. See Rhexoxylon Asteroxylon, 44 Antarcticycas, 126, 137, 138 Atherospermataceae, 281, 289, 332, 353, 355, 356 schopfi, 126, 137 atherospermataceous, 342 Antarctipteris sclericaulis, 125 Australoxylon, 79, 86, 89 Anthocerotales, 220 bainii, 79 Anuerospora, 43 mondii, 79, 86 Apiaceae, 347 Austrocedrus, 324, 346 Apiculatisporites, 41 Azolla, 354, 356 Aquifoliaceae, 275, 281, 289, 327, 359, 416, 417 Aztec Siltstone, 38, 40, 41, 42, 46 Araliaceae, 280, 318, 324, 327, 345 Araliaephyllum, 210, 223, 227 Baculatisporites, 86, 173 quiquelobatus, 223 Baiera, 129 Aratrisporites, 115 Bainmedart Coal Measures, 68, 77, 79, 81, 120, 133 Araucaria, 7, 204, 206, 218, 228, 229, 232, 260, 284, Bainmedart Coal Measures Flora 87 287, 289, 317, 324, 328, 331, 338, 341, 342, 343, Baltisphaeridium, 459 346, 347, 356, 359, 360, 361, 414–416, 433–435, bamboo, 318, 324 459 Banksieaephyllum, 316 antarctica, 359 Baqueró Formation, 201, 202, 222 araucana, 324, 359 ?Bartamiaceae, 424 imponens, 7 Barton Horst, 321, 327, 343 nathorstii, 342, 359 Barton Peninsula, 321, 327, 329, 331, 332, 343, 459 sect. Columbea, 359 Barton Peninsula Flora, 332, 333 sect. Eutacta, 343, 346 Beacon Heights Orthoquartzite, 38, 42, 45 Araucaría Region, 414, 415, 434, 435, 438 Beacon Heights Orthoquartzite Flora 41 Araucariaceae, 172, 173, 175, 176, 179, 198, 200, 211, Beacon Supergroup, 3, 171 213, 215, 222, 256, 258–260, 278, 284, 287, 316, Beardmore Fjord, 425, 427–429 317, 318, 324, 327, 345–347, 354, 355, 416–418, Beardmore Glacier, 3, 10, 13, 40, 125, 393, 425, 424, 458, 461 426–429 Araucariacites, 173, 177, 199 Beardmore Valley, 425 araucarian, 173, 198, 201, 206, 213, 216, 218, 220, 222, Beauprea, 318 228–232, 254, 255, 260, 265, 273, 284, 287, 322, Bellarinea, 279 332, 340, 351, 362 Bellingshausen Sea, 403 Araucariopitys, 229 Benguela Current, 29 Araucarioxylon, 7, 89, 460 Bennettitales, 130, 168, 174, 176, 178, 222 pseudoparenchymatosum, 7 bennettite, 161, 164, 172, 174, 177, 178, 179, 195, 200, Araucarites, 176 202–204, 206, 209, 211, 216, 218–220, 224, 227, Arberiella, 72, 79, 85, 87, 90 230, 232, 233, 258, 262, 266, 268, 272, 273, 287 inflectada, 79 Berberidaceae, 340 Archaeopteris, 41, 47, 57, 64 Betulaceae, 256, 280, 362 Archaeosigillaria caespitosa, 41, 45 Biretrisporites, 178 Archangelskya, 175, 176, 178 Bixaceae, 332, 333 furcata, 175, 176 Black Island, 409, 414, 415 Arctowski Cove Formation, 433, 435, 458 Black Prince Volcanics, 38, 44, 46 Ardley Island, 321, 343, 458 Black Prince Volcanics Flora 44 Ardley Island Flora 458 Blaszyk Moraine, 280 Arecaceae, 317, 319, 359, 416 Blechnaceae, 284, 325, 346, 356, 416 Areciflorae, 205 Blechnum, 345, 435 Ascarina, 256 Block Point, 280, 458 Ashicaulis, 125 Block Point Flora Flora 458 beardmorensis, 125 Bluff Cove Formation, 61 woolfei, 125 Bombacaceae, 276, 319 Aspleniaceae, 325, 346 Botany Bay Group, 169, 171, 175, 176 Asplenium, 356 Bouvet Island, 412 Asteraceae, 347, 361, 418, 424 Bowden Neve, 77 Asteridae, 280 Bowen Basin, 62, 118 Asteropollis, 204, 205 Bowers Terrane, 12, 13 Asterotheca crassa, 263, 269 Boy Point Formation, 437 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85598-3 - The Vegetation of Antarctica through Geological Time David J. Cantrill and Imogen Poole Index More information 468 Index Brachychiton, 345 Cape Wiman, 321, 348, 349 Brachyphyllum, 173–175, 177, 178, 206, 211, Cape Zumberge Formation, 169, 175, 178 227–229, 255, 258 Carapace Nunatak, 173 Brandy Bay, 261, 261 Carapace Sandstone Formation, 171, 173 Bransfield Strait, 16, 323 Carapace Sandstone Formation Flora 173 Bromeliaceae, 353 Cardozo Cove Flora, 458 Brown Hills Conglomerate, 38, 40 Caryophyllaceae, 416, 417, 419, 420, 422, 423, 430 Brown Peninsula, 409, 414 Cassia, 318, 345 Brown Ridge Conglomerate, 38, 39 Castle Crags Formation, 40 Bruce Bank, 346, 351 Casuarina, 365, 413, 417 Bruce Bank Flora 346, 347 Casuarinaceae, 256, 285, 287, 316–318, 347, 353, 354, Bruchiaceae, 424 355, 359, 414, 416–419 Bryales, 83 Cathaysian Flora, 112 bryophyte, 36, 133, 140, 142, 172, 173, 177, 200, 206, Celastraceae, 333 210, 211, 213, 219, 220, 232, 256, 258, 262, 273, Celmesia, 361 278, 318, 330, 346, 347, 351, 354, 355, 414, 419, Celtidaceae, 318 421, 423, 424, 459 Celtis, 318 Bubbia, 273 Central Atlantic Magmatic Province, 108, 165, 169 Buckeye Formation, 14, 61 Central Domain, 15, 16, 17 Buckeye Tillite, 61, 67, 68, 74 Central Domain Magmatic Arc, 16, 17 Buckeye Tillite Flora 68, 74 Cephalotaxaceae, 318 Buckley Formation, 14, 66, 67, 77, 79–81, 87, 121–132 Cerro Negro Formation, 214, 215, 217, 220, 221 Buckley Formation Flora 66, 80, 81, 87, 132 Cerro Negro Formation Flora 215–220 Bunbury Basalt, 164 Cheirolepidiaceae, 172–174, 176, 202, 211, 258, Buradia heterophylla, 78 287, 317 Byers Group, 177, 178, 213, 215 cheirolepidiacean conifer, 172, 173, 200–202, 207 Byers Peninsula, 10, 214, 215, 218, 220, 261 Chenopodiaceae, 417–419, 424, 430 Byers Peninsula Flora 10. See Cerro Negro Chester Cone Formation, 215 Formation Flora Chicxulub impact, 282 Byrd Glacier, 3, 39 Chloranthaceae, 210, 249, 250, 319, 335, 353 chloranthacean, 205, 207, 266 Cabochonicus sinuosus, 142 Chrysobalanaceae, 317 Caesalpiniaceae, 327, 345 Chusquea, 318, 324 Calamites, 64, 65 Cimmeria, 106, 107 Calamophyton, 44 Cinnamomoides, 265, 269 Calamospora, 75 Citadel Bastion Member, 221, 225, 228, 229 Caldcluvia paniculata, 323 Citadel Bastion Flora 229 Callialasporites turbatus, 173 Citadel Bastion Nunatak, 214, 221, 228 Callistophytales, 64 Citronella, 345 Callitrichaceae, 285, 416, 417 Cladophlebis, 125, 140, 171, 174–178, 227–229, 263 Callixylon, 64 antarctica, 140, 174, 175, 177 Camp Hill Formation, 169 denticulata, 140, 171 Campamento Allomember, 357, 359 galliantinensis, 174 Campamento Allomember Flora, 329, 359, 360, 361 oblonga, 171 Campanulaceae, 419, 422 cladoxylalean, 137 Cannanoropollis, 75 Cladoxylales, 44 Cantrill Nunataks, 171 Clarens Formation, 165 Cape Adare, 393, 410, 431 Classopollis, 172–174, 178, 199, 201, 202 Cape Evans, 8 Clathropteris, 172 Cape Frammes Beds, 169 Clavatipollenites, 204–207, 209, 210, 266, 289 Cape Lachman, 261 Cloudmaker Formation, 425 Cape Melville Formation, 432, 434, 437 club moss, 64, 318, 424. See lycophyte Cape Melville Formation Flora 437 Cnemidaria, 347 Cape Roberts, 412, 418 Coal Nunatak, 222, 228, 229 Cape Shirreff, 261, 267, 458 Coal Nunatak Flora 229. See Alexander Island Flora Cape Shirreff Flora 267, 458 Coal Nunatak Member, 222, 228, 229 Cape Vauréal Formation, 331, 333 Coalsack Bluff, 121 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85598-3 - The Vegetation of Antarctica through Geological Time David J. Cantrill and Imogen Poole Index More information Index 469 Coastal Range, 323 minor, 219 Coats Land, 14 cycad, 66, 137, 174, 176, 200, 202, 203, 206, 219, 279, Cochlospermaceae, 333 318, 330, 351, 414 cochlospermaceous,
Recommended publications
  • Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide.
    [Show full text]
  • Fossils and Plant Phylogeny1
    American Journal of Botany 91(10): 1683±1699. 2004. FOSSILS AND PLANT PHYLOGENY1 PETER R. CRANE,2,5 PATRICK HERENDEEN,3 AND ELSE MARIE FRIIS4 2Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; 3Department of Biological Sciences, The George Washington University, Washington DC 20052 USA; 4Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden Developing a detailed estimate of plant phylogeny is the key ®rst step toward a more sophisticated and particularized understanding of plant evolution. At many levels in the hierarchy of plant life, it will be impossible to develop an adequate understanding of plant phylogeny without taking into account the additional diversity provided by fossil plants. This is especially the case for relatively deep divergences among extant lineages that have a long evolutionary history and in which much of the relevant diversity has been lost by extinction. In such circumstances, attempts to integrate data and interpretations from extant and fossil plants stand the best chance of success. For this to be possible, what will be required is meticulous and thorough descriptions of fossil material, thoughtful and rigorous analysis of characters, and careful comparison of extant and fossil taxa, as a basis for determining their systematic relationships. Key words: angiosperms; fossils; paleobotany; phylogeny; spermatophytes; tracheophytes. Most biological processes, such as reproduction or growth distic context, neither fossils nor their stratigraphic position and development, can only be studied directly or manipulated have any special role in inferring phylogeny, and although experimentally using living organisms. Nevertheless, much of more complex models have been developed (see Fisher, 1994; what we have inferred about the large-scale processes of plant Huelsenbeck, 1994), these have not been widely adopted.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Palaeocene–Eocene Miospores from the Chicxulub Impact Crater, Mexico
    Palynology ISSN: 0191-6122 (Print) 1558-9188 (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & The Expedition 364 Science Party To cite this article: Vann Smith, Sophie Warny, David M. Jarzen, Thomas Demchuk, Vivi Vajda & The Expedition 364 Science Party (2019): Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen, Palynology, DOI: 10.1080/01916122.2019.1630860 To link to this article: https://doi.org/10.1080/01916122.2019.1630860 View supplementary material Published online: 22 Jul 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY https://doi.org/10.1080/01916122.2019.1630860 Palaeocene–Eocene miospores from the Chicxulub impact crater, Mexico. Part 1: spores and gymnosperm pollen Vann Smitha,b , Sophie Warnya,b, David M. Jarzenc, Thomas Demchuka, Vivi Vajdad and The Expedition 364 Science Party aDepartment of Geology and Geophysics, LSU, Baton Rouge, LA, USA; bMuseum of Natural Science, LSU, Baton Rouge, LA, USA; cCleveland Museum of Natural History, Cleveland, OH, USA; dSwedish Museum of Natural History, Stockholm, Sweden ABSTRACT KEYWORDS In the summer of 2016, the International Ocean Discovery Program (IODP) Expedition 364 cored Mexico; miospores; through the post-impact strata of the end-Cretaceous Chicxulub impact crater, Mexico. Core samples Palaeocene; Eocene; – were collected from the post-impact successions for terrestrial palynological analysis, yielding a rare Cretaceous Paleogene Danian to Ypresian high-resolution palynological assemblage.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • System Klasyfikacji Organizmów
    1 SYSTEM KLASYFIKACJI ORGANIZMÓW Nie ma dziś ogólnie przyjętego systemu klasyfikacji organizmów. Nie udaje się osiągnąć zgodności nie tylko w odniesieniu do zakresów i rang poszczególnych taksonów, ale nawet co do zasad metodologicznych, na których klasyfikacja powinna być oparta. Zespołowe dzieła przeglądowe z reguły prezentują odmienne i wzajemnie sprzeczne podejścia poszczególnych autorów, bez nadziei na consensus. Nie ma więc mowy o skompilowaniu jednolitego schematu klasyfikacji z literatury i system przedstawiony poniżej nie daje nadziei na zaakceptowanie przez kogokolwiek poza kompilatorem. Przygotowany został w oparciu o kilka zasad (skądinąd bardzo kontrowersyjnych): (1) Identyfikowanie ga- tunków i ich klasyfikowanie w jednostki rodzajowe, rodzinowe czy rzędy jest zadaniem specjalistów i bez szcze- gółowych samodzielnych studiów nie można kwestionować wyników takich badań. (2) Podział świata żywego na królestwa, typy, gromady i rzędy jest natomiast domeną ewolucjonistów i dydaktyków. Powody, które posłużyły do wydzielenia jednostek powinny być jasno przedstawialne i zrozumiałe również dla niespecjalistów, albowiem (3) podstawowym zadaniem systematyki jest ułatwianie laikom i początkującym badaczom poruszanie się w obezwładniającej złożoności świata żywego. Wątpliwe jednak, by wystarczyło to do stworzenia zadowalającej klasyfikacji. W takiej sytuacji można jedynie przypomnieć, że lepszy ułomny system, niż żaden. Królestwo PROKARYOTA Chatton, 1938 DNA wyłącznie w postaci kolistej (genoforów), transkrypcja nie rozdzielona przestrzennie od translacji – rybosomy w tym samym przedzia- le komórki, co DNA. Oddział CYANOPHYTA Smith, 1938 (Myxophyta Cohn, 1875, Cyanobacteria Stanier, 1973) Stosunkowo duże komórki, dwuwarstwowa błona (Gram-ujemne), wewnętrzna warstwa mureinowa. Klasa CYANOPHYCEAE Sachs, 1874 Rząd Stigonematales Geitler, 1925; zigen – dziś Chlorofil a na pojedynczych tylakoidach. Nitkowate, rozgałęziające się, cytoplazmatyczne połączenia mię- Rząd Chroococcales Wettstein, 1924; 2,1 Ga – dziś dzy komórkami, miewają heterocysty.
    [Show full text]
  • West Antarctica: Tectonics and Paleogeography
    Chapter 2 West Antarctica: Tectonics and Paleogeography The origin of West Antarctica (WANT) can be traced back to the Terra Australis orogenesis that began between 520 Ma and 510 Ma—shortly after the terminal suturing of Gondwana (Boger 2011). The onset of this event was responsible for the termination of passive margin sedimentation along much of the Pacific margin of Gondwana and marks the beginning of widespread and broadly coeval deforma- tion and arc-type plutonism. It also began a long-lived process of accretion that added much of the crust that defines eastern Australia, West Antarctica (domain 5 of Boger 2011, Fig. 2.1), and western South America (Cawood 2005, 2009). Post-Gondwana accretionary growth—the Terra Australis and Gondwanide Orogenies—The suturing of the West Gondwana and Australo–Antarctic plates along the Kuunga Orogen brought to an end the long-lived process of convergence between the pre-collision components of Gondwana. The result was a reconfigura- tion of the early to middle Cambrian plate system and the consequent transfer of ocean floor consumption from between the pre-Gondwana cratons to the outboard Pacific margin of newly formed Gondwana supercontinent (Cawood2005 ). This led to the establishment of the accretionary Terra Austrais Orogen (Cawood 2005), a general name given to the orogenic belt that stretched continuously from north- ern South America to northern Australia and which began in the early to middle Cambrian and lasted until the late Carboniferous. In Antarctica Terra Australis (Ross) orogenesis also deformed and variably metamorphosed the pre-Gondwana passive margin (Fig. 2.2). The Gondwana supercontinent underwent a sequential fragmentation over approximately 165 Ma.
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • Ellsworth Mountains Tween Depths of 54 and 85 Meters, Slightly Less Saline Conditions Are Indicated, with Freshwater Dilution of About 15 Percent
    only at depths of 249 to 279 and 339 to 350 meters. having a source to the east in McMurdo Sound. The occurrence of rare (Eocene) (?) Radiolaria in Preliminary results indicate fluctuations of mineral a sample at a depth of 198.42 meters can be inter- and rock components consistent with changes in preted only as due to reworking or contamination. provenance between a Taylor Valley source and a Holes 4 and 4A, Lake Vanda (micropaleontology). Ross Sea source. Microfabric analyses are being H. Y. Ling examined 13 samples at various depths made of the diamicton units to determine fabric from 70.25 meters to approximate core bottom. strength, the assumption being that basal tills The examination failed to show Radiolaria or sili- deposited by grounded ice are likely to display coil agellates. moderate to strong fabrics whereas glacial-marine Hole 8, New Harbor (micropaleontology). H. Y. Ling drift is not likely to have a fabric. Fabrics are examined 24 samples. Radiolaria were noted at a weak or absent in most diamicton units. But they depth of about 24 meters in unit 1 (medium to are well developed between about 114 and 123 coarse sand and gravel) and between 54 and 132 meters, suggesting grounded ice. Scanning electron meters in unit 2 (diamicton). The number of speci- microscope studies of surface textures and sand mens so far recovered is too low to permit posi- grains from the core are being used as a further tive age identification of the sediments. A few aid in distinguishing grains from glacial, nongla- Eocene and Miocene forms were observed, but are cial, and mixed environments.
    [Show full text]
  • Paleontological Discoveries in the Chorrillo Formation (Upper Campanian-Lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina
    Rev. Mus. Argentino Cienc. Nat., n.s. 21(2): 217-293, 2019 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina Fernando. E. NOVAS1,2, Federico. L. AGNOLIN1,2,3, Sebastián ROZADILLA1,2, Alexis M. ARANCIAGA-ROLANDO1,2, Federico BRISSON-EGLI1,2, Matias J. MOTTA1,2, Mauricio CERRONI1,2, Martín D. EZCURRA2,5, Agustín G. MARTINELLI2,5, Julia S. D´ANGELO1,2, Gerardo ALVAREZ-HERRERA1, Adriel R. GENTIL1,2, Sergio BOGAN3, Nicolás R. CHIMENTO1,2, Jordi A. GARCÍA-MARSÀ1,2, Gastón LO COCO1,2, Sergio E. MIQUEL2,4, Fátima F. BRITO4, Ezequiel I. VERA2,6, 7, Valeria S. PEREZ LOINAZE2,6 , Mariela S. FERNÁNDEZ8 & Leonardo SALGADO2,9 1 Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina - fernovas@yahoo. com.ar. 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 3 Fundación de Historia Natural “Felix de Azara”, Universidad Maimonides, Hidalgo 775, C1405BDB Buenos Aires, Argentina. 4 Laboratorio de Malacología terrestre. División Invertebrados Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 5 Sección Paleontología de Vertebrados. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 6 División Paleobotánica. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina. 7 Área de Paleontología. Departamento de Geología, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria (C1428EGA) Buenos Aires, Argentina. 8 Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-INIBIOMA), Quintral 1250, 8400 San Carlos de Bariloche, Río Negro, Argentina.
    [Show full text]
  • No Turning Back • Rothera Fire • Kayaking the Antarctic • Summer Tours • 2003 Solar Eclipse • Tangan Expedition!
    The Journal of the New Zealand Antarctic Society Vol 19, No. 2, 2001 No Turning Back • Rothera Fire • Kayaking the Antarctic • Summer Tours • 2003 Solar Eclipse • Tangan Expedition! Antarctic COVER PICTURE CONTENTS Kayaking in Antarctica SCAR Symposium Rothera Fire Plans to Locate Endurance Solar Eclipse in 2003 Cover photograph: New Zealand kayakers in the Letter to the Editor Antarctic Peninsula north of Enterprise Island. Photo: Graham Charles. The story of last season's Terrorist Attacks Affect Antarctic Planning epic trip is summarised in Antarctic, Vol. 18, no. 3 & 4, p. 58. More photographs opposite. Adventure Tourism Volume 19, No. 2, 2001 No Turning Back - Colin Monteath Issue No. 177 ANTARCTIC is published quarterly by the Over My Shoulder - Dogs on Ice New Zealand Antarctic Society Inc., ISSN 0003-5327. Please address all editorial enquiries to The Editor, NZ Antarctic Society, PO Box 404, Christchurch, or Review - A First Rate Tragedy email: [email protected]. Printed by Herald Communications, 52 Bank Street, Timaru, New Zealand. Review - Antarctica Unveiled Tribute - W. Frank Ponder Science - Tangaroa Explores Ross Sea Science - First Foucault Pendulum at Pole Antarctic Rubbish Volome 19, No. 2,2001 Antarctic NEWS Seals, Subglacial Lakes and Ultra-violet Radiation Highlights of the eighth SCAR Biology Symposium By Dr Clive Howard-Williams here were APIS, Subglacial lakes and The symposium also hosted a UV Radiation. workshop and several lectures on the The eighth SCAR international Bi The results of the Antarctic Pack Ice status of the Earth's latest unexplored ology Symposium was held in Am Seals (APIS) programme are appear large ecosystem: the sub-glacial lakes sterdam between 27 August and 5 ing in the literature, following the beneath the 3.5 km thick Antarctic ice September 2001.
    [Show full text]
  • For Peer Review
    Polar Record The deglaciation of Barton Peninsula (King George Island, South Shetland, Antarctica) based on geomorphic evidence and lacustrine records Journal: Polar Record Manuscript ID POL-RA-2019-0026.R1 Manuscript Type: Research Article Barton Peninsula, geomorphology, lake records, deglaciation, Keywords: tephrostratigraphy For Peer Review Cambridge University Press Marc Oliva1 , Dermot Antoniades2, Enrique Serrano3, Santiago Giralt4, Emma J. Liu5, Ignacio Granados6, Sergi Pla-Rabes7, Manuel Toro8, Soon Gyu Hong9, and Gonçalo Vieira10 1Department of Geography, University of Barcelona, Spain; 2Department of Géographie & Centre d’Études Nordiques, Université Laval, Canada; 3Department of Geography, University of Valladolid, Spain; 4Institute of Earth Sciences Jaume Almera, CSIC, Spain; 5Department of Earth Sciences, University of Cambridge, UK; 6Centro de Investigación, Seguimiento y Evaluación, Spain; 7Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Spain; 8Centre for Hydrographic Studies (CEDEX), Spain; 9Korea Polar Research Institute, South Korea and 10Centre for Geographical Studies – IGOT, Universidade de Lisboa, Portugal Abstract Barton Peninsula is an ice-free area located in the southwest corner of King George Island (South Shetland Islands, Antarctica). Following the Last Glacial Maximum, several geomorphological features developed in newly exposed ice-free terrain and their distribution provide insights about past environmental evolution of the area. Three moraine systems are indicative of three main glacial
    [Show full text]